Skip to main content

Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes

  • Reference work entry
The Prokaryotes

Abstract

This chapter provides an overview of prokaryotes that reduce oxygenated sulfate or elemental sulfur in their energy metabolism. Sulfate-reducing bacteria gain energy for cell synthesis and growth by coupling the oxidation of organic compounds or molecular hydrogen (H2) to the reduction of sulfate (SO4 2−) to sulfide (H2S, HS). Sulfur-reducing strains reduce elemental sulfur (or other lower oxidation states of this element, S0, S8) but not sulfate. The electron transport to the inorganic electron acceptors is associated with a mode of energy conservation that may be regarded as an anaerobic analogue to respiration with O2. Among the anaerobic respirations, the reduction of sulfur species is most noteworthy because it gives rise to a toxic end product, hydrogen sulfide (H2S). Within the sulfur cycle, this end product serves as electron donor for a great diversity of aerobic chemotrophic and anoxygenic phototrophic microorganisms that may form visible blooms in sulfidic habitats. The sulfate- and sulfur-reducing prokaryotes do not form a phylogenetically coherent group, but members are found in several phyla within the domains Archaea and Bacteria. Energy generating mechanisms as well as other physiological, biochemical, and molecular biological aspects of this ancient group of organisms are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard C, Dalgaard JZ, Garrett RA (1995) Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron-cells of Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 92:12285–12289

    Article  PubMed  CAS  Google Scholar 

  • Aagaard C, Leviev I, Aravalli RN, Forterre P, Prieur D, Garret RA (1996) General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid. FEMS Microbiol Rev 18:93–104

    Article  PubMed  CAS  Google Scholar 

  • Aalén N, Steen IH, Birkeland NK, Lien T (1997) Purification and properties of an extremely thermostable NADP+-specific glutamate dehydrogenase from Archaeoglobus fulgidus. Arch Microbiol 168:536–539

    Article  PubMed  Google Scholar 

  • Abdollahi H, Wimpenny JWT (1990) Effects of oxygen on the growth of Desulfovibrio desulfuricans. J Gen Microbiol 136:1025–1030

    Article  CAS  Google Scholar 

  • Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible biochemical missing link among archaebacteria. Nature 327:348–349

    Article  PubMed  CAS  Google Scholar 

  • Adams MWW (1990) The structure and mechanism of iron-hydrogenase. Biochim Biophys Acta 1020:115–145

    Article  PubMed  CAS  Google Scholar 

  • Adams MWW (1994) Biochemical diversity among sulfur-dependent, hyperthermophilic microorganisms. FEMS Microbiol Rev 15:261–277

    Article  PubMed  CAS  Google Scholar 

  • Aeckersberg F (1994) Anaerober Abbau von Alkanen und 1-Alkenen durch sulfatreduzierende Bakterien. PhD thesis, University of Bremen

    Google Scholar 

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14

    Article  CAS  Google Scholar 

  • Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369

    Article  PubMed  CAS  Google Scholar 

  • Aharon P, Baoshun F (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochim Cosmochim Acta 64:233–246

    Article  CAS  Google Scholar 

  • Akagi JM (1983) Reduction of bisulfite by the trithionate pathway by cells extracts from Desulfotomaculum nigrificans. Biochem Biophys Res Commun 117:530–535

    Article  PubMed  CAS  Google Scholar 

  • Akagi JM, Adams V (1973) Isolation of a bisulfate reductase activity from Desulfotomaculum nigrificans and its identification as a carbon monoxide-binding pigment P582. J Bacteriol 116:392–396

    PubMed  CAS  Google Scholar 

  • Akagi JM, Campbell LL (1962) Studies on thermophilic sulfate-reducing bacteria III. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans. J Bacteriol 84:1194–1201

    PubMed  CAS  Google Scholar 

  • Akagi JM, Jackson G (1985) Degradation of glucose by proliferating cells of Desulfotomaculum nigrificans. Appl Microbiol 15:1427–1430

    Google Scholar 

  • Akagi JM, Drake HL, Kim JH, Gevertz D (1994) Thiosulfate and trithionate reductases. In: Peck HD Jr, LeGall J (eds) Inorganic microbial sulfur metabolism. Academic, San Diego, pp 260–270

    Chapter  Google Scholar 

  • Aketagawa J, Kobayashi K, Ishimoto M (1985) Purification and properties of thiosulfate reductase from Desulfovibrio vulgaris, Miyazaki F. J Biochem 97:1025–1032

    PubMed  CAS  Google Scholar 

  • Albracht SPJ (1994) Nickel hydrogenase: in search of the active site. Biochim Biophys Acta 1188:167–204

    Article  PubMed  Google Scholar 

  • Allison MJ, Mayberry WR, McSweeney CS, Stahl DA (1992) Synergistes jonesii gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol 15:522–529

    Article  CAS  Google Scholar 

  • Almendra MJ, Brondino CD, Gravel O, Pereira AS, Tavares P, Bursakov S, Duarte R, Caldeira J, Mora JJG, Moura I (1999) Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Biochemistry 38:16366–16372

    Article  PubMed  CAS  Google Scholar 

  • Alperin MJ, Reeburgh WS (1984) Geochemical observations supporting anaerobic methane oxidation. In: Crawford RL, Hanson RS (eds) Microbial growth in C-1 compounds. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Alperin MJ, Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol 50:940–945

    PubMed  CAS  Google Scholar 

  • Alperin MJ, Reeburgh WS, Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem Cycles 2:279–288

    Article  CAS  Google Scholar 

  • Altenschmidt U, Fuchs G (1991) Anaerobic degradation of toluene in denitrifying Pseudomonas species: indication of toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate. Arch Microbiol 156:152–158

    Article  PubMed  CAS  Google Scholar 

  • Altenschmidt U, Oswald B, Fuchs G (1991) Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas species. J Bacteriol 173:5494–5501

    PubMed  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Aravalli RN, Garrett RA (1997) Shuttle vectors for hyperthermophilic archaea. Extremophiles 1:183–191

    Article  PubMed  CAS  Google Scholar 

  • Arendsen A, Verhagen MFJM, Wolbert RBG, Pierik AJ, Stams AJM, Jetten MSM, Hagen WR (1993) The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S = 9/2 iron-sulfur clusters. Biochemistry 32:10323–10330

    Article  PubMed  CAS  Google Scholar 

  • Arendsen AF, Veenhuizen PTM, Hagen WR (1995) Redox properties of the sulfhydrogenase from Pyrococcus furiosus. FEBS Lett 368:117–121

    Article  PubMed  CAS  Google Scholar 

  • Arendsen AF, Hadden J, Card G, McAlpine AS, Bailey S, Zaitsev V, Duke EHM, Lindley PF, Kröckel M, Trautwein AX, Feiters MC, Charnock JM, Garner CD, Marritt SJ, Thomson AJ, Kooter IM, Johnson MK, van den Berg WAM, van Dongen WMAM, Hagen WR (1998) The “prismane” protein resolved: X-ray structure at 1.7 Å and multiple spectroscopy of two novel 4Fe clusters. J Biol Inorg Chem 3:81–95

    Article  CAS  Google Scholar 

  • Argyle JL, Rapp-Giles BJ, Wall JD (1992) Plasmid transfer by conjugation in Desulfovibrio desulfuricans. FEMS Microbiol Lett 94:255–262

    Article  CAS  Google Scholar 

  • Armitage JP (1997) Behavioural responses of bacteria to light and oxygen. Arch Microbiol 168:249–261

    Article  PubMed  CAS  Google Scholar 

  • Aubert C, Leroy G, Bruschi M, Wall JD, Dolla A (1997) A single mutation in the heme 4 environment of Desulfovibrio desulfuricans Norway cytochrome c-3 (Mr 26,000) greatly affects the molecule reactivity. J Biol Chem 272:15128–15134

    Article  PubMed  CAS  Google Scholar 

  • Aubert C, Giudici-Orticoni MT, Czjzek M, Haser R, Bruschi M, Dolla A (1998a) Structural and kinetic studies of the Y73E mutant of octaheme cytochrome c 3 (Mr = 26000) from Desulfovibrio desulfuricans Norway. Biochemistry 37:2120–2130

    Article  PubMed  CAS  Google Scholar 

  • Aubert C, Lojou E, Bianco P, Rousset M, Durand MC, Bruschi M, Dolla A (1998b) The Desulfuromonas acetoxidans triheme cytochrome c 7 produced in Desulfovibrio desulfuricans retains its metal reductase activity. Appl Environ Microbiol 64:1308–1312

    PubMed  CAS  Google Scholar 

  • Audiffrin C, Cayol JL, Joulian C, Casalot L, Thomas P, Garcia JL, Ollivier B (2003) Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Baars JK (1930) Over sulfaatreductie door bacterien. PhD thesis, University of Delft

    Google Scholar 

  • Bache R, Kroneck PMH, Merkle M, Beinert H (1983) A survey of EPR-detectable components in sulfur-reducing bacteria. Biochim Biophys Acta 722:417–426

    Article  CAS  Google Scholar 

  • Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch Microbiol 117:209–214

    Article  PubMed  CAS  Google Scholar 

  • Badziong W, Thauer RK (1980) Vectorial electron transport in Desulfovibrio vulgaris (Marburg), growing on hydrogen plus sulfate as sole energy source. Arch Microbiol 125:167–174

    Article  CAS  Google Scholar 

  • Badziong W, Ditter B, Thauer RK (1979) Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source. Arch Microbiol 123:301–305

    Article  CAS  Google Scholar 

  • Baena S, Fardeau ML, Labat M, Ollivier B, Garcia JL, Patel BKC (1998a) Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst Appl Microbiol 21:498–504

    Article  PubMed  CAS  Google Scholar 

  • Baena S, Fardeau ML, Labat M, Ollivier B, Thomas P, Garcia JL, Patel BKC (1998b) Aminobacterium colombiense gen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe 4:241–250

    Article  PubMed  CAS  Google Scholar 

  • Baena S, Fardeau ML, Ollivier B, Labat M, Thomas P, Garcia JL, Patel BKC (1999a) Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Bacteriol 49:975–982

    Article  PubMed  CAS  Google Scholar 

  • Baena S, Fardeau ML, Woo THS, Ollivier B, Labat M, Patel BKC (1999b) Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, “Selenomonas acidaminophila” and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences, and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Bacteriol 49:969–974

    Article  PubMed  CAS  Google Scholar 

  • Baena S, Perdomo N, Carvajal C, Diaz C, Patel BKC (2011) Desulfosoma caldarium gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a terrestrial hot spring. Int J Syst Evol Microbiol 61:732–736

    Article  PubMed  CAS  Google Scholar 

  • Bagley KA, Duin EC, Roseboom W, Albracht SPJ, Woodruff WH (1995) Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum. Biochemistry 34:5527–5535

    Article  PubMed  CAS  Google Scholar 

  • Bainton RJ, Kubo KM, Feng J, Craig NL (1993) Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72:931–943

    Article  PubMed  CAS  Google Scholar 

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189

    Article  CAS  Google Scholar 

  • Bak F, Widdel F (1986a) Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov, sp. nov. Arch Microbiol 146:170–176

    Article  CAS  Google Scholar 

  • Bak F, Widdel F (1986b) Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch Microbiol 146:177–180

    Article  CAS  Google Scholar 

  • Balashova VV (1985) The use of molecular sulfur as an agent oxidizing hydrogen by the facultative anaerobic Pseudomonas strain. Mikrobiologiya (Russian) 54:324–326

    CAS  Google Scholar 

  • Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521

    Article  PubMed  CAS  Google Scholar 

  • Balk M, Altinbas M, Rijpstra WIC, Sinninghe Damste JS, Stams AJM (2008) Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor. Int J Syst Evol Microbiol 58:110–115

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Bruschi M, Sompornpisut P, Turano P (1996) NMR characterization and solution structure determination of the oxidizing cytochrome c 7 from Desulfuromonas acetoxidans. Proc Natl Acad Sci USA 93:14396–14400

    Article  PubMed  CAS  Google Scholar 

  • Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297

    Article  CAS  Google Scholar 

  • Baron C, Heider J, Böck A (1993) Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Proc Natl Acad Sci USA 90:4181–4185

    Article  PubMed  CAS  Google Scholar 

  • Barrett EL, Clark MA (1987) Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51:192–205

    PubMed  CAS  Google Scholar 

  • Barton LL, LeGall J, Peck HD Jr (1970) Phosphorylation coupled to oxidation of hydrogen with fumarate in extracts. Biochem Biophys Res Commun 41:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Barton LL, LeGall J, Odom JM, Peck HD Jr (1983) Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 153:867–871

    PubMed  CAS  Google Scholar 

  • Baton EJ, Summannen P, Downes J, Roberts MC, Wexler H, Finegold SM (1989) Bilophila wadsworthia, gen. nov. and sp. nov., a unique gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J Gen Microbiol 135:3405–3411

    Google Scholar 

  • Bedessem ME, Swoboda-Colberg NG, Colberg PJS (1997) Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments. FEMS Microbiol Lett 152:213–218

    Article  CAS  Google Scholar 

  • Beeder J, Nilsen RN, Rosnes JT, Torsvik T, Lien T (1994) Archaeoglobus fulgidus isolated from hot North sea oil field waters. Appl Environ Microbiol 60:1227–1231

    PubMed  CAS  Google Scholar 

  • Beeder J, Torsvik T, Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336

    Article  PubMed  CAS  Google Scholar 

  • Beh M, Strauss G, Huber R, Stetter KO, Fuchs G (1993) Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch Microbiol 160:306–311

    Article  CAS  Google Scholar 

  • Beijerinck WM (1895) Über Spirillum desulfuricans als Ursache von Sulfatreduction. Zentralb Bakteriol II 1(49–59):104–114

    Google Scholar 

  • Belkin S, Wirsen CO, Jannasch HW (1985) Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 49:1057–1061

    PubMed  CAS  Google Scholar 

  • Bell GR, LeGall J, Peck HD Jr (1974) Evidence for the periplasmic location of hydrogenase in Desulfovibrio gigas. J Bacteriol 120:994–997

    PubMed  CAS  Google Scholar 

  • Beller HR, Spormann AM (1997a) Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J Bacteriol 179:670–676

    PubMed  CAS  Google Scholar 

  • Beller HR, Spormann AM (1997b) Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOL1. Appl Environ Microbiol 63:3729–3731

    PubMed  CAS  Google Scholar 

  • Beller HR, Reinhard M, Grbic-Galic D (1992) Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl Environ Microbiol 58:3192–3195

    PubMed  CAS  Google Scholar 

  • Beller HR, Spormann AM, Sharma PK, Cole JR, Reinhard M (1996) Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacteria. Appl Environ Microbiol 62:1188–1196

    PubMed  CAS  Google Scholar 

  • Belyakova EV, Rozanova EP, Borzenkov IA, Tourova TP, Pusheva MA, Lysenko AM, Kolganova TV (2006) The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology 75:161–171 (translated from Mikrobiologiya 2006, 75:201–211)

    Article  CAS  Google Scholar 

  • Berks BC (1996) A common export pathway for proteins binding complex redox cofactors. Mol Microbiol 22:393–404

    Article  PubMed  CAS  Google Scholar 

  • Berry DF, Francis AJ, Bollag JM (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51:43–59

    PubMed  CAS  Google Scholar 

  • Bertrand P, Bruschi M, Denis M, Gayda JP, Manca F (1982) Cytochrome c 553 from Desulfovibrio vulgaris: potentiometric characterization by optical and EPR studies. Biochem Biophys Res Commun 106:756–760

    Article  PubMed  CAS  Google Scholar 

  • Biebl H, Pfennig N (1977) Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch Microbiol 112:115–117

    Article  PubMed  CAS  Google Scholar 

  • Biegert T, Fuchs G, Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatic is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238:661–668

    Article  PubMed  CAS  Google Scholar 

  • Bilous PT, Weiner JH (1985) Proton translocation coupled to dimethyl sulfoxide reduction in anaerobically grown Escherichia coli HB101. J Bacteriol 163:369–375

    PubMed  CAS  Google Scholar 

  • Birks SJ, Kelly DJ (1997) Assay and properties of acetone carboxylase, a novel enzyme involved in acetone-dependent growth and CO2 fixation in Rhodobacter capsulatus and other photosynthetic and denitrifying bacteria. Microbiology 143:755–766

    Article  CAS  Google Scholar 

  • Blackledge MJ, Medvedeva S, Poncin M, Guerlesquin F, Bruschi M, Marion D (1995) Structure and dynamics of ferrocytochrome c553 from Desulfovibrio vulgaris studied by NMR spectroscopy and restrained molecular dynamics. J Mol Biol 245:661–681

    Article  PubMed  CAS  Google Scholar 

  • Blair NE, Aller RC (1995) Anaerobic methane oxidation on the Amazon shelf. Geochim Cosmochim Acta 59:3707–3715

    Article  CAS  Google Scholar 

  • Blanchard L, Marion D, Pollock B, Voordouw G, Wall J, Bruschi M, Guerlesquin F (1993) Overexpression of Desulfovibrio vulgaris Hildenborough cytochrome c553 in Desulfovibrio desulfuricans G200. Eur J Biochem 218:293–301

    Article  PubMed  CAS  Google Scholar 

  • Blanchard L, Dolla A, Bersch B, Forest E, Bianco P, Marion D, Guerlesquin F (1994) Effects of the Tyr64 substitution on the stability of cytochrome c553, a low oxidoreduction-potential cytochrome from Desulfovibrio vulgaris Hildenborough. Eur J Biochem 226:423–432

    Article  PubMed  CAS  Google Scholar 

  • Blöchl E, Rachl R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21

    Article  PubMed  Google Scholar 

  • Blomfield IC, Vaughn V, Rest RF, Eisenstein BI (1991) Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 5:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Blumenthals II, Itoh M, Olson GJ, Kelly RM (1990) Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1255–1262

    Google Scholar 

  • Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520

    Article  PubMed  Google Scholar 

  • Bokranz M, Gutmann M, Körtner C, Kojro E, Fahrenholz F, Lauterbach F, Kröger A (1991) Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Arch Microbiol 156:119–128

    Article  PubMed  CAS  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW (1977) Construction and characterization of new cloning vehicles. II: a multipurpose cloning system. Gene 2:95–113

    Article  PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G (1995) Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur J Biochem 234:921–933

    Article  PubMed  CAS  Google Scholar 

  • Boll M, Fuchs G (1998) Identification and characterization of the natural electron donor ferredoxin and of FAD as a possible prosthetic group of benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. Eur J Biochem 251:946–954

    Article  PubMed  CAS  Google Scholar 

  • Bonch-Osmolovskaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1990) Desulfurella acetivorans gen. nov. and sp. nov.-a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155

    Article  Google Scholar 

  • Boon JJ, de Leeuw JW, van der Hoek GJ, Vosjan JH (1977) Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched β-hydroxy acids in Desulfovibrio desulfuricans. J Bacteriol 129:1183–1191

    PubMed  CAS  Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov., gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    PubMed  CAS  Google Scholar 

  • Boulegue J (1978) Solubility of elemental sulfur in water at 298 K. Phosphorus Sulfur 5:127–128

    CAS  Google Scholar 

  • Boyle AW, Phelps CD, Young LY (1999) Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl Environ Microbiol 65:1133–1140

    PubMed  CAS  Google Scholar 

  • Bramlett RN, Peck HD Jr (1975) Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris. J Biol Chem 250:2979–2986

    PubMed  CAS  Google Scholar 

  • Brandis A, Thauer RK (1981) Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. J Gen Microbiol 126:249–252

    CAS  Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. Arch Microbiol 136:222–229

    Article  CAS  Google Scholar 

  • Brandt KK, Patel BKC, Ingvorsen K (1999) Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. Int J Syst Bacteriol 49:193–200

    Article  PubMed  CAS  Google Scholar 

  • Braumann A, Müller JA, Garcia JL, Brune A, Schink B (1998) Fermentative degradation of 3-hydroxybenzoate in pure culture by a novel strictly anaerobic bacterium, Sporotomaculum hydroxybenzoicum gen. nov., sp. nov. Int J Syst Bacteriol 48:215–221

    Article  Google Scholar 

  • Brierley CL, Brierley JA (1982) Anaerobic reduction of molybdenum by species. Zentralb Bakteriol C 3:289–294

    CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperatures. Arch Microbiol 84:54–68

    CAS  Google Scholar 

  • Brown MS, Akagi JM (1966) Purification of acetokinase from Desulfovibrio desulfuricans. J Bacteriol 92:1273–1274

    PubMed  CAS  Google Scholar 

  • Brugna M, Giudici-Orticoni MT, Spinelli S, Brown K, Tegoni M, Bruschi M (1998) Kinetics and interaction studies between cytochrome c 3 and Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough. Proteins Struct Funct Genet 33:590–600

    Article  PubMed  CAS  Google Scholar 

  • Brumlik MJ, Voordouw G (1989) Analysis of the transcriptional unit encoding the genes for rubredoxin (rub) and a putative rubredoxin oxidoreductase (rbo) in Desulfovibrio vulgaris Hildenborough. J Bacteriol 171:4996–5004

    PubMed  CAS  Google Scholar 

  • Brumlik MJ, Leroy G, Bruschi M, Voordouw G (1980) The nucleotide sequence of the Desulfovibrio gigas desulforedoxin gene indicates that the Desulfovibrio vulgaris rbo gene originated from a gene fusion event. J Bacteriol 172:7289–7292

    Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975:189–221

    Article  PubMed  CAS  Google Scholar 

  • Bruschi M, Hatchikian EC, Bonicel J (1977) The N-terminal sequence of superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans. FEBS Lett 76:121–124

    Article  PubMed  CAS  Google Scholar 

  • Bruschi M, Bertrand P, More C, Leroy G, Bonicel J, Haladjian J, Chottard G, Pollock WBR, Voordouw G (1992) Biochemical and spectroscopic characterization of the high molecular weight cytochrome c from Desulfovibrio vulgaris Hildenborough expressed in Desulfovibrio desulfuricans G200. Biochemistry 31:3281–3288

    Article  PubMed  CAS  Google Scholar 

  • Bruschi M, Wondstra B, Guigliarelli M, Asso E, Petillot Y, Abergel C (1997) Biochemical and spectroscopic characterization of two new cytochromes isolated from Desulfuromonas acetoxidans. Biochemistry 36:10601–10608

    Article  PubMed  CAS  Google Scholar 

  • Bryant FO, Adams MWW (1989) Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem 264:5070–5079

    PubMed  CAS  Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth in Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    PubMed  CAS  Google Scholar 

  • Brysch K, Schneider C, Fuchs G, Widdel F (1987) Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol 148:264–274

    Article  CAS  Google Scholar 

  • Bühler M, Schindler J (1984) Aliphatic hydrocarbons. In: Kieslich K (ed) Biotransformations, vol 6a. Verlag-Chemie, Weinheim, pp 329–385

    Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, Fitzgerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen JL, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk HP, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archae bacteria. Syst Appl Microbiol 13:24–28

    Article  Google Scholar 

  • Butlin KR, Adams ME (1947) Autotrophic growth of sulphate-reducing bacteria. Nature 160:154–155

    Article  CAS  Google Scholar 

  • Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stoltz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    PubMed  CAS  Google Scholar 

  • Caldwell ME, Garrett RM, Prince RC, Suflita JM (1998) Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ Sci Technol 32:2191–2195

    Article  CAS  Google Scholar 

  • Cammack R (1999) Hydrogenase sophistication. Nature 397:214–215

    Article  PubMed  CAS  Google Scholar 

  • Cammack R, Kerscher L, Oesterhelt D (1980) A stable free radical intermediate in the reaction of 2-oxoacid: ferredoxin oxidoreductase of Halobacterium halobium. FEBS Lett 118:271–273

    Article  CAS  Google Scholar 

  • Cammack R, Fauque G, Moura JJG, LeGall J (1984) ESR studies of cytochrome c 3 from Desulfovibrio desulfuricans strain Norway 4. Midpoint potentials of the four haems, and interactions with ferredoxin and colloidal sulphur. Biochim Biophys Acta 784:68–74

    Article  CAS  Google Scholar 

  • Campbell LL, Postgate JR (1965) Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29:359–363

    PubMed  CAS  Google Scholar 

  • Campbell LL, Frank HA, Hall RE (1957) Studies on thermophilic sulfate-reducing bacteria. I. Identification of Sporovibrio desulfuricans as Clostridium nigrificans. J Bacteriol 73:516–521

    PubMed  CAS  Google Scholar 

  • Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473

    Article  PubMed  CAS  Google Scholar 

  • Canfield DE, Thamdrup B (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266:1973–1975

    Article  PubMed  CAS  Google Scholar 

  • Carr MC, Curley GP, Mayhew SG, Voordouw G (1990) Effects of substituting asparagine for glycine-61 in flavodoxin from Desulfovibrio vulgaris (Hildenborough). Biochem Int 20:1025–1032

    PubMed  CAS  Google Scholar 

  • Casalot L, Hatchikian CE, Forget N, De Philip P, Dermoun Z, Bélaich J-P, Roesset M (1998) Molecular study and partial characterization of iron-only hydrogenase in Desulfovibrio fructovorans. Anaerobe 4:45–55

    Article  PubMed  CAS  Google Scholar 

  • Chabriere E, Charon MH, Volbeda A, Pieulle L, Hatchikian EC, Fontecilla-Camps JC (1999a) Crystal structures of the key anaerobic enzyme pyruvate: ferredoxin oxidoreductase, free and in complex with pyruvate. Nat Struct Biol 6:182–190

    Article  PubMed  CAS  Google Scholar 

  • Chabriere E, Volbeda A, Fontecilla-Camps JC, Roth M, Charon MH (1999b) Combination of methods used in the structure determination of pyruvate: ferredoxin oxidoreductase from two crystal forms. Acta Crystallogr D55:1546–1554

    CAS  Google Scholar 

  • Chambers LA, Trudinger PA (1975) Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? J Bacteriol 123:36–40

    PubMed  CAS  Google Scholar 

  • Charon M-H, Volbeda A, Chabriere E, Pieulle L, Fontecilla-Camps JC (1999) Structure and electron transfer mechanism of pyruvate: ferredoxin oxidoreductase. Curr Opin Struct Biol 9:663–669

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Pereira M, Teixeira M, Xavier AV, LeGall J (1994a) Isolation and characterization of a high molecular weight cytochrome from the sulfate reducing bacterium Desulfovibrio gigas. FEBS Lett 347:295–299

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Menon NK, Dervertarnian L, Moura JJG, Przybyla AE (1994b) Cloning, sequencing and overexpression of the Desulfovibrio gigas ferredoxin gene in E. coli. FEBS Lett 351:401–404

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Sharma P, LeGall J, Mariano AM, Teixeira M, Xavier AV (1994c) A blue non-heme iron protein from Desulfovibrio gigas. Eur J Biochem 226:613–618

    Article  PubMed  CAS  Google Scholar 

  • Chen L, LeGall J, Xavier AV (1994d) Purification, characterization and properties of an NADH oxidase from Desulfovibrio vulgaris (Hildenborough) and its coupling to adenylyl phosphosulfate. Biochem Biophys Res Commun 203:839–844

    Article  PubMed  CAS  Google Scholar 

  • Chen L, LeGall J, Fareleira P, Santos H, Xavier AV (1995) Malate metabolism by Desulfovibrio gigas and its link to sulfate and fumarate reduction: purification of the malic enzyme and detection of NAD(P)+ transhydrogenase activity. Anaerobe 1:227–235

    Article  PubMed  CAS  Google Scholar 

  • Christner JA, Münck E, Kent TA, Janick PA, Salerno JC, Siegel LM (1984) Exchange coupling between siroheme and (4Fe-4S) cluster in E. coli sulfite reductase. Mossbauer studies and coupling models for a 2-elctron reduced enzyme state and complexes with sulfide. J Am Chem Soc 106:6786–6794

    Article  CAS  Google Scholar 

  • Cline SW, Doolittle WF (1987) Efficient transfection of the archaebacterium Halobacterium halobium. J Bacteriol 169:1341–1344

    PubMed  CAS  Google Scholar 

  • Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63:3589–3593

    PubMed  CAS  Google Scholar 

  • Cohn F (1867) Beiträge zur Physiologie der Phycochromaeen unf Florideen. Inst Arch Mikrosk Anat 3:1–60

    Article  Google Scholar 

  • Cole JA (1988) Assimilatory and dissimilatory reduction of nitrate to ammonia. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles, vol 42. Cambridge University Press, Cambridge, pp 281–329

    Google Scholar 

  • Cole ST, Girons IS (1994) Bacterial genomics. FEMS Microbiol Rev 14:139–160

    Article  PubMed  CAS  Google Scholar 

  • Coleman GS (1960) A sulphate-reducing bacterium from the sheep rumen. J Gen Microbiol 22:423–436

    Article  PubMed  CAS  Google Scholar 

  • Collins MW, Widdel F (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R, Widdel F (1986) Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria. Appl Microbiol Biotechnol 25:169–174

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357

    Article  CAS  Google Scholar 

  • Coschigano PW, Wehrman TS, Young LY (1998) Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: putative role of glycine free radical. Appl Environ Microbiol 64:1650–1656

    PubMed  CAS  Google Scholar 

  • Costa C, Teixeira M, LeGall J, Moura JJG, Moura I (1997) Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: isolation and spectroscopic characterization of the active sites (heme, iron-sulfur centers and molybdenum). J Biol Inorg Chem 2:198–208

    Article  CAS  Google Scholar 

  • Coulter ED, Shenvi NVDM, Kurtz DM (1999) NADH peroxidase activity of rubrerythrin. Biochem Biophys Res Commun 255:317–323

    Article  PubMed  CAS  Google Scholar 

  • Coutinho IB, Turner DL, Liu MY, LeGall J, Xavier AV (1996) Structure of the three-haem core of cytochrome c 5515 determined by 1H NMR. J Biol Inorg Chem 1:305–311

    Article  CAS  Google Scholar 

  • Craig NL (1991) Tn7: a target site-specific transposon. Mol Microbiol 5:2569–2573

    Article  PubMed  CAS  Google Scholar 

  • Crane BR, Getzoff ED (1996) The relationship between structure and function for the sulfite reductases. Curr Opin Struct Biol 6:744–756

    Article  PubMed  CAS  Google Scholar 

  • Crane BR, Siegel LM, Getzoff ED (1995) Sulfite reductase structure at 1.6 Å: evolution and catalysis for reduction of inorganic anions. Science 270:59–67

    Article  PubMed  CAS  Google Scholar 

  • Cravo-Laureau C, Matheron R, Cayol JL, Joulian C, Hirschler-Rea A (2004) Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54:77–83

    Article  PubMed  CAS  Google Scholar 

  • Cravo-Laureau C, Labat C, Joulian C, Matheron R, Hirschler-Rea A (2007) Desulfatiferula olefinivorans gen. nov., sp. nov., a long-chain n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 57:2699–2702

    Article  PubMed  CAS  Google Scholar 

  • Curley GP, Voordouw G (1988) Cloning and sequencing of the gene encoding flavodoxin from Desulfovibrio vulgaris Hildenborough. FEMS Microbiol Lett 49:295–299

    Article  CAS  Google Scholar 

  • Cypionka H (1987) Uptake of sulfate, sulfite and thiosulfate by proton-anion symport in Desulfovibrio desulfuricans. Arch Microbiol 148:144–149

    Article  CAS  Google Scholar 

  • Cypionka H (1989) Characterization of sulfate transport in Desulfovibrio desulfuricans. Arch Microbiol 152:237–243

    Article  PubMed  CAS  Google Scholar 

  • Cypionka H (1994) Sulfate transport. In: Peck HD, LeGall J (eds) Inorganic microbial sulfur metabolism, vol 243. Academic, San Diego, pp 3–14

    Chapter  Google Scholar 

  • Cypionka H (1995) Solute transport and cell energetics. In: Barton LL (ed) Sulfate-reducing bacteria, vol 8. Plenum, New York, pp 152–184

    Google Scholar 

  • Cypionka H, Dilling W (1986) Intracellular localization of the hydrogenase in Desulfotomaculum orientis. FEMS Microbiol Lett 36:257–260

    Article  CAS  Google Scholar 

  • Cypionka H, Pfennig N (1986) Growth yields of Desulfovibrio orientis with hydrogen in chemostat culture. Arch Microbiol 143:396–399

    Article  CAS  Google Scholar 

  • Cypionka H, Widdel F, Pfennig N (1985) Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol Ecol 31:39–45

    Article  CAS  Google Scholar 

  • Czechowski, H. M., and H. W. Rossmore (1980) Factors affecting Desulfovibrio desulfuricans lactate dehydrogenase Developments in industrial microbiology, New York, 349–356

    Google Scholar 

  • Czechowski MH, He SH, Nacro M, DerVartanian DV, Peck HD Jr, LeGall J (1984) A cytoplasmic nickel-iron hydrogenase with high specific activity from Desulfovibrio multispirans sp. n., a new species of sulfate reducing bacterium. Biochem Biophys Res Commun 125:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Czjzek M, Payan F, Guerlesquin F, Bruschi M, Haser R (1994) Crystal structure of cytochrome c 3 from Desulfovibrio desulfuricans Norway at 1.7Å resolution. J Mol Biol 243:653–667

    Article  PubMed  CAS  Google Scholar 

  • Dahl C, Keuken O, Koch H-G, Trüper HG (1988) ATP sulfurylase and bisulfite reductase from the extremely thermophilic sulfate-reducing archaebacterium, Archaeoglobus fulgidus. J Gen Microbiol 134:1419–1425

    Google Scholar 

  • Dahl C, Koch H-G, Keuken O, Trüper HG (1990) Purification and characterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate-reducer, Archaeoglobus fulgidus. FEMS Microbiol Lett 67:27–32

    Article  CAS  Google Scholar 

  • Dahl C, Kredich NM, Deutzmann R, Trüper HG (1993) Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase gene. J Gen Microbiol 139:1817–1828

    Article  PubMed  CAS  Google Scholar 

  • Dahl C, Speich N, Trüper HG (1994) Enzymology and molecular biology of sulfate reduction in extremely thermophilic archaeon Archaeoglobus fulgidus. In: Peck HD Jr, LeGall J (eds) Inorganic microbial sulfur metabolism, vol 243. Academic, San Diego, pp 331–349

    Chapter  Google Scholar 

  • Dahl C, Molitor M, Trüper HG (2001) Siroheme-sulfite reductase-type protein from Pyrobaculum islandicum Peck, HD, LeGall, J. Methods Enzymol 331:410–409

    Article  PubMed  CAS  Google Scholar 

  • Dahle H, Birkeland NK (2006) Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56:1539–1545

    Article  PubMed  CAS  Google Scholar 

  • Dai Y-R, Reed DW, Millstein JH, Hartzell PL, Grahame DA, DeMoll E (1998) Acetyl-CoA decarbonylase/synthase complex from Archaeoglobus fulgidus. Arch Microbiol 169:525–529

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard T, Bak F (1994) Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics and regulation. Appl Environ Microbiol 60:291–297

    PubMed  CAS  Google Scholar 

  • Dannenberg S, Kroder M, Dilling W, Cypionka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158:93–99

    Article  CAS  Google Scholar 

  • Daumas S, Cord-Ruwisch R, Garcia JL (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal water. Antonie Van Leeuwenhoek J Microbiol Serol 54:165–178

    Article  CAS  Google Scholar 

  • Davidova IA, Duncan KE, Choi OK, Suflita JM (2006) Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742

    Article  PubMed  CAS  Google Scholar 

  • Davis JB, Yarbrough HF (1966) Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans. Chem Geol 1:137–144

    Article  Google Scholar 

  • Dawson JH (1988) Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240:433–439

    Article  PubMed  CAS  Google Scholar 

  • De Luca G, Asso M, Bélaich JP, Dermoun Z (1998a) Purification and characterization of the HndA subunit of NADP-reducing hydrogenase from Desulfovibrio fructovorans overproduced in Escherichia coli. Biochemistry 37:2660–2665

    Article  PubMed  Google Scholar 

  • De Luca G, De Philip P, Rousset M, Bélaich JP, Dermoun Z (1998b) The NADP-reducing hydrogenase of Desulfovibrio fructovorans: evidence for a native complex with hydrogen-dependent methyl-viologen-reducing activity. Biochem Biophys Res Commun 248:591–596

    Article  PubMed  Google Scholar 

  • Dean JA (1992) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  • Deckers HM, Voordouw G (1994a) Identification of a large family of genes for putative chemoreceptor proteins in an ordered library of the Desulfovibrio vulgaris Hildenborough genome. J Bacteriol 176:351–358

    PubMed  CAS  Google Scholar 

  • Deckers HM, Voordouw G (1994b) Membrane topology of the methyl-accepting chemotaxis protein DcrA from Desulfovibrio vulgaris Hildenborough. Antonie Van Leeuwenhoek 65:7–12

    Article  PubMed  CAS  Google Scholar 

  • Deckers HM, Voordouw G (1996) The dcr gene family of Desulfovibrio: implications from the sequence of dcrH and phylogenetic comparison with other mcp genes. Antonie Van Leeuwenhoek 70:21–29

    Article  PubMed  CAS  Google Scholar 

  • Deckers HM, Wilson FR, Voordouw G (1990) Cloning and sequencing of a (NiFe) hydrogenase operon from Desulfovibrio vulgaris Miyazaki. F. J Gen Microbiol 136:2021–2028

    Article  PubMed  CAS  Google Scholar 

  • Dehning I, Schink B (1989) Malonomonas rubra gen. nov., sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151:427–433

    Article  CAS  Google Scholar 

  • Denger K, Stackebrandt E, Cook AM (1999) Desulfonispora thiosulfatigenes gen. nov., sp. nov., a taurine-fermenting, thiosulfate-producing anaerobic bacterium. Int J Syst Bacteriol 49:1599–1603

    Article  PubMed  CAS  Google Scholar 

  • DerVartanian DV (1994) Desulforubidin: dissimilatory, high-spin sulfite reductase of Desulfomicrobium species. In: Peck HD Jr, LeGall J (eds) Inorganic microbial sulfur metabolism, vol 243. Academic, San Diego, pp 270–276

    Chapter  Google Scholar 

  • DerVartanian DV, LeGall J (1974) A monomolecular electron transfer chain: structure and function of cytochrome c 3. Biochim Biophys Acta 346:79–99

    Article  CAS  Google Scholar 

  • Devereux R, Delaney M, Widdel F, Stahl DA (1989) Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171:6689–6695

    PubMed  CAS  Google Scholar 

  • Devereux R, He S, Doyle CL, Orkland S, Stahl DA, LeGall J, Whitman WB (1990) Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172:3609–3619

    PubMed  CAS  Google Scholar 

  • Devereux R, Kane MD, Winfrey J, Stahl DA (1992) Genus-and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst Appl Microbiol 15:601–609

    Article  CAS  Google Scholar 

  • Devereux R, Willis SG, Hines ME (1997) Genome sizes of Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Desulfobulbus propionicus estimated by pulsed-field gel electrophoresis of linearized chromosomal DNA. Curr Microbiol 34:337–339

    Article  PubMed  CAS  Google Scholar 

  • Devohl AJ, Ahmed SI (1981) Are high rates of sulphate reduction associated with anaerobic oxidation of methane? Nature 291:407–408

    Article  Google Scholar 

  • Devreese B, Costa C, Demol H, Papaefthymiou V, Moura I, Moura JJG, van Beeumen J (1997) The primary structure of the split-soret cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveals an unusual type of diheme cytochrome c. Eur J Biochem 248:445–451

    Article  PubMed  CAS  Google Scholar 

  • DeWeerd KA, Mandelco L, Tanner RS, Woese CR, Suflita JM (1990) Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol 154:23–30

    Article  CAS  Google Scholar 

  • Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HP, Bursakov S, Calvete J, Caldeira J, Carniero C, Moura JJG, Moura I, Romao MJ (1999) Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure 7:65–79

    Article  PubMed  CAS  Google Scholar 

  • Diaz C, Baena S, Fardeau ML, Patel BKC (2007) Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. Int J Syst Evol Microbiol 57:1914–1918

    Article  PubMed  CAS  Google Scholar 

  • Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–128

    CAS  Google Scholar 

  • Dirmeier R, Keller M, Frey G, Huber H, Stetter KO (1998) Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi. Eur J Biochem 252:486–491

    Article  PubMed  CAS  Google Scholar 

  • Dolfing J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol 153:264–266

    Article  PubMed  CAS  Google Scholar 

  • Dolfing J, Tiedje JM (1987) Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch Microbiol 149:102–105

    Article  PubMed  CAS  Google Scholar 

  • Dolfing J, Zeyer J, Binder-Eicher P, Schwarzenbach RP (1990) Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol 154:336–341

    Article  PubMed  CAS  Google Scholar 

  • Dolla A, Fu R, Brumlik MJ, Voordouw G (1992) Nucleotide sequence of dcrA, a Desulfovibrio vulgaris Hildenborough chemoreceptor gene, and its expression in Escherichia coli. J Bacteriol 174:1726–1733

    PubMed  CAS  Google Scholar 

  • Dörner C (1992) PhD. thesis, Eberhard-Karls-Universität Tübingen

    Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  PubMed  CAS  Google Scholar 

  • Dowling NJE, Widdel F, White DC (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. J Gen Microbiol 132:1815–1825

    CAS  Google Scholar 

  • Downes J, Vartoukian SR, Dewhirst FE, Izard J, Chen T, Yu WH, Sutcliffe IC, Wade WG (2009) Pyramidobacter piscolens gen. nov., sp. nov., a member of the phylum ‘Synergistetes’ isolated from the human oral cavity. Int J Syst Evol Microbiol 59:972–980

    Article  PubMed  CAS  Google Scholar 

  • Drake HL, Akagi JM (1977) Characterization of a novel thiosulfate-forming enzyme isolated from Desulfovibrio vulgaris. J Bacteriol 132:132–138

    PubMed  CAS  Google Scholar 

  • Dross F, Geisler V, Lenger R, Theis F, Krafft T, Fahrenholz F, Kojro E, Duchene A, Tripier D, Juvenal K, Kröger A (1992) The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur J Biochem 206:93–102

    Article  PubMed  CAS  Google Scholar 

  • Drzyzga O, Küver J, Blotevogel K-H (1993) Complete oxidation of benzoate and 4-hydroxybenzoate by a new sulfate-reducing bacterium resembling Desulfoarculus. Arch Microbiol 159:109–113

    Article  PubMed  CAS  Google Scholar 

  • Edwards EA, Wills LE, Reinhard M, Grbic-Galic D (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl Environ Microbiol 58:794–800

    PubMed  CAS  Google Scholar 

  • Ehrenreich P (1996) Anaerobes Wachstum neuartiger sulfatreduziernder und nitratreduzierender Bakterien auf n-Alkanen und Erdöl. PhD thesis, Universität Bremen

    Google Scholar 

  • Ehrenreich P, Behrends A, Harder J, Widdel F (1999) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64

    Article  Google Scholar 

  • Eidsness ME, Scott RA, Prickril BC, DerVartanian DV, LeGall J, Moura I, Moura JJG, Peck HD Jr (1989) Evidence for selenocysteine coordination to the active site nickel in the (NiFeSe)hydrogenases from Desulfovibrio baculatus. Proc Natl Acad Sci USA 86:147–151

    Article  PubMed  CAS  Google Scholar 

  • Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, Kroneck PMH (1999) Structures of cytochrome c nitrite reductase. Nature 400:476–480

    Article  PubMed  CAS  Google Scholar 

  • Elion L (1925) A thermophilic sulphate-reducing bacterium. Zentralb Bakteriol II 63:58–67

    CAS  Google Scholar 

  • Elvert M, Suess E (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300

    Article  CAS  Google Scholar 

  • Ensign SA, Small FJ, Allen JR, Sluis MK (1998) New roles for CO2 in the microbial metabolism of aliphatic epoxides and ketones. Arch Microbiol 169:179–187

    Article  PubMed  CAS  Google Scholar 

  • Erauso G, Marsin S, Benbouzid-Rollet N, Baucher M-F, Barbeyron T, Zivanovic Y, Prieur D, Forterre P (1996) Sequence of plasmid pGT5 from the archaeon Pyrococcus abyssi: evidence for rolling-circle replication in a hyperthermophile. J Bacteriol 178:3232–3237

    PubMed  CAS  Google Scholar 

  • Eschemann A, Kühl M, Cypionka H (1999) Aerotaxis of Desulfovibrio. Environ Microbiol 1:489–494

    Article  PubMed  CAS  Google Scholar 

  • Evans WC, Fuchs G (1988) Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42:289–317

    Article  PubMed  CAS  Google Scholar 

  • Evans PJ, Mang DT, Kim KS, Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57:1139–1145

    PubMed  CAS  Google Scholar 

  • Evans PJ, Ling W, Goldschmidt B, Ritter ER, Young LY (1992) Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl Environ Microbiol 58:496–501

    PubMed  CAS  Google Scholar 

  • Fauque G, Herve D, LeGall J (1979) Structure-function relationship in hemoproteins: The role of cytochrome c 3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch Microbiol 121:261–264

    Article  PubMed  CAS  Google Scholar 

  • Fauque GD, Barton LL, LeGall J (1980) Oxidative phosphorylation linked to the dissimilatory reduction of elemental sulphur by Desulfovibrio sulphur in biology. Excerpta Medica, Amsterdam, pp 71–86

    Google Scholar 

  • Fauque G, Czechowski MH, Kang-Lissolo L, DerVartanian DV, Moura JJG, Moura I, Lampreia J, Xavier AV, LeGall J (1986) Presented at the annual meeting of the Society for Industrial Microbiology, San Francisco

    Google Scholar 

  • Fauque G, Peck HD Jr, Moura JJG, Huynh BH, Berlier Y, DerVartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I, LeGall J (1988) The three classes of hydrogenases from sulfate-reducing bacteria of the genes Desulfovibrio. FEMS Microbiol Rev 54:299–344

    Article  CAS  Google Scholar 

  • Fauque G, Lino AR, Czechowski M, Kang L, DerVartanian DV, Moura JJG, LeGall J, Moura I (1990) Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands. Biochim Biophys Acta 1040:112–118

    Article  PubMed  CAS  Google Scholar 

  • Fauque G, LeGall J, Barton LL (1991) Sulfate-reducing and sulfur-reducing bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic, London, pp 271–337

    Google Scholar 

  • Fauque G, Czechowski M, Berlier YM, Lespinat PA, LeGall J, Moura JJG (1992) Partial purification and characterization of the first hydrogenase isolated from a thermophilic sulfate-reducing bacterium. Biochem Biophys Res Commun 184:1256–1260

    Article  PubMed  CAS  Google Scholar 

  • Fauque GD, Klimmek O, Kröger A (1994) Sulfur reductase from spirilloid mesophilic sulfur-reducing eubacteria. In: Peck HD, LeGall J (eds) Inorganic microbial sulfur metabolism, vol 243. Academic, San Diego, pp 367–383

    Chapter  Google Scholar 

  • Fayet O, Ramond P, Polard P, Priere MF, Chandler M (1990) Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences. Mol Microbiol 4:1771–1777

    Article  PubMed  CAS  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98 °C. Syst Appl Microbiol 8:106–113

    Article  Google Scholar 

  • Fiebig K, Gottschalk G (1983) Methanogenesis from choline by a coculture of Desulfovibrio sp. and Methanosarcina barkeri. Appl Environ Microbiol 45:161–168

    PubMed  CAS  Google Scholar 

  • Fiechtner MD, Kassner RJ (1979) The redox properties and heme environment of cytochrome c551,5 from Desulfuromonas acetoxidans. Biochim Biophys Acta 579:269–278

    Article  PubMed  CAS  Google Scholar 

  • Finlay BJ, Span ASW, Harman JMP (1983) Nitrate respiration in primitive eukaryotes. Nature 303:333–336

    Article  CAS  Google Scholar 

  • Finster K, Liesack W, Tindall BJ (1997a) Desulfospira joergensenii, gen. nov., sp. nov., a new sulfate-reducing bacterium isolated from marine surface sediment. Syst Appl Microbiol 20:201–208

    Article  CAS  Google Scholar 

  • Finster K, Liesack W, Tindall BJ (1997b) Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. Int J Syst Bacteriol 47:1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Finster K, Liesack W, Thamdrup B (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 64:119–125

    PubMed  CAS  Google Scholar 

  • Finster K, Thomsen TR, Ramsing NB (2001) Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots. Int J Syst Evol Microbiol 51:2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Fischer U (1988) Sulfur in biotechnology. In: Rehm H-J (ed) Biotechnology—special microbial processes, vol 6b. VCH Verlagsgesellschaft, Weinheim, pp 463–496

    Google Scholar 

  • Fischer U (1989) Enzymatic steps and dissimilatory sulfur metabolism by whole cells of anoxyphotobacteria. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment, vol 393. American Chemical Society, Washington, DC, pp 262–279

    Chapter  Google Scholar 

  • Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513

    Article  PubMed  CAS  Google Scholar 

  • Fitz RM, Cypionka H (1989) A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. Arch Microbiol 152:369–376

    Article  CAS  Google Scholar 

  • Fitz RM, Cypionka H (1990) Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans. Arch Microbiol 154:400–406

    Article  CAS  Google Scholar 

  • Folkerts M, Ney U, Kneifel H, Stackebrandt E, Witte EG, Fröstel H, Schoberth SM, Sahm H (1989) Desulfovibrio furfuralis sp. nov., a furfural degrading strictly anaerobic bacterium. Syst Appl Microbiol 151:126–132

    Google Scholar 

  • Fons M, Cami B, Patte J-C, Chippaux M (1987) Cloning in Escherichia coli of genes involved in the synthesis of proline and leucine in Desulfovibrio desulfuricans Norway. Mol Gen Genet 206:141–143

    Article  PubMed  CAS  Google Scholar 

  • Fowler VJ, Widdel F, Pfennig N, Wese CR (1986) Phylogenetic relationships of sulfate-and sulfur-reducing eubacteria. Syst Appl Microbiol 8:32–41

    Article  CAS  Google Scholar 

  • Friedrich M, Schink B (1995) Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate. Arch Microbiol 164:271–279

    Article  CAS  Google Scholar 

  • Friedrich M, Springer N, Ludwig W, Schink B (1996) Phylogenetic positions of Desulfofustis glycolicus gen. nov, sp. nov., and Syntrophobotulus glycolicus gen. nov, sp. nov., two new strict anaerobes growing with glycolic acid. Int J Syst Bacteriol 46:1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Frischauf A-M, Lehrach H, Poustka A, Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827–842

    Article  PubMed  CAS  Google Scholar 

  • Fritz G (1999) Structure and function of redox proteins involved in dissimilatory sulfate reduction: adenosine 5′-phosphosulfate reductase and multiheme cytochromes. Universität Konstanz

    Google Scholar 

  • Fu R, Voordouw G (1997) Targeted gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Microbiology 143:1815–1826

    Article  PubMed  CAS  Google Scholar 

  • Fu R, Voordouw G (1998) ISD1, an insertion element from the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough: structure, transposition and distribution. Appl Environ Microbiol 64:53–61

    PubMed  CAS  Google Scholar 

  • Fu R, Wall JD, Voordouw G (1994) DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J Bacteriol 176:344–350

    PubMed  CAS  Google Scholar 

  • Fuchs G (1986) CO2 fixation on acetogenic bacteria: variations on the theme. FEMS Microbiol Rev 39:181–213

    Article  CAS  Google Scholar 

  • Fukui M, Teske A, Aßmus B, Muyzer G, Widdel F (1999) Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch Microbiol 172:193–203

    Article  PubMed  CAS  Google Scholar 

  • Fuseler K, Cypionka H (1995) Elemental sulfur as an intermediate of sulfide oxidation with oxygen by Desulfobulbus propionicus. Arch Microbiol 164:104–109

    Article  CAS  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. In: Poole RK (ed) Advances in microbial physiology, vol 37. Academic, London, pp 273–328

    Google Scholar 

  • Galushko AS, Rozanova EP (1991) Desulfobacterium cetonicum sp. nov.: a sulfate-reducing bacterium which oxidizes fatty acids. Mikrobiologiya (Russian) 60:102–107

    CAS  Google Scholar 

  • Galushko AS, Minz D, Schink B, Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environ Microbiol 1:415–420

    Article  PubMed  CAS  Google Scholar 

  • Ganesan A, Chaussonnerie S, Tarrade A, Dauga C, Bouchez T, Pelltier E, Le Paslier D, Sghir A (2008) Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum ‘Synergistetes’, isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 58:2003–2012

    Article  PubMed  CAS  Google Scholar 

  • Gavel OY, Bursakov SA, Calvete JJ, George GN, Moura JJG, Moura I (1998) ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing cobalt and zinc. Biochemistry 37:16225–16232

    Article  PubMed  CAS  Google Scholar 

  • Gay P, LeCoq D, Steinmetz M, Ferrari E, Hoch JA (1983) Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol 153:1424–1431

    PubMed  CAS  Google Scholar 

  • Gebhardt NA, Linder D, Thauer RK (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. Arch Microbiol 136:230–233

    Article  CAS  Google Scholar 

  • Gebhardt NA, Thauer RK, Linder D, Kaulfers P-M, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch Microbiol 141:392–398

    Article  CAS  Google Scholar 

  • Geissler JF, Harwood CS, Gibson J (1988) Purification and properties of benzoate-coenzyme a ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacteriol 170:1709–1714

    PubMed  CAS  Google Scholar 

  • Gibson J, Dispensa M, Harwood CS (1997) 4-Hydroxybenzoyl coenzyme A reductase (dehydroxylating) is required for anaerobic degradation of 4-hydroxybenzoate by Rhodopseudomonas palustris and shares features with molybdenum-containing hydroxylases. J Bacteriol 179:634–642

    PubMed  CAS  Google Scholar 

  • Golovacheva RS, Val’ekho KM, Troitskii AV (1985) Sulfurococcus mirabilis gen. nov., sp. nov., a new thermophilic archaebacterium with the ability to oxidize sulfur. Mikrobiologiya 56:100–107

    Google Scholar 

  • Gomes CM, Oliveira GSS, LeGall J, Liu M-Y, Xavier AV, Rodrigues-Pousada C, Teixeira M (1997) Studies on the redox centers of the terminal oxidase from Desulfovibrio gigas and evidence for its interaction with rubredoxin. J Biol Chem 272:22502–22508

    Article  PubMed  CAS  Google Scholar 

  • Gorny N, Schink B (1994) Anaerobic degradation of catechol by Desulfobacterium sp. strain cat2 proceeds via carboxylation to protocatechuate. Appl Environ Microbiol 60:3396–3400

    PubMed  CAS  Google Scholar 

  • Gorris LGM, Voet ACW, van der Drift C (1991) Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus. Biofactors 3:29–35

    PubMed  CAS  Google Scholar 

  • Gottschalk G (1968) The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. Eur J Biochem 5:346–351

    Article  PubMed  CAS  Google Scholar 

  • Graf M, Bokranz M, Böcher R, Friedl P, Kröger A (1985) Electron transport driven phosphorylation catalyzed by proteoliposomes containing hydrogenase, fumarate reductase and ATP synthase. FEBS Lett 184:100–103

    Article  CAS  Google Scholar 

  • Grahame DA (1991) Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem 266:22227–22233

    PubMed  CAS  Google Scholar 

  • Grahame DA, DeMoll E (1995) Substrate and accessory protein requirements and thermodynamics of acetyl-CoA synthesis and cleavage in Methanosarcina barkeri. Biochemistry 34:4617–4624

    Article  PubMed  CAS  Google Scholar 

  • Grahame DA, DeMoll E (1996) Partial reactions catalyzed by protein components of the acetyl-CoA decarbonylase synthase enzyme complex from Methanosarcina barkeri. J Biol Chem 271:8352–8358

    Article  PubMed  CAS  Google Scholar 

  • Gribc-Galic D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260

    Google Scholar 

  • Gross R, Simon J, Lancaster CRD, Kröger A (1998a) Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Mol Microbiol 30:639–646

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Simon J, Theis F, Kröger A (1998b) Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration. Arch Microbiol 170:50–58

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Simon J, Kröger A (1999) The role of the twin-arginine motif in the signal peptide encoded by the hyd A gene of the hydrogenase from Wolinella succinogenes. Arch Microbiol 172:227–232

    Article  PubMed  CAS  Google Scholar 

  • Grossmann JP, Postgate JR (1955) The metabolism of malate and certain other compounds by Desulphovibrio desulphuricans. J Gen Microbiol 12:429–445

    Article  Google Scholar 

  • Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166:308–314

    Article  PubMed  CAS  Google Scholar 

  • Haladjian J, Bianco P, Guerlesquin F, Bruschi M (1991) Kinetic studies of the electron exchange reaction between the octaheme cytochrome c 3 (Mr 26000) and the hydrogenase from Desulfovibrio desulfuricans Norway. Biochem Biophys Res Commun 179:605–610

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39:195–217

    Article  PubMed  CAS  Google Scholar 

  • Handley J, Adams V, Akagi JM (1973) Morphology of bacteriophage-like particles from Desulfovibrio vulgaris. J Bacteriol 115:1205–1207

    PubMed  CAS  Google Scholar 

  • Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Antonie Van Leeuwenhoek 66:165–185

    Article  PubMed  CAS  Google Scholar 

  • Hansen LB, Finster K, Fossing H, Iversen N (1998) Anaerobic methane oxidation in sulfate depleted sediments: effects of sulfate and molybdate additions. Aquat Microb Ecol 14:195–204

    Article  Google Scholar 

  • Happe RP, Roseboom W, Pierik AJ, Albracht SPJ, Bagley KA (1997) Biological activation of hydrogen. Nature 385:126

    Article  PubMed  CAS  Google Scholar 

  • Harder J (1997) Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide. Mar Geol 137:13–23

    Article  CAS  Google Scholar 

  • Hardy JA, Hamilton WA (1981) The oxygen tolerance of sulfate-reducing bacteria isolated from North Sea waters. Curr Microbiol 6:259–262

    Article  CAS  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rosselló-Mora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004

    PubMed  CAS  Google Scholar 

  • Harmsen HJM, Wullings B, Akkermans ADL, Ludwig W, Stams AJM (1993) Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240

    PubMed  CAS  Google Scholar 

  • Harrison G, Curle C, Laishley EJ (1984) Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum. Arch Microbiol 138:72–78

    Article  PubMed  CAS  Google Scholar 

  • Harwood C, Gibson J (1997) Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes. J Bacteriol 179:301–309

    PubMed  CAS  Google Scholar 

  • Harwood CS, Burchhardt G, Herrmann H, Fuchs G (1999) Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol Rev 22:439–458

    Article  Google Scholar 

  • Hatchikian EC (1975) Purification and properties of thiosulfate reductase from Desulfovibrio gigas. Arch Microbiol 105:249–256

    Article  PubMed  CAS  Google Scholar 

  • Hatchikian EC (1994) Desulfofuscidin: dissimilatory, high-spin sulfite reductase of thermophilic, sulfate-reducing bacteria. In: Peck HD Jr, LeGall J (eds) Inorganic microbial sulfur metabolism, vol 243. Academic, San Diego, pp 276–295

    Chapter  Google Scholar 

  • Hatchikian EC, Zeikus JG (1983) Characterization of a new type of dissimilatory sulfite reductase present in Thermodesulfobacterium commune. J Bacteriol 153:1211–1220

    PubMed  CAS  Google Scholar 

  • Hatchikian EC, LeGall J, Bell GR (1977) Significance of superoxide dismutase and catalase activities in the strict anaerobes, sulfate-reducing bacteria. In: Michelson AM, McCord JM, Fridovich I (eds) Superoxide and superoxide dismutases. Academic, New York, pp 159–172

    Google Scholar 

  • Hatchikian EC, Papavassiliou P, Bianco P, Haladjian J (1984) Characterization of cytochrome c 3 from the thermophilic sulfate reducer Thermodesulfobacterium commune. J Bacteriol 159:1040–1046

    PubMed  CAS  Google Scholar 

  • Hatchikian EC, Forget N, Fernandez VM, Williams R, Cammack R (1992) Further characterization of the (Fe)-hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Eur J Biochem 209:357–365

    Article  PubMed  CAS  Google Scholar 

  • Hatchikian EC, Magro V, Forget N, Nicolet Y, Fontecilla-Camps JC (1999) Carboxy-terminal processing of the large subunit of (Fe) hydrogenase from Desulfovibrio desulfuricans ATCC 7757. J Bacteriol 181:2947–2952

    PubMed  CAS  Google Scholar 

  • Hayward HR (1960) Anaerobic degradation of choline. J Biol Chem 235:3592–3596

    PubMed  CAS  Google Scholar 

  • He SH, DerVartanian DV, LeGall J (1986) Isolation of fumarate reductase from Desulfovibrio multispirans, a sulfate reducing bacterium. Biochem Biophys Res Commun 135:1000–1007

    Article  PubMed  CAS  Google Scholar 

  • He S-H, Woo SB, DerVartanian DV, LeGall J, Peck HD Jr (1989) Effects of acetylene on hydrogenases from the sulfate reducing and methanogenic bacteria. Biochem Biophys Res Commun 161:127–133

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1999) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381

    Article  Google Scholar 

  • Heider J, Böck A (1993) Selenium metabolism in microorganisms. In: Rose AH (ed) Advances in microbial physiology, vol 35. Academic, London, pp 71–109

    Google Scholar 

  • Heider J, Fuchs G (1997a) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596

    Article  PubMed  CAS  Google Scholar 

  • Heider J, Fuchs G (1997b) Microbial anaerobic aromatic metabolism. Anaerobe 3:1–22

    Article  PubMed  CAS  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1999) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    Article  Google Scholar 

  • Heijthuijsen JHFG, Hansen TA (1989) Anaerobic degradation of betaine by marine Desulfobacterium strains. Arch Microbiol 152:393–396

    Article  CAS  Google Scholar 

  • Helms LR, Swenson RP (1991) Cloning and characterization of the flavodoxin gene from Desulfovibrio desulfuricans. Biochim Biophys Acta 1089:417–419

    Article  PubMed  CAS  Google Scholar 

  • Helms LR, Krey GD, Swenson RP (1990) Identification, sequence determination, and expression of the flavodoxin gene from Desulfovibrio salexigens. Biochem Biophys Res Commun 168:809–817

    Article  PubMed  CAS  Google Scholar 

  • Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J 5:191–237

    Article  CAS  Google Scholar 

  • Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L, Schauder R, Remsen CC, Mitchell R (1994) Characterization of a new thermophilic sulfate-reducing bacterium. Arch Microbiol 161:62–69

    Article  PubMed  CAS  Google Scholar 

  • Hensel R, Matussek K, Michalke K, Tacke L, Tindall BJ, Kohlhoff M, Siebers B, Dielenschneider J (1997) Sulfophobococcus zilligii gen. nov., spec. nov. a novel hyperthermophilic archaeum isolated from hot alkaline springs of Iceland. Syst Appl Microbiol 20:102–110

    Article  Google Scholar 

  • Hensgens CMH, Vonck J, van Beeumen J, van Bruggen EFJ, Hansen TA (1993) Purification and characterization of an oxygen-labile, NAD-dependent alcohol dehydrogenase from Desulfovibrio gigas. J Bacteriol 175:2859–2863

    PubMed  CAS  Google Scholar 

  • Hensgens CMH, Nienhuis-Kuiper ME, Hansen TA (1994) Effects of tungstate on the growth of Desulfovibrio gigas NCIMB 9332 and other sulfate-reducing bacteria with ethanol as a substrate. Arch Microbiol 162:143–147

    Article  CAS  Google Scholar 

  • Hensgens CMH, Jansen M, Nienhuis-Kuiper ME, Boekema EJ, van Breemen JFL, Hansen TA (1995a) Purification and characterization of an alcohol dehydrogenase from 1,2-propanediol-grown Desulfovibrio strain HDv. Arch Microbiol 164:265–270

    Article  CAS  Google Scholar 

  • Hensgens CMH, Hagen WR, Hansen TA (1995b) Purification and characterization of a benzylviologen-linked, tungsten-containing aldehyde oxidoreductase from Desulfovibrio gigas. J Bacteriol 177:6195–6200

    PubMed  CAS  Google Scholar 

  • Heunisch GW (1976) Stoichiometry of the reaction of sulfites with hydrogen sulfide ion. Inorg Chem 16:1411–1413

    Article  Google Scholar 

  • Higuchi Y, Kusunoki M, Matsuura Y, Yasuoka N, Kakudo M (1984) Refined structure of cytochrome c 3 at 1.8 Å resolution. J Mol Biol 172:109–139

    Article  PubMed  CAS  Google Scholar 

  • Higuchi Y, Inaka K, Yasuoka N, Yagi T (1987) Isolation and crystallization of high molecular weight cytochrome from Desulfovibrio vulgaris Hildenborough. Biochim Biophys Acta 911:341–348

    Article  CAS  Google Scholar 

  • Higuchi Y, Okamoto T, Fujimoto K, Misaki S (1994) Location of active sites of NiFe hydrogenase determined by the combination of multiple isomorphous replacement and multiwavelength anomalous-diffraction methods. Acta Crystallogr D50:781–785

    CAS  Google Scholar 

  • Higuchi Y, Yagi T, Yasuoka N (1997) Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high-resolution X-ray structure analysis. Structure 5:1671–1680

    Article  PubMed  CAS  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  PubMed  CAS  Google Scholar 

  • Hipp WM, Pott AS, Thum-Schmitz N, Faath I, Dahl C, Trüper HG (1997) Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. Microbiology 143:2891–2902

    Article  PubMed  CAS  Google Scholar 

  • Hippe H et al (2000) Leptospirillum gen. nov. ex Markosyan 1972, nom. rev., including Leptospirillum ferrooxidans sp. nov. ex Markosyan 1972, nom. rev. and Leptospirillum thermoferrooxidans sp. nov. Golovacheva et al. 1992. Int J Syst Evol Microbiol 50:501–503

    Article  PubMed  Google Scholar 

  • Hirschler A, Rontani J-F, Raphel D, Matheron R, Bertrand J-C (1998) Anaerobic degradation of hexadecan-2-one by a microbial enrichment culture under sulfate-reducing conditions. Appl Environ Microbiol 64:1576–1579

    PubMed  CAS  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8:451–463

    Article  CAS  Google Scholar 

  • Hollaus F, Sleytr U (1972) On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia. Arch Microbiol 86:129–146

    CAS  Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall BJ, Vazquez F, Weiss N, Zehnder AJB (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321

    Article  PubMed  CAS  Google Scholar 

  • Holo H (1989) Chloroflexus aurantiacus secrets 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol 145:173–180

    Article  Google Scholar 

  • Hoppe-Seyler F (1886) Über die Gährung der Cellulose mit Bildung von Methan und Kohlensäure F. Hoppe-Seyler. Physiol Chem 10:201

    Google Scholar 

  • Howard KA, Card C, Benner JS, Callahan HJ, Maunus R, Silber K, Wilson G, Brooks JE (1986) Cloning the Dde I restriction-modification system using a two-step method. Nucleic Acids Res 14:7939–7951

    Article  PubMed  CAS  Google Scholar 

  • Hryniewicz M, Sirko A, Palucha A, Böck A, Hulanicka D (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172:3358–3366

    PubMed  CAS  Google Scholar 

  • Hu Y, Faham S, Roy R, Adams MWW, Rees DC (1999) Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 Å resolution crystal structure and its mechanistic implications. J Mol Biol 286:899–914

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100 °C. Arch Microbiol 149:95–101

    Article  CAS  Google Scholar 

  • Huber G, Spinnler C, Gambacorte A, Stetter KO (1989) Metallosphaera sedula gen. nov. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38–47

    Article  Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351

    Article  Google Scholar 

  • Huber R, Rossnagel P, Woese CR, Rachel R, Langworthy TA, Stetter KO (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol 19:40–49

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Jannasch H, Rachel R, Fuchs T, Stetter KO (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380

    Article  CAS  Google Scholar 

  • Huber R, Dyba D, Huber H, Burggraf S, Rachel R (1998) Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int J Syst Bacteriol 48:31–38

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100

    Article  PubMed  Google Scholar 

  • Huber H, Diller S, Horn C, Rachel R (2002) Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52:1859–1865

    Article  PubMed  CAS  Google Scholar 

  • Hucklesby DP, James DM, Banwell MJ, Hewitt EJ (1976) Properties of nitrite reductase from Cucurbita pepo. Phytochemistry 15:599–603

    Article  CAS  Google Scholar 

  • Huynh BH, Czechowski MH, Krüger H-J, DerVartanian DV, Peck HD Jr, LeGall J (1984a) Desulfovibrio vulgaris hydrogenase; a nonheme iron enzyme lacking nickel that exhibits anomalous EPR and Mössbauer spectra. Proc Natl Acad Sci USA 81:3728–3732

    Article  PubMed  CAS  Google Scholar 

  • Huynh BH, Kang L, DerVartanian DV, Peck HD Jr, LeGall J (1984b) Characterization of a sulfite reductase from Desulfovibrio vulgaris. J Biol Chem 259:15373–15376

    PubMed  CAS  Google Scholar 

  • Huynh BH, Patil DS, Moura I, Teixeira M, Moura JJG, DerVartanian DV, Czechowski MH, Prickril BC, Peck HD Jr, LeGall J (1987) On the active sites of the (NiFe) hydrogenase from Desulfovibrio gigas. J Biol Chem 262:795–800

    PubMed  CAS  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Imhoff JF (1982) Occurrence and evolutionary significance of two sulfate assimilation pathways in the Rhodospirillaceae. Arch Microbiol 132:197–203

    Article  CAS  Google Scholar 

  • Imhoff D, Andreesen JR (1979) Nicotinic acid hydroxylase from Clostridium barkeri: selenium-dependent formation of active enzyme. FEMS Microbiol Lett 5:155–158

    Article  CAS  Google Scholar 

  • Imhoff-Stuckle D, Pfennig N (1983) Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136:194–198

    Article  CAS  Google Scholar 

  • Isaksen MF, Jørgensen BB (1996) Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl Environ Microbiol 62:408–414

    PubMed  CAS  Google Scholar 

  • Isaksen MF, Teske A (1996) Desulforhopalus vacuolatus gen. nov, sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166:160–168

    Article  CAS  Google Scholar 

  • Ishimoto M, Koyama J, Omura T, Nagai Y (1954a) Biochemical studies on sulfate-reducing bacteria. III. Sulfate reduction by cell suspensions. J Biol Chem 41:537–546

    CAS  Google Scholar 

  • Ishimoto N, Koyama J, Nagai Y (1954b) Biochemical studies on sulfate-reducing bacteria. IV. The cytochrome system of sulfate-reducing bacteria. J Biol Chem 41:763–770

    CAS  Google Scholar 

  • Itoh T, Suzuki KI, Nakase T (1998) Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. Int J Syst Bacteriol 48:879–887

    Article  PubMed  Google Scholar 

  • Itoh T, Suzuki KI, Sanchez PC, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49:1157–1163

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Suzuki KI, Nakase T (2002) Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Microbiol 52:1097–1104

    Article  PubMed  CAS  Google Scholar 

  • Ivanovsky RN, Sintsov NV, Kondratieva EN (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 128:239–241

    Article  Google Scholar 

  • Iversen N, Blackburn TH (1981) Seasonal rates of methane oxidation in anoxic marine sediments. Appl Environ Microbiol 41:1295–1300

    PubMed  CAS  Google Scholar 

  • Iversen N, Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955

    Article  CAS  Google Scholar 

  • Jackson RH, Cornish-Bowden A, Cole JA (1981) Prosthetic groups of the NADH-dependent nitrite reductase from Escherichia coli K12. Biochem J 193:861–867

    PubMed  CAS  Google Scholar 

  • Jankielewicz A, Schmitz RA, Klimmek O, Kröger A (1994) Polysulfide reductase and formate dehydrogenase from Wolinella succinogenes contain molybdopterin guanine dinucleotide. Arch Microbiol 162:238–242

    Article  CAS  Google Scholar 

  • Jankielewicz A, Klimmek O, Kröger A (1995) The electron transfer from hydrogenase and formate dehydrogenase to polysulfide reductase in the membrane of Wolinella succinogenes. Biochim Biophys Acta 1231:157–162

    Article  Google Scholar 

  • Jansen M, Hansen TA (1998) Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria. Arch Microbiol 169:84–87

    Article  PubMed  CAS  Google Scholar 

  • Jansen K, Thauer RK, Widdel F, Fuchs G (1984) Carbon assimilation pathways in sulfate reducing bacteria, formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol 138:257–262

    Article  CAS  Google Scholar 

  • Jansen K, Fuchs G, Thauer RK (1985) Autotrophic CO2 fixation by Desulfovibrio baarsii: demonstration of enzyme activities characteristics for the acetyl-CoA pathway. FEMS Microbiol Lett 28:311–315

    CAS  Google Scholar 

  • Janssen PH, Schink B (1995a) Catabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus. J Bacteriol 177:277–282

    PubMed  CAS  Google Scholar 

  • Janssen PH, Schink B (1995b) Metabolic pathways and energetics of the acetone-oxidizing, sulfate-reducing bacterium, Desulfobacterium cetonicum. Arch Microbiol 163:188–194

    Article  PubMed  CAS  Google Scholar 

  • Janssen PH, Schuhmann A, Bak F, Liesack W (1996) Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch Microbiol 166:184–192

    Article  CAS  Google Scholar 

  • Jeanjean R, Broda E (1977) Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation. Arch Microbiol 114:19–23

    Article  PubMed  CAS  Google Scholar 

  • Jenney FE Jr, Verhagen MFJM, Cui X, Adams MWW (1999) Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286:306–309

    Article  PubMed  CAS  Google Scholar 

  • Jkeldsen KU, Jakobsen TF, Glastrup J, Invorsen K (2010) Desulfosalsimonas propionicica gen. nov., sp. nov., a halophilic, sulfate-reducing member of the family Desulfobacteraceae isolated from a salt-lake sediment. Int J Syst Evol Microbiol 60:1060–1065

    Article  CAS  Google Scholar 

  • Jochimsen B, Peinemann-Simon S, Völker H, Stüben D, Botz R, Stoffers P, Dando PR, Thomm M (1997) Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos. Greece. Extremophiles 1:67–73

    Article  PubMed  CAS  Google Scholar 

  • Johnson MS, Zhulin IB, Gapuzan M-ER, Taylor BL (1997) Oxygen dependent growth of the obligate anaerobe, Desulfovibrio vulgaris Hildenborough. J Bacteriol 179:5598–5601

    PubMed  CAS  Google Scholar 

  • Jonkers HM, van der Maarel MJEC, van Gemerden H, Hansen TA (1996) Dimethylsulfoxide reduction by marine sulfate-reducing bacteria. FEMS Microbiol Lett 136:283–287

    CAS  Google Scholar 

  • Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22:814–832

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea-bed-the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Jørgensen BB (1987) Ecology of the sulphur cycle: oxidative pathways in sediments. In: Cole JA, Ferguson S (eds) The nitrogen and sulphur cycles, vol 42. Cambridge University Press, Cambridge, pp 31–63

    Google Scholar 

  • Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154

    Article  PubMed  Google Scholar 

  • Jørgensen BB, Bak F (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl Environ Microbiol 57:847–856

    PubMed  Google Scholar 

  • Jørgensen BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24:189–201

    Article  Google Scholar 

  • Jumas-Bilak E, Carkier JP, Jean-Pierre H, Citron D, Bernard K, Damay A, Gay B, Teyssier C, Campos J, Marchandin H (2007) Jonquetella anthropi gen. nov, sp. nov., the first member of the candidate phylum ‘Synergistetes’ isolated from man. Int J Syst Evol Microbiol 57:2743–2748

    Article  PubMed  CAS  Google Scholar 

  • Juteau P, Cote V, Duckett MF, Beaudet R, Lepine F, Villemur R, Bisaillon JG (2005) Cryptanaerobacter phenolicus gen. nov., sp. nov., an anaerobe that transforms phenol into benzoate via 4-hydroxybenzoate. Int J Syst Evol Microbiol 55:245–250

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen AH, Spring S, Schumann P, Kroppenstedt RM, Puhakka JA (2007) Desulfurispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming sulfate-reducer isolated from a sulfidogenic fluidized-bed reactor. Int J Syst Evol Microbiol 57:1089–1094

    Article  PubMed  CAS  Google Scholar 

  • Kamimura K, Araki M (1989) Isolation and characterization of a bacteriophage lytic for Desulfovibrio salexigens, a salt-requiring, sulfate-reducing bacterium. Appl Environ Microbiol 55:645–648

    PubMed  CAS  Google Scholar 

  • Karkhoff-Schweizer R, Bruschi M, Voordouw G (1993) Expression of the γ-subunit gene of desulfoviridin-type dissimilatory sulfite reductase and of the α-and β-subunit gene is not coordinately regulated. Eur J Biochem 211:501–507

    Article  PubMed  CAS  Google Scholar 

  • Karkhoff-Schweizer R, Huber DPW, Voordouw G (1995) Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl Environ Microbiol 61:290–296

    PubMed  CAS  Google Scholar 

  • Kashefi K, Tor JM, Holmes DE, Gaw Vav Praagh CV, Reysenbach AL, Lovley DR (2002) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with FeIII serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728

    Article  PubMed  CAS  Google Scholar 

  • Keith SM, Herbert RA (1983) Dissimilatory nitrate reduction by a stain of Desulfovibrio desulfuricans. FEMS Microbiol Lett 18:55–59

    Article  CAS  Google Scholar 

  • Kelly DP (1988) Oxidation of sulphur compounds. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles, vol 42. Cambridge University Press, Cambridge, pp 65–98

    Google Scholar 

  • Kelly P (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Madison

    Google Scholar 

  • Kengen SWM, de Bok FAM, van Loo N-D, Dijkema C, Stams AJM, de Vos WM (1994) Evidence for the operation of a novel Embden-Meyerhof-pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J Biol Chem 269:17537–17541

    PubMed  CAS  Google Scholar 

  • Kengen SWM, Stams AJM, de Vos WM (1996) Sugar metabolism of hyperthermophiles. FEMS Microbiol Rev 18:119–137

    Article  CAS  Google Scholar 

  • Kent HM, Buck M, Evans DJ (1989) Cloning and sequencing of the nifH gene of Desulfovibrio gigas. FEMS Microbiol Lett 61:73–78

    Article  CAS  Google Scholar 

  • Keon RG, Fu R, Voordouw G (1997) Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough. Arch Microbiol 167:376–383

    Article  PubMed  CAS  Google Scholar 

  • Kiene RP, Oremland RS, Catena A, Miller LG, Capone DG (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol 52:1037–1045

    PubMed  CAS  Google Scholar 

  • Kim J-H, Akagi JM (1985) Characterization of a trithionate reductase system from Desulfovibrio vulgaris. J Bacteriol 163:472–475

    PubMed  CAS  Google Scholar 

  • Kitamura M, Mizugai K, Taniguchi M, Akutsu H, Kamagai I, Nakaya T (1995) A gene encoding a cytochrome c oxidase-like protein is located closely to the cytochrome c 553 gene in the anaerobic bacterium, Desulfovibrio vulgaris (Miyazaki, F.). Microbiol Immunol 39:75–80

    PubMed  CAS  Google Scholar 

  • Kitamura M, Koshino Y, Kamikawa Y, Kohno K, Kojima S, Miura K, Sagara T, Akutsu H, Kumagai I, Nakaya T (1997) Cloning and expression of the rubredoxin gene from Desulfovibrio vulgaris (Miyazaki, F.)—comparison of the primary structure of desulfoferrodoxin. Biochim Biophys Acta 1351:239–247

    Article  PubMed  CAS  Google Scholar 

  • Kitamura M, Sagara T, Taniguchi M, Ashida M, Ezoe K, Kohno K, Kojima S, Ozawa K, Akutsu H, Kumagai I, Nakaya T (1998) Cloning and expression of the gene encoding flavodoxin from Desulfovibrio vulgaris (Miyakazi, F.). J Biochem 123:891–898

    Article  PubMed  CAS  Google Scholar 

  • Klein AR, Breitung J, Linder D, Stetter KO, Thauer RK (1993) N5, N10-Methenyltetrahydromethanopterin cyclohydrolase from the extremely thermophilic sulfate reducing Archaeoglobus fulgidus: comparison of its properties with those of the cyclohydrolase from the extremely thermophilic Methanopyrus kandleri. Arch Microbiol 159:213–219

    Article  PubMed  CAS  Google Scholar 

  • Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208

    Article  CAS  Google Scholar 

  • Klenk HP, Clayton R, Tomb J-F, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann R, Quackenbush DJ, Lee NH, Sutton GG, Gill G, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–374

    Article  PubMed  CAS  Google Scholar 

  • Kletzin A, Adams MWW (1996) Tungsten in biological systems. FEMS Microbiol Rev 18:5–63

    Article  PubMed  CAS  Google Scholar 

  • Klimmek O, Kröger A, Steudel R, Holdt G (1991) Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport. Arch Microbiol 155:177–182

    Article  CAS  Google Scholar 

  • Klimmek O, Kreis V, Klein C, Simon J, Wittershagen A, Kröger A (1998) The function of the periplasmic sud protein in polysulfide respiration of Wolinella succinogenes. Eur J Biochem 253:263–269

    Article  PubMed  CAS  Google Scholar 

  • Klimmek O, Stein T, Pisa R, Simon J, Kröger A (1999) The single cysteine residue of the sud protein is required for its function as a polysulfide-sulfur transferase in Wolinella succinogenes. Eur J Biochem 263:79–84

    Article  PubMed  CAS  Google Scholar 

  • Klouche N, Basso O, Lascourreges JF, Cayol JL, Thomas P, Fauque G, Fardeau ML, Magot M (2009) Desulfocurvus vexinensis gen. nov., sp. nov., a sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 59:3100–3104

    Article  PubMed  CAS  Google Scholar 

  • Kluyver AJ, van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zentralb Bakteriol II 94:369–403

    Google Scholar 

  • Knoblauch C, Jørgensen BB (1999) Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environ Microbiol 1:457–467

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch C, Jørgensen BB, Harder J (1999a) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in arctic marine sediments. Appl Environ Microbiol 65:4230–4233

    PubMed  CAS  Google Scholar 

  • Knoblauch C, Sahm K, Jørgensen BB (1999b) Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov, Desulfofrigus fragile sp. nov, Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea actica sp. nov. Int J Syst Bacteriol 49:1631–1643

    Article  PubMed  CAS  Google Scholar 

  • Knoll G, Winter J (1989) Degradation of phenol via carboxylation to benzoate by a defined, obligate syntrophic consortium of anaerobic bacteria. Appl Microbiol Biotechnol 30:318–324

    Article  CAS  Google Scholar 

  • Kobayashi K, Takahashi E, Ishimoto M (1972) Biochemical studies on sulfate-reducing bacteria. XI. Purification and some properties of sulfate reductase, desulfoviridin. J Biochem 72:879–887

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Seki Y, Ishimoto M (1974) Biochemical studies on sulfate-reducing bacteria. XIII. Sulfite reductase from Desulfovibrio vulgaris—mechanism of trithionate, thiosulfate and sulfide formation and enzymatic properties. J Biochem 75:519–529

    PubMed  CAS  Google Scholar 

  • König H, Skorko R, Zillig W, Reiter W-D (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303

    Article  Google Scholar 

  • Kotzian S, Kreis-Kleinschmidt V, Krafft T, Klimmek O, Macy JM, Kröger A (1996) Properties of a Wolinella succinogenes mutant lacking periplasmic sulfide dehydrogenase (Sud). Arch Microbiol 165:65–68

    Article  PubMed  CAS  Google Scholar 

  • Krafft T, Bokranz M, Klimmek O, Schröder I, Fahrenholz F, Kojro E, Kröger A (1992) Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulfide reductase. Eur J Biochem 206:503–510

    Article  PubMed  CAS  Google Scholar 

  • Krafft T, Gross R, Kröger A (1995) The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor. Eur J Biochem 230:601–606

    Article  PubMed  CAS  Google Scholar 

  • Krämer M, Cypionka H (1989) Sulfate formation via ATP sulfurylase in thiosulfate-and sulfite-disproportionating bacteria. Arch Microbiol 151:232–237

    Article  Google Scholar 

  • Kreis-Kleinschmidt V, Fahrenholz F, Kojro E, Kröger A (1995) Periplasmic sulphide dehydrogenase (Sud) from Wolinella succinogenes: isolation, nucleotide sequence of the sud gene and its expression in Escherichia coli. Eur J Biochem 227:137–142

    Article  PubMed  CAS  Google Scholar 

  • Kreke B, Cypionka H (1992) Protonmotive force in freshwater sulfate-reducing bacteria, and its role in sulfate accumulation in Desulfobulbus propionicus. Arch Microbiol 158:183–187

    Article  PubMed  CAS  Google Scholar 

  • Krekeler D, Sigalevich P, Teske A, Cypionka H, Cohen Y (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch Microbiol 167:369–375

    Article  CAS  Google Scholar 

  • Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol Ecol 25:89–96

    CAS  Google Scholar 

  • Kremer DR, Hansen TA (1987) Glycerol and dihydroxyacetone dissimilation in Desulfovibrio strains. Arch Microbiol 147:249–256

    Article  CAS  Google Scholar 

  • Kremer DR, Hansen TA (1988) Pathway of propionate degradation in Desulfobulbus propionicus. FEMS Microbiol Lett 49:273–277

    Article  CAS  Google Scholar 

  • Kremer DR, Nienhuis-Kuiper HE, Hansen TA (1988a) Ethanol dissimilation in Desulfovibrio. Arch Microbiol 150:552–557

    Article  CAS  Google Scholar 

  • Kremer DR, Veenhuis M, Fauque G, Peck HD Jr, LeGall J, Lampreia J, Moura JJG, Hansen TA (1988b) Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species. Arch Microbiol 150:296–301

    Article  CAS  Google Scholar 

  • Kremer DR, Nienhuis-Kuiper HE, Timmer CJ, Hansen TA (1989) Catabolism of malate and related dicarboxylic acids in various Desulfovibrio strains and the involvement of an oxygen-labile NADPH dehydrogenase. Arch Microbiol 151:34–39

    Article  CAS  Google Scholar 

  • Krey GD, Vanin EF, Swenson RP (1988) Cloning, nucleotide sequence and expression of the flavodoxin gene from Desulfovibrio vulgaris (Hildenborough). J Biol Chem 263:15436–15443

    PubMed  CAS  Google Scholar 

  • Kröger A (1987) ATP-Synthese bei anaeroben Bakterien mit energiearmen Substraten. Forum Mikrobiol 12:487–493

    Google Scholar 

  • Kröger A, Winkler E (1981) Phosphorylative fumarate reduction in Vibrio succinogenes: stoichiometry of ATP synthesis. Arch Microbiol 129:100–104

    Article  Google Scholar 

  • Kröger A, Dorrer E, Winkler E (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim Biophys Acta 589:118–136

    Article  PubMed  Google Scholar 

  • Kröger A, Schröder J, Paulsen J, Beilmann A (1988) Acetate oxidation with sulphur and sulphate as terminal electron acceptors. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles, vol 42. Cambridge University Press, Cambridge, pp 133–145

    Google Scholar 

  • Kröger A, Geisler V, Lemma E, Theis F, Lenger R (1992) Bacterial fumarate respiration. Arch Microbiol 158:311–314

    Article  Google Scholar 

  • Krüger H-J, Huynh BH, Ljungdahl PO, Xavier AV, DerVartanian DV, Moura I, Peck HD Jr, Teixeira M, Moura JGJ, LeGall J (1982) Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans. J Biol Chem 257:14620–14623

    PubMed  Google Scholar 

  • Kuever J, Kulmer J, Jannsen S, Fischer U, Blotevogel K-H (1993) Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol. Arch Microbiol 159:282–288

    Article  PubMed  CAS  Google Scholar 

  • Kuever J, Rainey FA, Hippe H (1999) Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae. Int J Syst Bacteriol 49:180

    Article  Google Scholar 

  • Kuever J, Konneke M, Galushko A, Drzyzga O (2001) Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int J Syst Evol Microbiol 51:171–177

    PubMed  CAS  Google Scholar 

  • Kuever J, Rainey FA, Widdel F (2005) Genus III. Desulfothermus gen. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edition, (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, pp 955–956

    Google Scholar 

  • Kuhn EP, Zeyer J, Eicher P, Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl Environ Microbiol 54:490–496

    PubMed  CAS  Google Scholar 

  • Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19:139–149

    Article  CAS  Google Scholar 

  • Kukko-Kalske E, Lintunen M, Inen MK, Lathi R, Heinonen J (1989) Intracellular PPi concentration is not directly dependent on amount of inorganic pyrophosphatase in Escherichia coli K-12 cells. J Bacteriol 171:4498–4500

    PubMed  CAS  Google Scholar 

  • Kunow J, Linder D, Stetter KO, Thauer RK (1994) F420H2: quinone oxidoreductase from Archaeoglobus fulgidus: characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. Eur J Biochem 223:503–511

    Article  PubMed  CAS  Google Scholar 

  • Kunow J, Linder D, Thauer RK (1995) Pyruvate: ferredoxin oxidoreductase from the sulfate-reducing Archaeoglobus fulgidus: molecular composition, catalytic properties and sequence alignments. Arch Microbiol 163:21–28

    PubMed  CAS  Google Scholar 

  • Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 48:451–456

    Article  PubMed  Google Scholar 

  • L’Haridon S, Reysenbach A-L, Glénat P, Prieur D, Jeanthon C (1995) Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224

    Article  Google Scholar 

  • L’Haridon S, Cilia V, Messner P, Raguénès G, Gambacorta A, Sleytr UB, Prieur D, Jeanthon C (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711

    Article  PubMed  Google Scholar 

  • Laanbroek HJ, Kingma W, Veldkamp H (1977) Isolation of an aspartate-fermenting, free-living Campylobacter species. FEMS Microbiol Lett 1:99–102

    Article  CAS  Google Scholar 

  • Laanbroek HJ, Stal LJ, Veldkamp H (1978) Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Arch Microbiol 119:99–102

    Article  PubMed  CAS  Google Scholar 

  • Laanbroek HJ, Abee T, Voogd IL (1982) Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch Microbiol 133:178–184

    Article  CAS  Google Scholar 

  • Laanbroek HJ, Geerligs HJ, Sijtsma L, Veldkamp H (1984) Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus and Desulfovibrio species isolated from intertidal sediments. Appl Environ Microbiol 47:329–334

    PubMed  CAS  Google Scholar 

  • Lack A, Fuchs G (1992) Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism. J Bacteriol 174:3629–3636

    PubMed  CAS  Google Scholar 

  • Lack A, Fuchs G (1994) Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifying Pseudomonas sp. Arch Microbiol 161:132–139

    PubMed  CAS  Google Scholar 

  • Laempe D, Eisenreich W, Bacher A, Fuchs G (1998) Cyclohexa-1,5-diene-1-carbonyl-CoA hydratase (corrected), an enzyme involved in anaerobic metabolism of benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Eur J Biochem 255:618–627

    Article  PubMed  CAS  Google Scholar 

  • Laempe D, Jahn M, Fuchs G (1999) 6-Hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, enzymes of the benzoyl-CoA pathway of anaerobic aromatic metabolism in the denitrifying bacterium Thauera aromatica. Eur J Biochem 263:420–429

    Article  PubMed  CAS  Google Scholar 

  • Lampreia J, Moura I, Fauque G, Xavier AV, LeGall J, Peck HD Jr, Moura JJG (1987) Presented at the third international conference on bioinorganic chemistry, Noordwijkerhout

    Google Scholar 

  • Lampreia J, Fauque G, Speich N, Dahl C, Moura I, Trüper HG, Moura JJG (1991) Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus. Biochem Biophys Res Commun 181:342–347

    Article  PubMed  CAS  Google Scholar 

  • Lampreia J, Fauque G, Speich N, Dahl C, Moura I, Trüper HG, Moura JJ (1999) Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus. Biochem Biophys Res Commun 181(1):342–347

    Article  Google Scholar 

  • Länge S, Scholtz R, Fuchs G (1989) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol 151:77–83

    Article  Google Scholar 

  • Langelandsvik AS, Steen IH, Birkeland N-K, Lien T (1997) Properties and primary structure of a thermostable l-malate dehydrogenase from Archaeoglobus fulgidus. Arch Microbiol 168:59–67

    Article  PubMed  CAS  Google Scholar 

  • Langworthy TA, Holzer G, Zeikus G, Tornabene TG (1983) Iso-and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfobacterium commune. Syst Appl Microbiol 4:1–17

    Article  PubMed  CAS  Google Scholar 

  • Laue H, Denger K, Cook AM (1997a) Fermentation of cysteate by a sulfate-reducing bacterium. Arch Microbiol 168:210–214

    Article  CAS  Google Scholar 

  • Laue H, Denger K, Cook AM (1997b) Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol 63:2016–2021

    PubMed  CAS  Google Scholar 

  • Lauterbach F, Körtner C, Tripier D, Unden G (1987) Cloning and expression of the genes of two fumarate reductase subunits from Wolinella succinogenes. Eur J Biochem 166:447–452

    Article  PubMed  CAS  Google Scholar 

  • Lee JP, Peck HD Jr (1971) Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as desulfoviridin. Biochem Biophys Res Commun 45:583–589

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Zinder SH (1988) Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch Microbiol 150:513–518

    Article  CAS  Google Scholar 

  • Lee JP, LeGall J, Peck HD Jr (1973a) Isolation of assimilatory-and dissimilatory-type sulfite reductase from Desulfovibrio vulgaris. J Bacteriol 115:529–542

    PubMed  CAS  Google Scholar 

  • Lee JP, Yi C-S, LeGall J, Peck HD Jr (1973b) Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J Bacteriol 115:453–455

    PubMed  CAS  Google Scholar 

  • LeGall J, Fauque G (1988) Dissimilatory reduction of sulfur compounds. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 587–639

    Google Scholar 

  • LeGall J, Xavier AV (1996) Anaerobes response to oxygen: the sulfate-reducing bacteria. Anaerobe 2:1–9

    Article  CAS  Google Scholar 

  • Leinfelder W, Zehelein E, Mandrand-Berthelot MA, Böck A (1988) Gene for a novel tRNA species that accepts l-serine and cotranslationally inserts selenocysteine. Nature 331:723–725

    Article  PubMed  CAS  Google Scholar 

  • Lenger R, Herrmann U, Gross R, Simon J, Kröger A (1997) Structure and function of a second gene cluster encoding the formate dehydrogenase of Wolinella succinogenes. Eur J Biochem 246:646–651

    Article  PubMed  CAS  Google Scholar 

  • Lespinat PA, Berlier YM, Fauque GD, Toci R, Denariaz G, LeGall J (1987) The relationship between hydrogen metabolism, sulfate reduction and nitrogen fixation in sulfate reducers. J Ind Microbiol 1:383–388

    Article  CAS  Google Scholar 

  • Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schiltz E, Schägger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628

    Article  PubMed  CAS  Google Scholar 

  • Leyh TS, Suo Y (1992) GTPase-mediated activation of ATP sulfurylase. J Biol Chem 267:542–545

    PubMed  CAS  Google Scholar 

  • Leyh TS, Taylor JT, Markham GH (1988) The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization. J Biol Chem 263:2409–2416

    PubMed  CAS  Google Scholar 

  • Li C, Peck HD Jr, Przybyla AE (1986) Complementation of an Escherichia coli pyrF mutant with DNA from Desulfovibrio vulgaris. J Bacteriol 165:644–646

    PubMed  CAS  Google Scholar 

  • Li C, Peck HD Jr, LeGall J, Przybyla AE (1987) Cloning, characterization and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFe)hydrogenase of Desulfovibrio gigas. DNA 6:539–551

    Article  PubMed  CAS  Google Scholar 

  • Lie TJ, Pitta T, Leadbetter ER, Godchaux W III, Leadbetter JR (1996) Sulfonates: novel electron acceptors in anaerobic respiration. Arch Microbiol 166:204–210

    Article  PubMed  CAS  Google Scholar 

  • Lie T, Clawson ML, Godchaux W, Leadbetter ER (1999) Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov. Appl Environ Microbiol 65:3328–3334

    PubMed  CAS  Google Scholar 

  • Lien T, Torsvik T (1990) Hydrogenase in Desulfobacter. In: Bélaich JP, Bruschi M, Garcia IL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum, New York, pp 519–520

    Chapter  Google Scholar 

  • Liesack W, Finster K (1994) Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov. and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44:753–758

    Article  Google Scholar 

  • Lin ECC, Kuritzkes DR (1987) Pathways for anaerobic electron transfer. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium, vol 1. American Society for Microbiology, Washington, DC, pp 201–221

    Google Scholar 

  • Liochev S, Fridovich I (1997) A mechanism for complementation of the sodA, sodB defect in Escherichia coli by overproduction of the rbo gene product (Desulfoferredoxin) from Desulfoarculus baarsii. J Biol Chem 272:25573–25575

    Article  PubMed  CAS  Google Scholar 

  • Lipmann F (1958) Biological sulfate activation and transfer. Science 128:575–580

    Article  PubMed  CAS  Google Scholar 

  • Liu M-C, Peck HD Jr (1981a) The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. J Biol Chem 256:13159–13164

    PubMed  CAS  Google Scholar 

  • Liu CL, Peck HD Jr (1981b) Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum. J Bacteriol 145:966–973

    PubMed  CAS  Google Scholar 

  • Liu MC, Liu MY, Payne WJ, Peck HD Jr, LeGall J (1983) Wolinella succinogenes nitrite reductase: purification and properties. FEMS Microbiol Lett 19:201–206

    Article  CAS  Google Scholar 

  • Liu M-C, Costa C, Coutinho IB, Moura JJG, Moura I, Xavier AV, LeGall J (1988) Cytochrome components of nitrate-and sulfate-respiring Desulfovibrio desulfuricans ATCC 27774. J Bacteriol 170:5545–5551

    PubMed  CAS  Google Scholar 

  • Liu MC, Costa C, Moura I (1994a) Hexaheme nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774). In: Peck HD Jr, LeGall J (eds) Inorganic microbial sulfur metabolism, vol 243. Academic, San Diego, pp 303–319

    Chapter  Google Scholar 

  • Liu C, Suo Y, Leyh TS (1994b) The energetic linkage of GTP hydrolysis and the synthesis of activated sulfate. Biochemistry 33:7309–7314

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Wang R, Varlamova O, Leyh TS (1998) Regulating energy transfer in the ATP sulfurylase-GTPase system. Biochemistry 37:3886–3892

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556

    Article  PubMed  CAS  Google Scholar 

  • Llobet-Brossa E, Rossello-Mora R, Amann R (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64:2691–2696

    PubMed  Google Scholar 

  • Lojou E, Bianco P, Bruschi M (1998) Kinetic studies on the electron transfer between various c-type cytochromes and iron (III) using a voltammetric approach. Electrochim Acta 43:2005–2013

    Article  CAS  Google Scholar 

  • Londry KL, Fedorak PM, Suflita JM (1997) Anaerobic degradation of m-cresol by a sulfate-reducing bacterium. Appl Environ Microbiol 63:3170–3175

    PubMed  CAS  Google Scholar 

  • Lorenzen JP, Kröger A, Unden G (1993) Regulation of anaerobic respiratory pathways in Wolinella succinogenes by the presence of electron acceptors. Arch Microbiol 159:477–483

    Article  CAS  Google Scholar 

  • Louie TM, Ni S, Xun L, Mohn WW (1997) Purification, characterization and gene sequence analysis of a novel cytochrome c co-induced with reductive dechlorination activity in Desulfomonile tiedjei DCB-1. Arch Microbiol 168:520–527

    Article  PubMed  CAS  Google Scholar 

  • Loutfi M, Guerlesquin F, Bianco P, Haladjian J, Bruschi M (1989) Comparative studies of polyhemic cytochromes c isolated from Desulfovibrio vulgaris Hildenborough and Desulfovibrio desulfuricans Norway. Biochem Biophys Res Commun 159:670–676

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (1995) Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231

    Article  CAS  Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1994a) Reduction of chromate by Desulfovibrio vulgaris and its c 3 cytochrome. Appl Environ Microbiol 60:726–728

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1994b) Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol 60:2394–2399

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1995) Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61:2132–2138

    PubMed  CAS  Google Scholar 

  • Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol 43:1373–1379

    PubMed  CAS  Google Scholar 

  • Lovley DR, Widman PK, Woodward JC, Phillips EJP (1993a) Reduction of uranium by cytochrome c 3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576

    PubMed  CAS  Google Scholar 

  • Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993b) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113:41–53

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD, Woodward JC, Phillips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl Environ Microbiol 61:953–958

    PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Klugbauer S, Weizenegger M, Neumaier J, Bachleitner M, Schleifer K-H (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568

    Article  PubMed  CAS  Google Scholar 

  • Lui SM, Cowan JA (1994) Conformational gating of the dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Synthesis, characterization and stopped-flow kinetics studies of 1,5-IAEDANS-labeled desulfoviridin. Biochemistry 33:11209–11216

    Article  PubMed  CAS  Google Scholar 

  • Lupton FS, Conrad R, Zeikus JG (1984) Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. J Bacteriol 159:843–849

    PubMed  CAS  Google Scholar 

  • Ma K, Adams MWW (1994) Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J Bacteriol 176:6509–6517

    PubMed  CAS  Google Scholar 

  • Ma K, Adams MWW (1999) An unusual oxygen-sensitive, iron-and zinc-containing alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 181:1163–1170

    PubMed  CAS  Google Scholar 

  • Ma K, Schicho RN, Kelly RM, Adams MWW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci USA 90:5341–5344

    Article  PubMed  CAS  Google Scholar 

  • Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth the Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144:147–150

    Article  CAS  Google Scholar 

  • Macy JM, Nunan K, Hagen KD, Dixon DR, Harbour PJ, Cahill M, Sly LI (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46:1153–1157

    Article  PubMed  CAS  Google Scholar 

  • Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanism of arsenate reduction. Arch Microbiol 173:49–57

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Gest H (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supported by “oxidant-dependent” sugar fermentation. Arch Microbiol 117:119–122

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Cox JC, Gest H (1980) Physiology of dark fermentative growth of Rhodopseudomonas capsulata. J Bacteriol 142:908–915

    PubMed  CAS  Google Scholar 

  • Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BKC, Fardeau M-L, Thomas P, Crolet J-L, Garcia J-L (1997) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824

    Article  PubMed  CAS  Google Scholar 

  • Magro V, Pieulle L, Forget N, Guigliarelli B, Petillot Y, Hatchikian EC (1997) Further characterization of the two tetraheme cytochrome c 3 from Desulfovibrio africanus: nucleotide sequences, EPR spectroscopy and biological activity. Biochim Biophys Acta 1342:149–163

    Article  PubMed  CAS  Google Scholar 

  • Maier RJ (1996) Respiratory metabolism in hyperthermophilic organisms: hydrogenases, sulfur reductases and electron transport factors that function at temperatures exceeding 100 °C. Adv Protein Sci 48:35–73

    Article  CAS  Google Scholar 

  • Malki S, Saimmaime I, De Luca G, Rousset M, Dermoun Z, Bélaich J-P (1995) Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 177:2628–2636

    PubMed  CAS  Google Scholar 

  • Malki S, De Luca G, Fardeau M-L, Rousset M, Bélaich J-P, Dermoun Z (1997) Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio frutosovorans. Arch Microbiol 167:38–45

    Article  PubMed  CAS  Google Scholar 

  • Maloy SR, Stewart VJ, Taylor RK (1996) Use of transposons in bacterial genetics. In: Genetic analysis of pathogenic bacteria—a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 161–167

    Google Scholar 

  • Marion D, Guerlesquin F (1992) Sequential NMR resonance assignment and secondary structure of ferrocytochrome C553 from Desulfovibrio vulgaris Hildenborough. Biochemistry 31:8171–8179

    Article  PubMed  CAS  Google Scholar 

  • Marritt SJ, Hagen WR (1996) Dissimilatory sulfite reductase revisited (The desulfoviridin molecule does contain 20 iron ions, extensively demetallated sirohaem, and an S-9/2 iron-sulfur cluster). Eur J Biochem 238:724–727

    Article  PubMed  CAS  Google Scholar 

  • Marschall C, Frenzel P, Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159:168–173

    Article  CAS  Google Scholar 

  • Martens CS, Berner RA (1977) Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases. Limnol Oceanogr 22:10–25

    Article  CAS  Google Scholar 

  • Matias PM, Frazao C, Morais J, Coll M, Carrondo MA (1993) Structure analysis of cytochrome c 3 from Desulfovibrio vulgaris Hildenborough at 1.9 Å resolution. J Mol Biol 234:680–699

    Article  PubMed  CAS  Google Scholar 

  • McCready RGL, Kaplan IR, Din GA (1974) Fractionation of sulfur isotopes by the yeast Saccharomyces cerevisiae. Geochim Cosmochim Acta 38:1239–1253

    Article  CAS  Google Scholar 

  • McCready RGL, Gould WD, Cook FD (1983) Respiratory nitrate reduction by Desulfovibrio sp. Arch Microbiol 135:182–185

    Article  CAS  Google Scholar 

  • McIntire W, Hopper DJ, Singer TP (1985) p-Cresol methylhydroxylase. Biochem J 228:325–335

    PubMed  CAS  Google Scholar 

  • McOrist S, Gebhart CJ, Boid R, Barns SM (1995) Characterization of Lawsonia intracellularis gen. nov., sp. nov., the obligately intracellular bacterium of porcine proliferative enteropathy. Int J Syst Bacteriol 45:820–825

    Article  PubMed  CAS  Google Scholar 

  • McRee DE, Richardson DC, Richardson JS, Siegel LM (1986) The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase. J Biol Chem 261:10277–10281

    PubMed  CAS  Google Scholar 

  • Mechalas BJ, Rittenberg SC (1960) Energy coupling in Desulfovibrio desulfuricans. J Bacteriol 80:501–507

    PubMed  CAS  Google Scholar 

  • Menendez C, Bauer Z, Huber H, Gad’on N, Stetter K-O, Fuchs G (1999) Presence of acetyl-coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol 181:1088–1098

    PubMed  CAS  Google Scholar 

  • Menon NK, Peck HD Jr, LeGall J, Przybyla AE (1987) Cloning and sequencing of the gene encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus. J Bacteriol 169:5401–5407

    PubMed  CAS  Google Scholar 

  • Menon NK, Robbins J, DerVartanian M, Patil D, Peck HD Jr, Menon AL, Robson RL, Przybyla AE (1993) Carboxy-terminal processing of the large subunit of (NiFe) hydrogenases. FEBS Lett 331:91–95

    Article  PubMed  CAS  Google Scholar 

  • Meyer L (1864) Chemische Untersuchung der Thermen zu Landeck in der Grafschaft Glatz Erdmann, vol 91. O. L. J. Praktische Chemie, Heidelberg, pp 1–15

    Google Scholar 

  • Michaelis GB, Davidson JT, Peck HD Jr (1970) A flavin-sulfite adduct as an intermediate in the reaction catalyzed by adenylyl sulfate-reductase from Desulfovibrio vulgaris. Biochem Biophys Res Commun 39:321–328

    Article  Google Scholar 

  • Miller JDA, Wakerley DS (1966) Growth of sulphate-reducing bacteria by fumarate dismutation. J Gen Microbiol 43:101–107

    Article  PubMed  CAS  Google Scholar 

  • Min H, Zinder SH (1990) Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermoacetoxidans. Arch Microbiol 153:399–404

    Article  CAS  Google Scholar 

  • Minz D, Fishbain S, Green SJ, Muyzer G, Cohen Y, Rittmann BE, Stahl DA (1999a) Unexpected population distribution in a microbial community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl Environ Microbiol 65:4659–4665

    PubMed  CAS  Google Scholar 

  • Minz D, Flax JL, Green SJ, Muyzer G, Cohen Y, Wagner M, Rittmann BE, Stahl DA (1999b) Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol 65:4666–4671

    PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Rainey FA, Hippe H, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA (1998) Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments. Int J Syst Bacteriol 48:475–479

    Article  PubMed  Google Scholar 

  • Miroshnichenko ML, Rainey FA, Rhode M, Bonch-Osmolovskaya EA (1999) Hippea maritima gen. nov., sp. nov., a new genus of thermophilic, sulfur-reducing bacterium from submarine hot vents. Int J Syst Bacteriol 49:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Tourova TP, Kolganova TV, Spring S, Bonch-Osmolovskaya EA (2009) Caldimicrobium rimae gen. nov., sp. nov., an extremely thermophilic, facultatively lithoautotrophic, anaerobic bacterium from the Uzon Caldera, Kamchatka. Int J Syst Evol Microbiol 59:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Mitchell GJ, Jones JG, Cole JA (1986) Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Arch Microbiol 144:35–40

    Article  CAS  Google Scholar 

  • Mohamed ME, Seyfried B, Tschech A, Fuchs G (1993) Anaerobic oxidation of phenylacetate and 4-hydroxyphenylacetate to benzoyl-coenzyme A and CO2 in denitrifying Pseudomonas sp. Arch Microbiol 159:563–573

    Article  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1990a) Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe. J Bacteriol 172:2065–2070

    PubMed  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1990b) Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch Microbiol 153:267–271

    Article  PubMed  CAS  Google Scholar 

  • Molitor M, Dahl C, Molitor I, Schäfer U, Speich N, Huber R, Deutzmann R, Trüper HG (1998) A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology 144:529–541

    Article  PubMed  CAS  Google Scholar 

  • Möller D, Schauder R, Fuchs G, Thauer RK (1987) Acetate oxidation to CO2 via citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148:202–207

    Article  Google Scholar 

  • Möller-Zinkhan D, Thauer RK (1988) Membrane-bound NADPH dehydrogenase-and ferredoxin: NADP oxidoreductase activity involved in electron transport during acetate oxidation to CO2 in Desulfobacter postgatei. Arch Microbiol 150:145–154

    Article  Google Scholar 

  • Möller-Zinkhan D, Thauer RK (1990) Anaerobic lactate oxidation to 3CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Arch Microbiol 153:215–218

    Article  Google Scholar 

  • Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152:362–368

    Article  Google Scholar 

  • Moore WEC, Johnson JL, Holdeman LV (1976) Emendation of Bacteriodaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium and Ruminococcus. Int J Syst Bacteriol 26:238–252

    Article  Google Scholar 

  • Morelli X, Dolla A, Toci R, Guerlesquin F (1999) 15N-labelling and preliminary heteronuclear NMR study of Desulfovibrio vulgaris Hildenborough cytochrome c 553. Eur J Biochem 261:398–404

    Article  PubMed  CAS  Google Scholar 

  • Moreno C, Franco R, Moura I, LeGall J, Moura JG (1993) Voltammetric studies of the catalytic electron-transfer process between the Desulfovibrio gigas hydrogenase and small proteins isolated from the same genus. Eur J Biochem 217:981–989

    Article  PubMed  CAS  Google Scholar 

  • Mountfort DO, Brulla WJ, Krumholz LR, Bryant MP (1984) Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 34:216–217

    Article  Google Scholar 

  • Moura I, Lino AR (1994) Low-spin sulfite reductases. In: Peck HD Jr, LeGall J (eds) Inorganic microbial sulfur metabolism, vol 243. Academic, San Diego, pp 296–303

    Chapter  Google Scholar 

  • Moura JJG, Moura I, Huynh BH, Krüger H-J, Teixeira M, DuVarney RC, DerVartanian DV, Xavier AV, Peck HD Jr, LeGall J (1982) Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase. Biochem Biophys Res Commun 108:1388–1393

    Article  PubMed  CAS  Google Scholar 

  • Moura I, Fauque G, LeGall J, Xavier AV, Moura JJG (1987) Characterization of the cytochrome system of a nitrogen-fixing strain of a sulfate-reducing bacterium: Desulfovibrio desulfuricans strain Berre-Eau. Eur J Biochem 162:547–554

    Article  PubMed  CAS  Google Scholar 

  • Moura I, LeGall J, Lino AR, Peck HD Jr, Fauque G, Xavier AV, DerVartanian DV, Moura JJG, Huynh BH (1988) Characterization of two dissimilatory sulfite reductases (desulforubidin and desulfoviridin) from the sulfate-reducing bacteria. Mössbauer and EPR studies. J Am Chem Soc 110:1075–1082

    Article  CAS  Google Scholar 

  • Moura I, Tavares P, Moura JJG, Ravi N, Huynh BH, Liu MY, LeGall J (1990) Purification and characterization of desulfoferredoxin. A novel protein from Desulfovibrio desulfuricans ATCC 27774 and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center. J Biol Chem 265:21596–21602

    PubMed  CAS  Google Scholar 

  • Moura I, Bursakov S, Costa C, Moura JJG (1997) Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe 3:279–290

    Article  PubMed  CAS  Google Scholar 

  • Moussard H, L’Haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Reysenbach AL, Jeantho C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233

    Article  PubMed  CAS  Google Scholar 

  • Mukund S, Adams MGG (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. J Biol Chem 266:14208–14216

    PubMed  CAS  Google Scholar 

  • Müller F, Massey V (1969) Flavin-sulfite complexes and their structures. J Biol Chem 244:4007–4016

    PubMed  Google Scholar 

  • Müller JA, Galushko AS, Kappler A, Schink B (1999) Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch Microbiol 172:287–294

    Article  PubMed  Google Scholar 

  • Murphy MJ, Siegel LM (1973) Siroheme and sirohydrochlorin. J Biol Chem 248:6911–6919

    PubMed  CAS  Google Scholar 

  • Murphy MJ, Siegel LM, Kamin H (1973a) Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. J Biol Chem 248:2801–2814

    PubMed  CAS  Google Scholar 

  • Murphy MJ, Siegel LM, Kamin H, DerVartanian DV, Lee J-P, LeGall J, Peck HD Jr (1973b) An iron tetrahydroporphyrin prosthetic group common to both assimilatory and dissimilatory sulfite reductases. Biochem Biophys Res Commun 54:82–88

    Article  PubMed  CAS  Google Scholar 

  • Murphy MJ, Siegel LM, Tove SR, Kamin H (1974) Siroheme: a new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. Proc Natl Acad Sci USA 71:612–616

    Article  PubMed  CAS  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Kikumoto KH (1983) Amino Acid sequence of cytochrome c 553 from Desulfovibrio vulgaris Miyazaki. J Biol Chem 258:12409–12412

    PubMed  CAS  Google Scholar 

  • Nakatsukasa W, Akagi JM (1969) Thiosulfate reductase isolated from Desulfotomaculum nigrificans. J Bacteriol 98:429–433

    PubMed  CAS  Google Scholar 

  • Nanninga HJ, Gottschal JC (1987) Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 53:802–809

    PubMed  CAS  Google Scholar 

  • Nazina TN, Pivovarova TA (1979) Submicroscopic organization and sporulation in Desulfotomaculum nigrificans. Mikrobiologija (Russian) 48:241–246

    Google Scholar 

  • Nazina TN, Ivanova AE, Kanchaveli LP, Rozanova EP (1988) Desulfotomaculum kuznetsovii sp. nov., a new spore-forming thermophilic methylotrophic sulfate-reducing bacterium. Microbiologiya (Russian) 57:823–827

    CAS  Google Scholar 

  • Nelson DC, Castenholz RW (1981) Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147:140–154

    PubMed  CAS  Google Scholar 

  • Nethe-Jaenchen R, Thauer RK (1984) Growth yields and saturation constant of Desulfovibrio vulgaris in chemostat culture. Arch Microbiol 137:236–240

    Article  CAS  Google Scholar 

  • Neuberg C, Welde E (1914) Phytochemische Reduktionen. IX. Die Umwandlung von Thiosulfat in Schwefelwasserstoff und Sulfit durch Hefen. In: Buchner E, Ehrlich P, Hofmeister F, von Noorden C, Salkowski E, Tangl F, von Wassermann A, Zuntz N (eds) Biochemische Zeitung, Beiträge zur chemischen Physiologie und Pathologie, vol 67. Springer, Berlin, pp 111–118

    Google Scholar 

  • Newman DK, Beveridge TJ, Morel FMM (1997a) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028

    PubMed  CAS  Google Scholar 

  • Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FMM (1997b) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388

    Article  PubMed  CAS  Google Scholar 

  • Nicolet Y, Pircas C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23

    Article  PubMed  CAS  Google Scholar 

  • Niederberger TD, Götz DK, McDonald IR, Ronimus RS, Morgan HW (2006) Ignisphaera aggregans gen. nov., sp. nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. Int J Syst Evol Microbiol 56:965–971

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JT, Liesack W, Finster K (1999) Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. Int J Syst Bacteriol 49:859–865

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MB, Kjeldsen KU, Ingvorsen K (2006) Desulfitibacter alkalitolerans gen. nov., sp. nov., an anaerobic, alkalitolerant, sulfite-reducing bacterium isolated from a district heating plant. Int J Syst Evol Microbiol 56:2831–2836

    Article  PubMed  CAS  Google Scholar 

  • Nivière V, Forget N, Gayda JP, Hatchikian EC (1986) Characterization of the soluble hydrogenase from Desulfovibrio africanus. Biochem Biophys Res Commun 139:658–665

    Article  PubMed  Google Scholar 

  • Nivière V, Wong S-L, Voordouw G (1992) Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a b-lactamase fusion protein. J Gen Microbiol 138:2173–2183

    Article  PubMed  Google Scholar 

  • Novelli GD, ZoBell CE (1944) Assimilation of petroleum hydrocarbons by sulfate-reducing bacteria. J Bacteriol 47:447–448

    Google Scholar 

  • Novotny C, Kapralek F (1979) Participation of quinone and cytochrome b in tetrathionate reductase respiratory chain of Citrobacter freundii. Biochem J 178:237–240

    PubMed  CAS  Google Scholar 

  • Odom JM, Peck HD Jr (1981a) Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147:161–169

    PubMed  CAS  Google Scholar 

  • Odom JM, Peck HD Jr (1981b) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12:47–50

    Article  CAS  Google Scholar 

  • Odom JM, Wall JD (1987) Properties of the hydrogen-inhibited mutant of Desulfovibrio desulfuricans ATCC 27774. J Bacteriol 169:1335–1337

    PubMed  CAS  Google Scholar 

  • Ogata M, Yagi T (1986) Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F. J Biochem 100:311–318

    PubMed  CAS  Google Scholar 

  • Ogata M, Arihara K, Yagi T (1981) d-Lactate dehydrogenase of Desulfovibrio vulgaris. J Biochem 89:1423–1431

    PubMed  CAS  Google Scholar 

  • Ollivier B, Cord-Ruwisch R, Hatchikian EC, Garcia JL (1988) Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 149:447–450

    Article  CAS  Google Scholar 

  • Ollivier B, Hatchikian CE, Prensier G, Guezennec J, Garcia J-L (1991) Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81

    Article  CAS  Google Scholar 

  • Oltmann LF, van der Beek EG, Stouthamer AH (1975) Reduction of inorganic sulphur compounds by facultatively aerobic bacteria. Plant Soil 43:153–169

    Article  CAS  Google Scholar 

  • Oppenberg B, Schink B (1990) Anaerobic degradation of 1,3-propanediol by sulfate-reducing and by fermenting bacteria. Antonie Van Leeuwenhoek 57:205–213

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Shilo M (1979) Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch Microbiol 122:77–84

    Article  CAS  Google Scholar 

  • Ouattara AS, Patel BKC, Cayol J-L, Cuzin N, Traore AS, Garcia J-L (1999) Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield and phylogeny of Desulfovibrio alcoholivorans. Int J Syst Bacteriol 49:639–643

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink SJW, Maas RN, Harmsen HJM, Stams AJM (1995) Desulforhabdus amnigenus gen. nov., sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch Microbiol 164:119–124

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink SJW, Akkermans-van Vliet WM, Bogte JJ, Stams AJM (1999) Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. Int J Syst Bacteriol 49:345–350

    Article  PubMed  Google Scholar 

  • Oyaizu H, Woese CR (1985) Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria. Syst Appl Microbiol 6:257–263

    Article  CAS  Google Scholar 

  • Pankhania IP, Gow LA, Hamilton WA (1986) The effect of hydrogen on the growth of Desulfovibrio vulgaris (Hildenborough) on lactate. J Gen Microbiol 132:3349–3356

    CAS  Google Scholar 

  • Pankhania IP, Spormann AM, Hamilton WA, Thauer RK (1988) Lactate conversion to acetate, CO2 an H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction. Arch Microbiol 150:26–31

    Article  CAS  Google Scholar 

  • Paulsen J, Kröger A, Thauer RK (1986) ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans. Arch Microbiol 144:78–83

    Article  CAS  Google Scholar 

  • Peck HD Jr (1959) The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Biochemistry 45:701–708

    CAS  Google Scholar 

  • Peck HD Jr (1962) The role of adenosine-5′-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J Biol Chem 237:198–203

    PubMed  CAS  Google Scholar 

  • Peck HD Jr (1966) Phosphorylation coupled with electron transfer in extracts of the sulfate reducing bacterium, Desulfovibrio gigas. Biochem Biophys Res Commun 22:112–118

    Article  PubMed  CAS  Google Scholar 

  • Peck HD Jr, Bramlett RN (1982) Flavoproteins in sulfur metabolism. In: Massey V, Williams CH (eds) Flavins and flavoproteins. Elsevier/North Holland, New York, pp 851–858

    Google Scholar 

  • Peck HD Jr, LeGall J (1982) Biochemistry of dissimilatory sulphate reduction. Philos Trans R Soc Lond B 298:443–466

    Article  CAS  Google Scholar 

  • Peck HD Jr, Lissolo T (1988) Assimilatory and dissimilatory sulphate reduction: enzymology and bioenergetics. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles, vol 42. Cambridge University Press, Cambridge, pp 99–132

    Google Scholar 

  • Peck HD Jr, Deacon TE, Davidson JT (1965) Studies on adenosine 5′-phosphosulfate reductase from Desulfovibrio desulfuricans and Thiobacillus thioparus. Biochim Biophys Acta 96:429–446

    Article  PubMed  CAS  Google Scholar 

  • Peck HD Jr, LeGall J, Lespinat PA, Berlier Y, Fauque G (1987) A direct demonstration of hydrogen cycling by Desulfovibrio vulgaris employing membrane-inlet mass spectrometry. FEMS Microbiol Lett 40:295–299

    Article  CAS  Google Scholar 

  • Pedroni P, Volpe AD, Galli G, Mura GM, Pratesi C, Grandi G (1995) Characterization of the locus encoding the (Ni-Fe) sulfhydrogenase from the archaeon Pyrococcus furiosus: evidence for a relationship to bacterial sulfite reductases. Microbiology 141:449–458

    Article  PubMed  CAS  Google Scholar 

  • Pelletier DA, Harwood CS (1998) 2-Ketocyclohexanecarboxyl coenzyme a hydrolase, the ring cleavage enzyme required for anaerobic benzoate degradation by Rhodopseudomonas palustris. J Bacteriol 180:2330–2336

    PubMed  CAS  Google Scholar 

  • Pelsh AD (1936) About new autotrophic hydrogenthiobacteria (in Russian), vol 5. Trudy Solyanoi Laboratorii, vypusk, M.-L., Izdatelstvo AN SSSR, Moscow, pp 109–126

    Google Scholar 

  • Pereira IC, Abreu IA, Xavier AV, LeGall J, Teixeira M (1996) Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774)—a heterooligomer heme protein with sulfite reductase activity. Biochem Biophys Res Commun 224:611–618

    Article  PubMed  CAS  Google Scholar 

  • Pereira IA, Pacheco I, Liu M-Y, LeGall J, Xavier AV, Teixeira M (1997) Multiheme cytochromes from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Eur J Biochem 248:323–328

    Article  PubMed  CAS  Google Scholar 

  • Pereira IC, Romao CV, Xavier AV, LeGall J, Teixeira M (1998) Electron transfer between hydrogenases and mono-and multiheme cytochromes in Desulfovibrio ssp. J Biol Inorg Chem 3:494–498

    Article  CAS  Google Scholar 

  • Perrotta JA, Harwood CS (1994) Anaerobic metabolism of cyclohex-1-ene-1-carboxylate, a proposed intermediate of benzoate degradation, by Rhodopseudomonas palustris. Appl Environ Microbiol 60:1775–1782

    PubMed  CAS  Google Scholar 

  • Peters JW (1999) Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol 9:670–676

    Article  PubMed  CAS  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1984) Genus Desulfuromonas. In: Murray RGE, Brenner DJ, Bryant MP, Holt JG, Krieg NR, Moulder JW, Pfennig N, Sneath PHA, Staley JT (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 664–666

    Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N, Biebl H (1981) The dissimilatory sulfur-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Berlin, pp 941–947

    Google Scholar 

  • Pfennig N, Widdel F (1981) Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin, pp 169–177

    Chapter  Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfur-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Berlin, pp 926–940

    Google Scholar 

  • Phelps CD, Kazumi J, Young LY (1996) Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. FEMS Microbiol Lett 145:433–437

    Article  PubMed  CAS  Google Scholar 

  • Phil TD, Black LK, Sculman BA, Maier RJ (1992) Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii. J Bacteriol 174:137–143

    Google Scholar 

  • Pianzzola MJ, Soubes M, Touati D (1996) Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J Bacteriol 178:6736–6742

    PubMed  CAS  Google Scholar 

  • Pierik AJ, Duyvis MG, Helvoort JM, Wolbert RB, Hagen WR (1992a) The third subunit of desulfoviridin-type dissimilatory sulfite reductases. Eur J Biochem 205:111–115

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Hagen WR, Dunham WR, Sands RH (1992b) Multi-frequency EPR and high-resolution Mössbauer spectroscopy of a putative (6Fe-6S) prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 206:705–719

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Wolbert RBG, Mutsaers PHA, Hagen WR, Veeger C (1992c) Purification and biochemical characterization of a putative (6Fe-6S) prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 206:697–704

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Hulstein M, Hagen WR, Albracht SP (1998) A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in (Fe)-hydrogenases. Eur J Biochem 258:572–578

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Roseboom W, Happe RP, Bagley KA, Albracht SP (1999) Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of (NiFe)-hydrogenases. J Biol Chem 274:3331–3337

    Article  PubMed  CAS  Google Scholar 

  • Pieulle L, Guigliarelli B, Asso M, Dole F, Bernadac A, Hatchikian EC (1995) Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate-reducing bacterium Desulfovibrio africanus. Biochim Biophys Acta 1250:49–59

    Article  PubMed  Google Scholar 

  • Pieulle L, Haladjian J, Bonicel J, Hatchikian EC (1996) Biochemical studies of the c-type cytochromes of the sulfate reducer Desulfovibrio africanus. Characterization of two tetraheme cytochromes c 3 with different specificity. Biochim Biophys Acta 1273:51–61

    Article  PubMed  Google Scholar 

  • Pieulle L, Magro V, Hatchikian EC (1997) Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability. J Bacteriol 179:5684–5692

    PubMed  CAS  Google Scholar 

  • Pieulle L, Chabriere E, Hatchikian C, Fontecilla-Camps JC, Charon MH (1999a) Crystallization and preliminary crystallographic analysis of the pyruvate-ferredoxin oxidoreductase from Desulfovibrio africanus. Acta Crystallogr D55:329–331

    CAS  Google Scholar 

  • Pieulle L, Charon M-H, Bianco P, Bonicel J, Pétillot Y, Hatchikian EC (1999b) Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus. Eur J Biochem 264:500–508

    Article  PubMed  CAS  Google Scholar 

  • Pikuta EV, Zhilina TN, Zavarzin GA, Kostrikina NA, Osipov GA, Rainey FA (1998) Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology 67:105–113

    CAS  Google Scholar 

  • Platen H, Temmes A, Schink B (1990) Anaerobic degradation of acetone by Desulfococcus biacutus spec. non. Arch Microbiol 154:335–361

    Article  Google Scholar 

  • Plough H, Kühl M, Buchholz-Cleven B, Jørgensen BB (1997) Anoxic aggregates—an ephemeral phenomenon in the pelagic environment. Aquat Microb Ecol 13:285–294

    Article  Google Scholar 

  • Pollock WBR, Loutfi M, Bruschi M, Rapp-Giles B, Wall JD, Voordouw G (1991) Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovibrio vulgaris Hildenborough. J Bacteriol 173:220–228

    PubMed  CAS  Google Scholar 

  • Postgate JA (1951) The reduction of sulphur compounds by Desulphovibrio desulphuricans. J Gen Microbiol 5:725–788

    Article  PubMed  CAS  Google Scholar 

  • Postgate JA (1953) Presented at the 323rd meeting of the biochemical society, Paddington

    Google Scholar 

  • Postgate JA (1956) Cytochrome c 3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol 14:545–572

    Article  PubMed  CAS  Google Scholar 

  • Postgate JA (1959) A diagnostic reaction of Desulphovibrio desulphuricans. Nature 163:481–482

    Article  Google Scholar 

  • Postgate JA (1960) On the autotrophy of Desulphovibrio desulphuricans. Z Allg Mikrobiol 1:53–56

    Article  Google Scholar 

  • Postgate JR (1963) A strain of Desulfovibrio able to use oxamate. Arch Mikrobiol 46:287–295

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1970) Nitrogen fixation by sporulating sulphate-reducing bacteria including rumen strains. J Gen Microbiol 63:137–139

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1984a) The sulphate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Postgate JR (1984b) Genus Desulfovibrio. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 666–672

    Google Scholar 

  • Postgate JR, Campbell LL (1966) Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 30:732–738

    PubMed  CAS  Google Scholar 

  • Postgate JR, Kent HM (1985) Diazotrophy within Desulfovibrio. J Gen Microbiol 131:2119–2122

    Google Scholar 

  • Postgate JR, Kent HM, Robson RL, Chesshyre JA (1984) The genomes of Desulfovibrio gigas and D. vulgaris. J Gen Microbiol 130:1597–1601

    PubMed  CAS  Google Scholar 

  • Postgate JR, Kent HM, Robson RL (1986) DNA from diazotrophic Desulfovibrio strains is homologous to Klebsiella pneumoniae structural nif DNA and can be chromosomal or plasmid-borne. FEMS Microbiol Lett 33:159–163

    Article  CAS  Google Scholar 

  • Postgate JR, Kent HM, Robson RL (1988) Nitrogen fixation by Desulfovibrio. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles, vol 42. Cambridge University Press, Cambridge, pp 457–471

    Google Scholar 

  • Poulos TL (1988) Heme enzyme crystal structures. In: Eichhorn GL, Marzilli LG (eds) Heme proteins, vol 7. Elsevier, New York, pp 1–36

    Google Scholar 

  • Powell B, Mergeay M, Christofi N (1989) Transfer of broad host-range plasmids to sulphate-reducing bacteria. FEMS Microbiol Lett 59:269–274

    Article  CAS  Google Scholar 

  • Pradella S, Hippe H, Stackebrandt E (1998) Macrorestriction analysis of Desulfurella acetivorans and Desulfurella multipotens. FEMS Microbiol Lett 159:137–144

    Article  PubMed  CAS  Google Scholar 

  • Prickril BC, Czechowski MH, Przybyla AE, Peck HD Jr, LeGall J (1986) Putative signal peptide on the small subunit of the periplasmic hydrogenase from Desulfovibrio vulgaris. J Bacteriol 167:722–725

    PubMed  CAS  Google Scholar 

  • Prickril BC, He S-H, Li C, Menon N, Choi E-S, Przybyla AE, DerVartanian DV, Peck HD Jr, Fauque G, LeGall J, Teixeira M, Moura I, Moura JJG, Patil D, Huynh BH (1987) Identification of three classes of hydrogenase in the genus, Desulfovibrio. Biochem Biophys Res Commun 149:369–377

    Article  PubMed  CAS  Google Scholar 

  • Prickril BC, Kurtz DM Jr, LeGall J (1991) Cloning and sequencing of the gene for rubrerythrin from Desulfovibrio vulgaris (Hildenborough). Biochemistry 30:11118–11123

    Article  PubMed  CAS  Google Scholar 

  • Probst I, Bruschi M, Pfennig N, LeGall J (1977) Cytochrome c 551, 5 (c 7) from Desulfuromonas acetoxidans. Biochim Biophys Acta 460:58–64

    Article  PubMed  CAS  Google Scholar 

  • Probst I, Moura JJG, Moura I, Bruschi M, LeGall J (1978) Isolation and characterization of a rubredoxin and an (8Fe-8S) ferredoxin from Desulfuromonas acetoxidans. Biochim Biophys Acta 502:38–44

    Article  PubMed  CAS  Google Scholar 

  • Qatibi AI, NiviÈre V, Garcia JL (1991) Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2-and 1,3-propanediol. Arch Microbiol 155:143–148

    Article  CAS  Google Scholar 

  • Qatibi AI, Bennisse R, Jana M, Garcia JL (1998) Anaerobic degradation of glycerol by Desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1,2-propanediol. Curr Microbiol 36:283–290

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Heider J (1998) Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch Microbiol 170:377–384

    Article  CAS  Google Scholar 

  • Rabus R, Widdel F (1995) Conversion studies with substrate analogues of toluene in a sulfate-reducing bacterium, strain Tol2. Arch Microbiol 164:448–451

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451

    PubMed  CAS  Google Scholar 

  • Rabus R, Fukui M, Wilkes H, Widdel F (1996) Degradative capacities and 16s rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Appl Environ Microbiol 62:3605–3613

    PubMed  CAS  Google Scholar 

  • Rainey FA, Toalster R, Stackebrandt E (1993) Desulfurella acetivorans, a thermophilic, acetate-oxidizing and sulfur-reducing organism, represents a distinct lineage within the Proteobacteria. Syst Appl Microbiol 16:373–379

    Article  CAS  Google Scholar 

  • Ramsing NB, Kühl M, Joergensen BB (1993) Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59:3840–3849

    PubMed  CAS  Google Scholar 

  • Ramsing NB, Fossing H, Ferdelman TG, Andersen F, Thamdrup B (1996) Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol 62:1391–1404

    PubMed  CAS  Google Scholar 

  • Rapp BJ, Wall JD (1987) Genetic transfer in Desulfovibrio desulfuricans. Proc Natl Acad Sci USA 84:9128–9130

    Article  PubMed  CAS  Google Scholar 

  • Reeburgh WS (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett 28:337–344

    Article  CAS  Google Scholar 

  • Reeburgh WS (1980) Anaerobic methane oxidation: rate depth distribution in Skan Bay sediment. Earth Planet Sci Lett 47:345–352

    Article  CAS  Google Scholar 

  • Reeburgh WS, Alperin MJ (1988) Studies on anaerobic methane oxidation. Mitt Geol-Paläont Inst Univ Hamburg 66:367–375

    Google Scholar 

  • Reed DW, Hartzell PL (1999) The Archaeoglobus fulgidus d-lactate dehydrogenase is a Zn2+ flavoprotein. J Bacteriol 181:7580–7587

    PubMed  CAS  Google Scholar 

  • Rees GN, Patel BKC (2001) Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int J Syst Evol Microbiol 51:1911–1916

    Article  PubMed  CAS  Google Scholar 

  • Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45:85–89

    Article  Google Scholar 

  • Rees GN, Patel BKC, Grassia GS, Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154

    Article  PubMed  CAS  Google Scholar 

  • Rees GN, Harfoot CG, Sheehy AJ (1998) Amino acid degradation by the mesophilic sulfate-reducing bacterium Desulfobacterium vacuolatum. Arch Microbiol 169:76–80

    Article  PubMed  CAS  Google Scholar 

  • Reichenbecher W, Schink B (1997) Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene). Arch Microbiol 168:338–344

    Article  PubMed  CAS  Google Scholar 

  • Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56

    Article  PubMed  CAS  Google Scholar 

  • Ried JL, Collmer A (1987) An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57:239–246

    Article  PubMed  CAS  Google Scholar 

  • Rieder R, Cammack R, Hall DO (1984) Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4). Eur J Biochem 145:637–643

    Article  PubMed  CAS  Google Scholar 

  • Riederer-Henderson MA, Peck HD (1986) Properties of formate dehydrogenase from Desulfovibrio gigas. Can J Microbiol 32:430–435

    Article  CAS  Google Scholar 

  • Riederer-Henderson MA, Wilson PW (1970) Nitrogen fixation by sulphate-reducing bacteria. J Gen Microbiol 61:27–31

    Article  PubMed  CAS  Google Scholar 

  • Ringel M, Gross R, Krafft T, Kröger A, Schauder R (1996) Growth of Wolinella succinogenes with elemental sulfur in the absence of polysulfide. Arch Microbiol 165:62–64

    Article  CAS  Google Scholar 

  • Robb FT, Park J-B, Adams MWW (1992) Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Biochim Biophys Acta 1120:267–272

    Article  PubMed  CAS  Google Scholar 

  • Robbins PW, Lipmann F (1958) Enzymatic synthesis of adenosine-5′-phosphosulfate. J Biol Chem 233:686–690

    PubMed  CAS  Google Scholar 

  • Roden EE, Lovley DR (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59:734–742

    PubMed  CAS  Google Scholar 

  • Rohde M, Fürstenau U, Mayer F, Przybyla A, Peck HD, LeGall J, Choi ES, Menon NK (1990) Localization of membrane-associated (NiFe) and (NiFeSe) hydrogenases of Desulfovibrio vulgaris using immunoelectron microscopic procedures. Eur J Biochem 191:389–396

    Article  PubMed  CAS  Google Scholar 

  • Romão MJ, Archer M, Moura I, Moura JJG, LeGall J, Engh R, Schneider M, Hof P, Huber R (1995) Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas. Science 270:1170–1176

    Article  PubMed  Google Scholar 

  • Romão MJ, Knäblein J, Huber R, Moura JJG (1997) Structure and function of molybdopterin containing enzymes. Prog Biophys Mol Biol 68:121–144

    Article  PubMed  Google Scholar 

  • Romão CV, Liu MY, LeGall J, Gomes CM, Braga V, Pacheco I, Xavier AV, Teixeira M (1999) The superoxide dismutase activity of desulfoferredoxin from Desulfovibrio desulfuricans ATCC 27774. Eur J Biochem 261:438–443

    Article  PubMed  Google Scholar 

  • Rooney-Varga J, Sharak Genthner BR, Devereux R, Willis SG, Friedman SD, Hines ME (1998) Phylogenetic and physiological diversity of sulphate-reducing bacteria isolated from a salt marsh sediment. Syst Appl Microbiol 21:557–568

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld WD (1947) Anaerobic oxidation of hydrocarbons by sulfate-reducing bacteria. J Bacteriol 54:664–665

    CAS  Google Scholar 

  • Rossi M, Pollock WBR, Reij MW, Keon RG, Fu R, Voordouw G (1993) The hmc operon of Desulfovibrio vulgaris subsp.vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol 175:4699–4711

    PubMed  CAS  Google Scholar 

  • Rousset M, Dermoun Z, Hatchikian CE, Bélaich J-P (1990) Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic (NiFe) hydrogenase from Desulfovibrio fructosovorans. Gene 94:95–101

    Article  PubMed  CAS  Google Scholar 

  • Rousset M, Dermoun Z, Chippaux M, Bélaich JP (1991) Marker exchange mutagenesis of the hydN genes in Desulfovibrio fructosovorans. Mol Microbiol 5:1735–1740

    Article  PubMed  CAS  Google Scholar 

  • Rousset M, Dermoun Z, Wall JD, Belaich J-P (1993) Analysis of the periplasmic (NiFe) hydrogenase transcription unit form Desulfovibrio fructosovorans. J Bacteriol 175:3388–3393

    PubMed  CAS  Google Scholar 

  • Rousset M, Casalot L, Rapp-Giles BJ, Dermoun Z, de Philip P, Bélaich J-P, Wall JD (1998a) New shuttle vectors for the introduction of cloned DNA in Desulfovibrio. Plasmid 39:114–122

    Article  PubMed  CAS  Google Scholar 

  • Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998b) (3Fe-4S) to (4Fe-4S) cluster conversion in Desulfovibrio fructosovorans (NiFe) hydrogenase by site-directed mutagenesis. Proc Natl Acad Sci USA 95:11625–11630

    Article  PubMed  CAS  Google Scholar 

  • Roy AB, Trudinger PA (1970) The biochemistry of inorganic compounds of sulphur. Cambridge University Press, Cambridge

    Google Scholar 

  • Rozanova EP, Khudyakova AI (1974) A new non-sporeforming thermophilic sulfate-reducing organism, Desulfovibrio thermophilus nov. spec. Mikrobiologiya (Russian) 43:1069

    CAS  Google Scholar 

  • Rozanova EP, Nazina TN (1976) A mesophilic, sulfate-reducing, rod-shaped, nonsprefroming bacterium. Mikrobiologiya (Russian) 45:825–830

    CAS  Google Scholar 

  • Rozanova EP, Pivavora TA (1988) Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974). Mikrobiologyia (Russian) 57:102–106

    Google Scholar 

  • Rozanova EP, Nazina TN, Galushko AS (1988) Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Mikrobiologiya (Russian) 57:634–641

    CAS  Google Scholar 

  • Rubentschik L (1928) Über Sulfatreduktion durch Baterien bei Zellulosegärungsprodukten als Energiequelle. Zentralbl Bakteriol 73:483–496

    Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458

    Article  PubMed  CAS  Google Scholar 

  • Sagemann J, Joergensen BB, Greeff O (1998) Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiol J 15:85–100

    Article  CAS  Google Scholar 

  • Sahm K, MacGregor BJ, Joergensen BB, Stahl DA (1999a) Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a costal marine sediment. Environ Microbiol 1:65–74

    Article  PubMed  CAS  Google Scholar 

  • Sahm K, Knoblauch C, Amann R (1999b) Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine arctic sediments. Appl Environ Microbiol 65:3976–3981

    PubMed  CAS  Google Scholar 

  • Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C. Int J Syst Bacteriol 46:1070–1077

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Macpherson R, Miller I (1964) The effect of inhibitors on sulphate-reducing bacteria: a compilation. J Appl Bacteriol 27:281–293

    Article  CAS  Google Scholar 

  • Samain E, Albagnac G, LeGall J (1986a) Redox studies of the tetraheme cytochrome c 3 isolated from the propionate-oxidizing, sulfate-reducing bacterium Desulfobulbus elongatus. FEBS Lett 204:247–250

    Article  CAS  Google Scholar 

  • Samain E, Dubourgier HC, LeGall J, Albagnac G (1986b) Regulation of hydrogenase activity in the propionate oxidizing sulfate reducing bacterium Desulfobulbus elongatus. In: Dubourgier HC, Albagnac G, Montreuil J, Ramond C, Sautiere P, Guillaume J (eds) Biology of anaerobic bacteria. Elsevier, Amsterdam

    Google Scholar 

  • Samain E, Patil DS, DerVartanian DV, Albagnac G, LeGall J (1987) Isolation of succinate dehydrogenase from Desulfobulbus elongatus, a propionate oxidizing, sulfate reducing bacterium. FEBS Lett 216:140–144

    Article  PubMed  CAS  Google Scholar 

  • Sanford RA, Cole JR, Löffler FE, Tiedje JM (1996) Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 62:3800–3808

    PubMed  CAS  Google Scholar 

  • Santegoeds CM, Damgaard LR, Hesselink G, Zopfi J, Lens P, Muyzer G, deBeer D (1999) Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses. Appl Environ Microbiol 65:4618–4629

    PubMed  CAS  Google Scholar 

  • Sass H, Wieringa E, Cypionka H, Babenzien HD, Overmann J (1998a) High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Arch Microbiol 170:243–251

    Article  PubMed  CAS  Google Scholar 

  • Sass H, Berchtold M, Branke J, König H, Cypionka H, Babenzien H-D (1998b) Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 21:212–219

    Article  PubMed  CAS  Google Scholar 

  • Sawers RG, Ballantine SP, Boxer DH (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331

    PubMed  CAS  Google Scholar 

  • Schäfer T, Schönheit P (1991) Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalyzed by an acetyl-CoA synthetase (ADP forming). Arch Microbiol 155:366–377

    Article  Google Scholar 

  • Schäfer T, Schönheit P (1992) Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch Microbiol 158:188–202

    Article  Google Scholar 

  • Schäfer S, Barkowski C, Fuchs G (1986) Carbon assimilation by the autotrophic thermophilic archaebacterium Thermoproteus neutrophilus. Arch Microbiol 146:301–308

    Article  Google Scholar 

  • Schäfer T, Xavier KB, Santos H, Schönheit P (1994) Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: proposal of a novel glycolytic pathway based on 13C labelling data and enzyme activities. FEMS Microbiol Lett 121:107–114

    Article  Google Scholar 

  • Schauder R, Kröger A (1993) Bacterial sulphur respiration. Arch Microbiol 159:491–497

    Article  CAS  Google Scholar 

  • Schauder R, Müller E (1993) Polysulfide as a possible substrate for sulfur-reducing bacteria. Arch Microbiol 160:377–382

    Article  CAS  Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs F (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172

    Article  CAS  Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148:218–225

    Article  CAS  Google Scholar 

  • Schauder R, Preuß A, Jetten M, Fuchs G (1989) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol 151:84–89

    Article  CAS  Google Scholar 

  • Schedel M, LeGall J, Baldensperger J (1975) Sulfur metabolism in Thiobacillus denitrificans. Evidence for the presence of a sulfite reductase activity. Arch Microbiol 105:339–341

    Article  PubMed  CAS  Google Scholar 

  • Schedel M, Vanselow M, Trüper HG (1979) Siroheme sulfite reductase isolated from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties. Arch Microbiol 121:29–36

    Article  CAS  Google Scholar 

  • Schicho RN, Ma K, Adams MWW, Kelly RM (1993) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 175:1823–1830

    PubMed  CAS  Google Scholar 

  • Schink B (1984) Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41

    Article  CAS  Google Scholar 

  • Schink B (1988a) Principles and limits of anaerobic degradation: environmental and technological aspects. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 771–846

    Google Scholar 

  • Schink B (1988b) Konservierung kleiner Energiebeträge bei gärenden Bakterien. In: Präve P, Schlingmann M, Crueger W, Esser K, Thauer RK, Wagner F (eds) Jahrbuch Biotechnologie, 1988/89, vol 2. Carl Hanser Verlag München, Wien, pp 65–93

    Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    PubMed  CAS  Google Scholar 

  • Schink B, Friedrich M (2000) Phosphite oxidation by sulphate reduction. Nature 406:37

    Article  PubMed  CAS  Google Scholar 

  • Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133:195–201

    Article  CAS  Google Scholar 

  • Schmitz RA, Bonch-Osmolovskaya EA, Thauer RK (1990) Different mechanisms of acetate activation in Desulfurella acetivorans and Desulfuromonas acetoxidans. Arch Microbiol 154:274–279

    Article  CAS  Google Scholar 

  • Schmitz RA, Linder D, Stetter KO, Thauer RK (1991) N5, N10-Methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus. Arch Microbiol 156:427–434

    Article  CAS  Google Scholar 

  • Schnell S, Schink B (1991) Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. Arch Microbiol 155:183–190

    Article  CAS  Google Scholar 

  • Schnell S, Bak F, Pfennig N (1989) Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Arch Microbiol 152:556–563

    Article  PubMed  CAS  Google Scholar 

  • Schocher RJ, Seyfried B, Vazquez F, Zeyer J (1991) Anaerobic degradation of toluene by pure cultures of denitrifying bacteria. Arch Microbiol 157:7–12

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Meβmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56

    Article  CAS  Google Scholar 

  • Schönheit P, Schäfer T (1995) Metabolism of hyperthermophiles W. J Microbiol Biotechnol 11:26–57

    Article  Google Scholar 

  • Schramm A, Santegoeds CM, Nielsen HK, Plough H, Wagner M, Pribyl M, Wanner J, Amann R, deBeer D (1999) On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl Environ Microbiol 65:4189–4196

    PubMed  CAS  Google Scholar 

  • Schröder I, Kröger A, Macy JM (1988) Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes. Arch Microbiol 149:572–579

    Article  Google Scholar 

  • Schultz JE, Weaver PF (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149:181–190

    PubMed  CAS  Google Scholar 

  • Schumacher W, Kroneck PMH, Pfennig N (1992) Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Arch Microbiol 158:287–293

    Article  CAS  Google Scholar 

  • Schwörer B, Breitung J, Klein AR, Stetter KO, Thauer RK (1993) Formylmethanofuran: tetrahy-dromethanopterin formyltransferase and N5, N10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic archaea. Arch Microbiol 159:225–232

    Article  PubMed  Google Scholar 

  • Scott AI, Irwin AJ, Siegel LM, Shoolery JN (1978) Sirohydrochlorin. Prosthetic group of sulfite and nitrite reductases and its role in the biosynthesis of vitamin B12. J Am Chem Soc 100:7987–7994

    Article  CAS  Google Scholar 

  • Scranton MI, Novelli PC, Loud PA (1984) The distribution and cycling of hydrogen gas in the waters of two anoxic marine environments. Limnol Oceanogr 29:993–1003

    Article  CAS  Google Scholar 

  • Sebban C, Blanchard L, Bruschi M, Guerlesquin F (1995) Purification and characterization of the formate dehydrogenase from Desulfovibrio vulgaris Hildenborough. FEMS Microbiol Lett 133:143–149

    Article  PubMed  CAS  Google Scholar 

  • Sebban-Kreuzer C, Dolla A, Guerlesquin F (1998a) The formate dehydrogenase-cytochrome c 553 complex from Desulfovibrio vulgaris Hildenborough. Eur J Biochem 253:645–652

    Article  PubMed  CAS  Google Scholar 

  • Sebban-Kreuzer C, Blackledge M, Dolla A, Marion D, Guerlesquin F (1998b) Tyrosine 64 of Cytochrome c 553 is required for electron exchange with formate dehydrogenase in Desulfovibrio vulgaris Hildenborough. Biochemistry 37:8331–8340

    Article  PubMed  CAS  Google Scholar 

  • Seebald M, Veron M (1963) Teneur en bases de l’ADN et classification des vibrions. Ann Inst Pasteur (Paris) 105:897–910

    Google Scholar 

  • Seeliger S, Cord-Ruwisch R, Schink B (1998) A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol 180:3686–3691

    PubMed  CAS  Google Scholar 

  • Segerer AH, Stetter KO (1992) The order Sulfolobales. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 1, 2nd edn. Springer, New York, pp 684–701

    Google Scholar 

  • Segerer A, Stetter KO, Klink F (1985) Two contrary modes of chemolithotrophy in the same archaebacterium. Nature 313:787–789

    Article  PubMed  CAS  Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564

    Article  Google Scholar 

  • Segerer AH, Trincone A, Gahrtz M, Stetter KO (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int J Syst Bacteriol 41:495–501

    Article  Google Scholar 

  • Seitz HJ, Cypionka H (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate and nitrite. Arch Microbiol 146:63–67

    Article  CAS  Google Scholar 

  • Seki Y, Ishimoto M (1979) Catalytic activity of the chromophore of desulfoviridin, sirohydrochlorin, in sulfite reduction in the presence of iron. J Biochem 86:273–276

    PubMed  CAS  Google Scholar 

  • Selig M, Schönheit P (1994) Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle. Arch Microbiol 162:286–294

    Article  CAS  Google Scholar 

  • Selig M, Xavier KB, Santos H, Schönheit P (1997) Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol 167:217–232

    PubMed  CAS  Google Scholar 

  • Senez JC (1954) Fermentation de l´acide pyruvique et des acides dicarboxyliques par les bactéries anaérobies sulfato-réductrices. Bull Soc Chim Biol 36:541–552

    PubMed  CAS  Google Scholar 

  • Senez JC, Leroux-Gilleron J (1954) Note préliminaire sur la dégradation anaérobie de la castéine et de la cystine par les bactéries sulfato-réductrices. Bull Soc Chim Biol 36:553–559

    PubMed  CAS  Google Scholar 

  • Senn H, Guerlesquin F, Bruschi M, Wüthrich K (1983) Coordination of the heme iron in the low-potential cytochromes c 553 from Desulfovibrio vulgaris and Desulfovibrio desulfuricans—different chirality of the axially bound methionine in the oxidized and reduces states. Biochim Biophys Acta 748:194–204

    Article  PubMed  CAS  Google Scholar 

  • Sequeira CAC, Tiller AK (1988) Microbial corrosion 1. Elsevier Applied Sciences, London

    Google Scholar 

  • Seyedirashti S, Wood C, Akagi JM (1991) Induction and partial purification of bacteriophages from Desulfovibrio vulgaris (Hildenborough) and Desulfovibrio desulfuricans ATCC 13541. J Gen Microbiol 137:1545–1549

    Article  PubMed  CAS  Google Scholar 

  • Seyedirashti S, Wood C, Akagi JM (1992) Molecular characterization of two bacteriophages isolated from Desulfovibrio vulgaris NCIMB 8303 (Hildenborough). J Gen Microbiol 138:1393–1397

    Article  PubMed  CAS  Google Scholar 

  • Sharak Genthner BR, Friedmann SD, Devereux R (1997) Reclassification of Desulfovibrio desulfuricans Norway 4 as Desulfomicrobium norvegicum comb. nov. and confirmation of Desulfomicrobium escambiense (corrig., formerly “escambium”) as a new species in the genus Desulfomicrobium. Int J Syst Bacteriol 47:889–892

    Article  Google Scholar 

  • Shimizu F, Ogata M, Yagi T, Wakabayashi S, Matsubara H (1989) Amino acid sequence and function of rubredoxin from Desulfovibrio vulgaris. Miyzaki Biochim 71:1171–1177

    Article  CAS  Google Scholar 

  • Siebers B, Hensel R (1993) Glucose catabolism of the hyperthermophilic archaeum Thermoproteus tenax. FEMS Microbiol Lett 111:1–8

    Article  CAS  Google Scholar 

  • Siebers B, Wendisch VF, Hensel R (1997) Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Entner-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase. Arch Microbiol 168:120–127

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Klenk H-P, Hensel R (1998) PPi-dependent phosphofructokinase from Thermoproteus tenax, an archaeal descendant of an ancient line in phosphofructokinase evolution. J Bacteriol 180:2137–2143

    PubMed  CAS  Google Scholar 

  • Siegel LM, Davis PS (1974) Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. IV. The Escherichia coli hemoflavoprotein: subunit structure and dissociation into hemoprotein and flavoprotein components. J Biol Chem 249:1587–1598

    PubMed  CAS  Google Scholar 

  • Siegel LM, Davis PS, Kamin H (1974) Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. III. The Escherichia coli hemoflavoprotein: catalytic parameters and the sequence of electron flow. J Biol Chem 249:1572–1586

    PubMed  CAS  Google Scholar 

  • Siegel LM, Rueger DC, Barber MJ, Krueger RJ, Orme-Johnson NR, Orme-Johnson WH (1982) Escherichia coli sulfite reductase hemoprotein subunit. J Biol Chem 257:6343–6350

    PubMed  CAS  Google Scholar 

  • Silva PJ, de Castro B, Hagen WR (1999a) On the prosthetic groups of the NiFe sulfhydrogenase from Pyrococcus furiosus: topology, structure, and temperature-dependent redox chemistry. J Biol Inorg Chem 4:284–291

    Article  PubMed  CAS  Google Scholar 

  • Silva G, Oliveira S, Gomes CM, Pacheco I, Liu MY, Xavier AV, Teixeira M, LeGall J, Rodrigues-Pousada C (1999b) Desulfovibrio gigas neelaredoxin. A novel superoxide dismutase integrated in a putative oxygen sensory operon of an anaerobe. Eur J Biochem 259:235–243

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Gross R, Ringel M, Scmidt E, Kröger A (1998) Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon. Eur J Biochem 251:418–426

    Article  PubMed  CAS  Google Scholar 

  • Sirko A, Hryniewicz M, Hulanicka D, Böck A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172:3351–3357

    PubMed  CAS  Google Scholar 

  • Sisler FD, ZoBell CE (1951) Hydrogen utilization by some marine sulfate-reducing bacteria. J Bacteriol 62:117–127

    PubMed  CAS  Google Scholar 

  • Skyring GW (1987) Sulfate reduction in coastal ecosystems. Geomicrobiol J 5:295–374

    Article  CAS  Google Scholar 

  • Sleytr W, Adam H, Klaushofer H (1969) Die Feinstruktur der Zellwand und Cytoplasmamembran von Clostridium nigrificans, dargestellt mit Hilfe der Gefrierätz-und Ultradünnschnittechnik. Arch Microbiol 66:40–58

    CAS  Google Scholar 

  • Slobodkin A, Reysenbach AL, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory FeIII-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547

    Article  PubMed  CAS  Google Scholar 

  • So CM, Young LY (1999a) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976

    PubMed  CAS  Google Scholar 

  • So CM, Young LY (1999b) Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01. Appl Environ Microbiol 65:5532–5540

    PubMed  CAS  Google Scholar 

  • Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2005) Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int J Syst Evol Microbiol 55:2069–2073

    Article  PubMed  CAS  Google Scholar 

  • Sørensen J, Christensen D, Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediments. Appl Environ Microbiol 42:5–11

    PubMed  Google Scholar 

  • Sorokin Y (1966a) Sources of energy and carbon for biosynthesis in sulfate-reducing bacteria. Mikrobiologyia (Russian) 35:761–766

    CAS  Google Scholar 

  • Sorokin Y (1966b) Investigation of the structural metabolism of sulfate-reducing bacteria with 14C. Mikrobiologyia (Russian) 35:967–977

    CAS  Google Scholar 

  • Sorokin YI (1966c) Role of carbon dioxide and acetate in biosynthesis by sulphate-reducing bacteria. Nature 210:551–552

    Article  PubMed  CAS  Google Scholar 

  • Sorokin YI (1972) The bacterial population and the process of hydrogen sulphide oxidation in the Black Sea. J Cons Int Explor Mer 34:423–455

    CAS  Google Scholar 

  • Sorokin DY, Muyzer G (2010a) Haloalkaliphilic spore-forming sulfidogens from soda lake sediments and description of Desulfitispora alkaliphila gen. nov., sp. nov. Extremophiles 14:313–320

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Muyzer G (2010b) Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes. Extremophiles 14:349–355

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Foti M, Tindall BJ, Muyzer G (2007) Desulfurispirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur- and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor. Extremophiles 11:363–370

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Muβmann M, Muyzer G (2008a) Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12:431–439

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G (2008b) Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov.—a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453

    Article  PubMed  CAS  Google Scholar 

  • Speich N, Trüper HG (1988) Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium. J Gen Microbiol 134:1419–1425

    CAS  Google Scholar 

  • Speich N, Dahl C, Heisig P, Lottspeich KAF, Stetter KO, Trüper HG (1994) Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulphur flavoproteins. Microbiology 140:1273–1284

    Article  PubMed  CAS  Google Scholar 

  • Sperling D, Kappler U, Wynen A, Dahl C, Trüper HG (1998) Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol Lett 162:257–264

    Article  PubMed  CAS  Google Scholar 

  • Sperling D, Kappler U, Trüper HG, Dahl C (2001) Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducing archaeon Archaeoglobus fulgidus. Methods Enzymol 331:419–427

    Article  PubMed  CAS  Google Scholar 

  • Spormann AM, Thauer RK (1988) Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans. Arch Microbiol 150:374–380

    Article  CAS  Google Scholar 

  • Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38:321–325

    Article  Google Scholar 

  • Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Päuker O, Hippe H (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139

    Article  PubMed  CAS  Google Scholar 

  • Stahlmann J, Warthmann R, Cypionka H (1991) Na+-dependent accumulation of sulfate and thiosulfate in marine sulfate-reducing bacteria. Arch Microbiol 155:554–558

    Article  CAS  Google Scholar 

  • Stams AJM, Hansen TA (1982) Oxygen-labile L(+) lactate dehydrogenase activity in Desulfovibrio desulfuricans. FEMS Microbiol Lett 13:389–394

    CAS  Google Scholar 

  • Stams AJM, Hansen TA (1986) Metabolism of l-alanine in Desulfotomaculum ruminis and two marine Desulfovibrio strains. Arch Microbiol 145:277–279

    Article  CAS  Google Scholar 

  • Stams FJM, Veenhuis M, Weenk GH, Hansen TA (1983) Occurrence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus. Arch Microbiol 136:54–59

    Article  CAS  Google Scholar 

  • Stams AJM, Nicolay KDRK, Weenk GH, Hansen TA (1984) Pathway of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173

    Article  CAS  Google Scholar 

  • Stams AJM, Hansen TA, Skyring GW (1985) Utilization of amino acids as energy substrates by two marine Desulfovibrio strains. FEMS Microbiol Ecol 31:11–15

    Article  CAS  Google Scholar 

  • Starkey RL (1937) Formation of sulfide by some sulfur bacteria. J Bacteriol 33:545–571

    PubMed  CAS  Google Scholar 

  • Starkey RL (1938) A study of spore formation and other morphological characteristics of Vibrio desulfuricans. Arch Mikrobiol 9:268–304

    Article  Google Scholar 

  • Steen IH, Lien T, Birkeland N-K (1997) Biochemical and phylogenetic characterization of isocitrate dehydrogenase form a hyperthermophilic archaeon, Archaeoglobus fulgidus. Arch Microbiol 168:412–420

    Article  PubMed  CAS  Google Scholar 

  • Steenkamp DJ, Peck HD (1981) Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. J Biol Chem 256:5450–5458

    PubMed  CAS  Google Scholar 

  • Stephenson M, Stickland LH (1931) Hydrogenase. II. The reduction of sulphate to sulphide by molecular hydrogen. Biochem J 25:215–220

    PubMed  CAS  Google Scholar 

  • Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C. Nature 300:258–260

    Article  Google Scholar 

  • Stetter KO (1985) Extrem thermophile Bakterien. Naturwissenschaften 72:291–301

    Article  CAS  Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173

    Article  Google Scholar 

  • Stetter KO (1992) The genus Archaeoglobus. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 1, 2nd edn. Springer, New York, pp 707–711

    Google Scholar 

  • Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  • Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305:309–311

    Article  CAS  Google Scholar 

  • Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Syst Appl Microbiol 4:535–551

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124

    Article  Google Scholar 

  • Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745

    Article  Google Scholar 

  • Steuber J, Cypionka H, Kroneck PMH (1994) Mechanism of dissimilatory sulfite reduction by Desulfovibrio desulfuricans: purification of a membrane-bound sulfite reductase and coupling with cytochrome c 3 and hydrogenase. Arch Microbiol 162:255–260

    CAS  Google Scholar 

  • Steuber J, Arendsen AF, Hagen WR, Kroneck MH (1995) Molecular properties of the dissimilatory sulfite reductase from Desulfovibrio desulfuricans (Essex) and comparison with the enzyme from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 233:873–879

    Article  PubMed  CAS  Google Scholar 

  • Steudel R (1989) On the nature of the “elemental sulfur” (S0) produced by sulfur-oxidizing bacteria-α model for S0 globules. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin, pp 289–303

    Google Scholar 

  • Steudel R, Holdt G, Nagorka R (1986) On the autoxidation of aqueous sodium polysulfide. Z Naturforsch 41b:1519–1522

    CAS  Google Scholar 

  • Steudel R, Göbel T, Holdt G (1988) The molecular composition of hydrophilic sulfur sols prepared by acid decomposition of thiosulfate. Z Naturforsch 43b:203–218

    Google Scholar 

  • Steudel R, Göbel T, Holdt G (1989) The molecular nature of the hydrophilic sulfur prepared from aqueous sulfide and sulfite (selmi sulfur sol). Z Naturforsch 44b:526–530

    Google Scholar 

  • Stieb M, Schink B (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151:126–132

    Article  CAS  Google Scholar 

  • Stille W, Trüper HG (1984) Adenylylsulfate reductase in some new sulfate-reducing bacteria. Arch Microbiol 137:145–150

    Article  CAS  Google Scholar 

  • Stock JB, Surette MG (1996) Chemotaxis, solute transport, and osmoregulation. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, vol 1, 2nd edn. American Society of Microbiology, Washington, DC, pp 1103–1129

    Google Scholar 

  • Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Stokkermans J, van Dongen W, Kaan A, van den Berg W, Veeger C (1989) Hydg, a gene from Desulfovibrio vulgaris (Hildenborough) encodes a polypeptide homologous to the periplasmic hydrogenase. FEMS Microbiol Lett 58:217–222

    CAS  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Ellis DJ, Blum JS, Ahmann D, Lovley DR, Oremland RS (1999) Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the e Proteobacteria. Int J Syst Bacteriol 49:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Stratford M, Rose AH (1985) Hydrogen sulphide production from sulphite by Saccharomyces cerevisiae. J Gen Microbiol 131:1417–1424

    CAS  Google Scholar 

  • Strauss G, Eisenreich W, Bacher A, Fuchs G (1992) 13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing archaebacterium Thermoproteus neutrophilus and in the phototrophic eubacterium Chloroflexus aurantiacus. Eur J Biochem 205:853–866

    Article  PubMed  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry. Wiley, New York

    Google Scholar 

  • Suflita JM, Liang L, Saxena A (1989) The anaerobic biodegradation of o-, m-and p-cresol by sulfate-reducing bacterial enrichment cultures obtained from a shallow anoxic aquifer. J Ind Microbiol 4:255–266

    Article  CAS  Google Scholar 

  • Suh B, Akagi JM (1966) Pyruvate-carbon dioxide exchange reaction of Desulfovibrio desulfuricans. J Bacteriol 91:2281–2285

    PubMed  CAS  Google Scholar 

  • Suh B, Akagi JM (1969) Formation of thiosulfate from sulfite by Desulfovibrio vulgaris. J Bacteriol 99:210–215

    PubMed  CAS  Google Scholar 

  • Suzuki D, Ueki A, Amaishi A, Ueki K (2007) Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 57:520–526

    Article  PubMed  CAS  Google Scholar 

  • Suzuki D, Ueki A, Amaishi A, Ueki K (2008) Desulfoluna butyratoxydans gen. nov., sp. nov., a novel Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 58:826–832

    Article  PubMed  CAS  Google Scholar 

  • Szewzyk R, Pfennig N (1987) Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch Microbiol 147:163–168

    Article  CAS  Google Scholar 

  • Sznyter LA, Slatko B, Moran L, O’Donnell KH, Brooks JE (1987) Nucleotide sequence of the DdeI restriction-modification system and characterization of the methylase protein. Nucleic Acids Res 15:8249–8266

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Nakagawa S, Sako Y, Horikoshi K (2003) Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Cowan JA (1991) Enzymatic redox chemistry: a proposed reaction pathway for the six-electron. Reduction of SO32-to S2-by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Am Chem Soc 30:8910–8917

    CAS  Google Scholar 

  • Tan J, Helms LR, Swenson RP, Cowan JA (1991) Primary structure of the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough): cloning and nucleotide sequence of the reductase gene. Am Chem Soc 30:9900–9907

    CAS  Google Scholar 

  • Tan J, Soriano A, Lui SM, Cowan JA (1994) Functional expression and characterization of the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Arch Biochem Biophys 312:516–523

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K (1990) Several new substrates for Desulfovibrio vulgaris strain Marburg and a spontaneous mutant from it. Arch Microbiol 155:18–21

    Article  CAS  Google Scholar 

  • Tanaka K (1992) Anaerobic oxidation of 1,5-pentanediol, 2-butanol, and 2-propanol by a newly isolated sulfate-reducer. J Ferment Bioeng 73:362–365

    Article  CAS  Google Scholar 

  • Tanaka K, Stackebrandt E, Tohyama S, Eguchi T (2000) Desulfovirga adipica gen. nov., sp. nov., an adipate-degrading, Gram-negative, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:639–644

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto Y, Bak F (1994) Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria. Appl Environ Microbiol 60:2450–2455

    PubMed  CAS  Google Scholar 

  • Taylor J, Parkes RJ (1983) The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J Gen Microbiol 129:3303–3309

    CAS  Google Scholar 

  • Teixeira M, Moura I, Fauque G, Czechowski M, Berlier Y, Lespinat PA, LeGall J, Xavier AV, Moura JJG (1986) Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens. Biochimie 68:75–84

    Article  PubMed  CAS  Google Scholar 

  • Teixeira M, Fauque G, Moura I, Lespinat PA, Berlier Y, Prickril B, Peck HD Jr, Xavier AV, LeGall J, Moura JJG (1987) Nickel-(iron-sulfur)-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Eur J Biochem 167:47–58

    Article  PubMed  CAS  Google Scholar 

  • Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405–1415

    PubMed  CAS  Google Scholar 

  • Teske A, Ramsing NB, Habicht K, Fukui M, Küver J, Jørgensen BB, Cohen Y (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl Environ Microbiol 64:2943–2951

    PubMed  CAS  Google Scholar 

  • Thamdrup B, Finster K, Würgler Hansen J, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108

    PubMed  CAS  Google Scholar 

  • Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK (1989) Energy metabolism of sulfatereducing bacteria. In: Schegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin, pp 397–413

    Google Scholar 

  • Thauer RK, Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP, Carr NG (eds) The microbe 1984, part II, prokaryotes and eukaryotes, vol 36, Society for General Microbiology. Symposium. Cambridge University Press, Cambridge, pp 123–168

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67

    Article  PubMed  CAS  Google Scholar 

  • Thebrath B, Dilling W, Cypionka H (1989) Sulfate activation in Desulfotomaculum. Arch Microbiol 152:296–301

    Article  CAS  Google Scholar 

  • Thiele JH, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl Environ Microbiol 54:20–29

    PubMed  CAS  Google Scholar 

  • Thiele JH, Chartrain M, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol 54:10–19

    PubMed  CAS  Google Scholar 

  • Thoenes U, Flores OL, Neves A, Devreese B, Van Beeumen JJ, Huber R, Romao MJ, Moura LJJJG, Rodrigues-Pousada C (1994) Molecular cloning and sequence analysis of the gene of the molybdenum-containing aldehyde oxido-reductase of Desulfovibrio gigas. The deduced amino acid sequence shows similarity to xanthine dehydrogenase. Eur J Biochem 220:901–910

    Article  PubMed  CAS  Google Scholar 

  • Tindall BJ, Stetter KO, Collings MD (1989) A novel, fully saturated menaquinone from the thermophilic, sulphate-reducing archaebacterium Archaeoglobus fulgidus. J Gen Microbiol 135:693–696

    CAS  Google Scholar 

  • Tormay P, Böck A (1997) Barriers to heterologous expression of a selenoprotein gene in bacteria. J Bacteriol 179:576–582

    PubMed  CAS  Google Scholar 

  • Tormay P, Wilting R, Heider J, Böck A (1994) Genes coding for the selenocysteine-inserting tRNA species from Desulfomicrobium baculatum and Clostridium thermoaceticum: structural and evolutionary implications. J Bacteriol 176:1268–1274

    PubMed  CAS  Google Scholar 

  • Trinkerl M, Breunig A, Schauder R, König H (1990) Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the Hindgut of a termite. Syst Appl Microbiol 13:372–377

    Article  CAS  Google Scholar 

  • Trudinger PA (1970) Carbon monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction. J Bacteriol 104:158–170

    PubMed  CAS  Google Scholar 

  • Trudinger PA, Loughlin RE (1981) Metabolism of simple sulfur compounds. In: Neuberger A, van Deenen LLM (eds) Comprehensive biochemistry, vol 19a. Elsevier, Amsterdam, pp 165–256

    Google Scholar 

  • Trüper HG (1989) Physiology and biochemistry of phototrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin, pp 267–281

    Google Scholar 

  • Trüper HG (1994) Reverse siroheme sulfite reductase from Thiobacillus denitrificans. In: Peck HD, LeGall J (eds) Inorganic microbial sulfur metabolism, vol 243. Academic, San Diego, pp 422–426

    Chapter  Google Scholar 

  • Trüper HG, Pfennig N (1966) Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Antonie Van Leeuwenhoek 32:261–276

    Article  PubMed  Google Scholar 

  • Tschech A (1989) Der anaerobe Abbau von aromatischen Verbindungen. Forum Mikrobiol 5:251–264

    Google Scholar 

  • Tschech A, Fuchs G (1989) Anaerobic degradation of phenol via carboxylation to 4-hydroxybenzoate: in vitro study of isotope exchange between 14CO2 and 4-hydroxybenzoate. Arch Microbiol 152:594–599

    Article  CAS  Google Scholar 

  • Tschech A, Schink B (1986) Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures. Arch Microbiol 145:396–402

    Article  CAS  Google Scholar 

  • Tsuji K, Yagi T (1980) Significance of hydrogen burst from growing cultures of Desulfovibrio vulgaris, Miyazaki, and the role of hydrogenase and cytochrome c 3 in energy production system. Arch Microbiol 125:35–42

    Article  CAS  Google Scholar 

  • Turner N, Barata B, Bray RC, Deistung J, LeGall J, Moura JG (1987) The molybdenum iron-sulphur protein from Desulfovibrio gigas as a form of aldehyde oxidase. Biochem J 243:755–761

    PubMed  CAS  Google Scholar 

  • Turner DL, Costa HS, Coutinho IB, LeGall J, Xavier AV (1997) Assignment of the ligands geometry and redox potentials of the trihaem ferricytochrome c 3 from Desulfuromonas acetoxidans. Eur J Biochem 243:474–481

    Article  PubMed  CAS  Google Scholar 

  • Tuttle JH, Jannasch HW (1973) Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria. J Bacteriol 115:732–737

    PubMed  CAS  Google Scholar 

  • Ueki A, Suto T (1979) Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25:185–196

    Article  CAS  Google Scholar 

  • Unden G, Böcher R, Knecht J, Kröger A (1982) Hydrogenase from Vibrio succinogenes, a nickel protein. FEBS Lett 145:230–234

    Article  PubMed  CAS  Google Scholar 

  • Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol 44:612–619

    Article  PubMed  CAS  Google Scholar 

  • Vainshtein MB, Matrosov AG, Baskunov VP, Zyakun AM, Ivanov MV (1980) Thio sulfate as an intermediate product at bacterial sulfate reduction. Microbiologiya (Russian) 49:855–858

    CAS  Google Scholar 

  • van Delden A (1903a) Beitrag zur Kenntnis der Sulfatreduktion durch Bakterien. Central Bakteriol II 11:81–94

    Google Scholar 

  • van Delden A (1903b) Beitrag zur Kenntnis der Sulfatreduktion durch Bakterien. Central Bakteriol II 11:113–119

    Google Scholar 

  • van den Berg WAM, Stokkermans JPWG, van Dongen WMAM (1989) Development of a plasmid transfer system for the anaerobic sulphate reducer, Desulfovibrio vulgaris. J Biotechnol 12:173–184

    Article  Google Scholar 

  • van den Berg WAM, van Dongen WMA, Veeger C (1991) Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism. J Bacteriol 173:3688–3694

    PubMed  Google Scholar 

  • van der Maarel MJEC, Jansen M, Haanstra R, Meijer WG, Hansen TA (1996a) Demethylation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by marine sulfate-reducing bacteria. Appl Environ Microbiol 62:3978–3984

    PubMed  Google Scholar 

  • van der Maarel MJEC, Aukema W, Hansen TA (1996b) Purification and characterization of dimethylsulfoniopropionate cleaving enzyme from Desulfovibrio acrylicus. FEMS Microbiol Lett 143:241–245

    Article  Google Scholar 

  • van der Maarel MJEC, van Bergeijk S, van Werkhoven AF, Laverman AM, Meijer WG, Stam WT, Hansen TA (1996c) Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov. Arch Microbiol 166:109–115

    Article  Google Scholar 

  • van der Spek TM, Arendsen AF, Happe RP, Yun S, Bagley KA, Stufkens DJ, Hagen WR, Albracht PJ (1996) Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy. Eur J Biochem 237:629–634

    Article  PubMed  Google Scholar 

  • van der Westen HM, Mayhew SG, Veeger C (1978) Separation of hydrogenase from intact cells of Desulfovibrio vulgaris. FEBS Lett 86:122–126

    Article  PubMed  Google Scholar 

  • van Dongen W, Hagen W, van den Berg W, Veeger C (1988) Evidence for an unusual mechanism of membrane translocation of the periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenborough), as derived from expression in Escherichia coli. FEMS Microbiol Lett 50:5–9

    Article  Google Scholar 

  • van Dongen WMAM, Stokkermans JPWG, van den Berg WAM (1994) Genetic manipulation of Desulfovibrio. In: Peck HD, LeGall J (eds) Inorganic microbial sulfur metabolism, vol 243. Academic, San Diego, pp 319–330

    Chapter  Google Scholar 

  • van Gemerden H (1968) On the ATP generation by chromatium in darkness. Arch Microbiol 64:118–124

    Google Scholar 

  • van Niel EWJ, Gottschal JC (1998) Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl Environ Microbiol 64:1034–1039

    PubMed  Google Scholar 

  • van Niel EWJ, Gomes TMP, Willems A, Collins MD, Prins RA, Gottschal JC (1996) The role of polyglucose in oxygen-dependent respiration by a new strain of Desulfovibrio salexigens. FEMS Microbiol Ecol 21:243–253

    Article  Google Scholar 

  • Van Ommen Kloeke F, Bryant RD, Laishley EJ (1995) Localization of cytochromes in the outer membrane of Desulfovibrio vulgaris (Hildenborough) and their role in anaerobic biocorrosion. Anaerobe 1:351–358

    Article  PubMed  Google Scholar 

  • van Rooijen GJH, Bruschi M, Voordouw G (1989) Cloning and sequencing of the gene encoding cytochrome c 553 from Desulfovibrio vulgaris Hildenborough. J Bacteriol 171:3575–3578

    PubMed  Google Scholar 

  • Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, Tytgat R, de Ley J (1991) Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 41:88–103

    Article  PubMed  CAS  Google Scholar 

  • Varma A, Schönheit P, Thauer RK (1983) Electrogenic sodium ion/proton antiport in Desulfovibrio vulgaris. Arch Microbiol 136:69–73

    Article  CAS  Google Scholar 

  • Vega JM, Garrett RH (1975) Siroheme: a prosthetic group of the Neurospora crassa assimilatory nitrite reductase. J Biol Chem 250:7980–7989

    PubMed  CAS  Google Scholar 

  • Vega JM, Kamin H (1977) Spinach nitrite reductase. J Biol Chem 252:896–909

    PubMed  CAS  Google Scholar 

  • Volbeda A, Charon M-H, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 372:580–587

    Article  Google Scholar 

  • Volbeda A, Garcin E, Piras C, de Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC (1996) Structure of the (NiFe) hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989–12996

    Article  CAS  Google Scholar 

  • Von Wolzogen Kuhr CAH, van der Vlught LS (1934) Graphication of cast iron as an electrobiochemical process in anaerobic soils. Water (The Hague) 18:147–165

    Google Scholar 

  • Voordouw G (1988a) Cloning of genes encoding redox proteins of known amino acid sequence from a library of the Desulfovibrio vulgaris (Hildenborough) genome. Gene 68:75–83

    Article  Google Scholar 

  • Voordouw G (1988b) Molecular Biology of redox proteins in sulphate reduction. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles, vol 42. Cambridge University Press, Cambridge, pp 147–160

    Google Scholar 

  • Voordouw G (1992) Evolution of hydrogenase genes. Adv Inorg Chem 38:397–423

    Article  CAS  Google Scholar 

  • Voordouw G (1993) Molecular biology of the sulfate-reducing bacteria. In: Odom JM, Singleton R Jr (eds) The sulfate-reducing bacteria: contemporary perspectives. Springer, New York, pp 88–130

    Chapter  Google Scholar 

  • Voordouw G (1995) The genus Desulfovibrio: the centennial. Appl Environ Microbiol 61:2813–2819

    PubMed  CAS  Google Scholar 

  • Voordouw G, Brenner S (1985) Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 148:515–520

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G, Brenner S (1986) Cloning an sequencing of the gene encoding cytochrome c 3 from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 159:347–351

    Article  PubMed  CAS  Google Scholar 

  • Voordouw JK, Voordouw G (1998) Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 64:2882–2887

    PubMed  CAS  Google Scholar 

  • Voordouw G, Wall JD (1993) Genetics and molecular biology of sulfate-reducing bacteria. In: Sebald M (ed) Genetics and molecular biology of anaerobic bacteria. Springer, New York, pp 456–473

    Chapter  Google Scholar 

  • Voordouw G, Walker JE, Brenner S (1985) Cloning of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and determination of the NH2-terminal sequence. Eur J Biochem 148:509–514

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G, Kent HM, Postgate JR (1987) Identification of the gene for hydrogenase and cytochrome c 3 in Desulfovibrio. Can J Microbiol 33:1006–1010

    Article  CAS  Google Scholar 

  • Voordouw G, Menon NK, LeGall J, Choi E-S, Peck HD Jr, Przybyla AE (1989a) Analysis and comparison of nucleotide sequences encoding the genes for (NiFe) hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus. J Bacteriol 171:2894–2899

    PubMed  CAS  Google Scholar 

  • Voordouw G, Strang JD, Wilson FR (1989b) Organization of the genes encoding (Fe) hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello. J Bacteriol 171:3881–3889

    PubMed  CAS  Google Scholar 

  • Voordouw G, Niviere V, Ferris G, Fedorak PM, Westlake DWS (1990) Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment. Appl Environ Microbiol 56:3748–3754

    PubMed  CAS  Google Scholar 

  • Voordouw G, Voordouw JK, Karkhoff-Schweizer RR, Fedorak PM, Westlake DWS (1991) Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl Environ Microbiol 57:3070–3078

    PubMed  CAS  Google Scholar 

  • Vorholt J, Kunow J, Stetter KO, Thauer RK (1995) Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch Microbiol 163:112–118

    Article  CAS  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    PubMed  CAS  Google Scholar 

  • Wall JD, Rapp-Giles BJ, Rousset M (1993) Characterization of a small plasmid from Desulfovibrio desulfuricans and its use for shuttle vector construction. J Bacteriol 175:4121–4128

    PubMed  CAS  Google Scholar 

  • Wall JD, Murnan T, Argyle J, English S, Rapp-Giles BJ (1996) Transposon mutagenesis in Desulfovibrio desulfuricans: development of a random mutagenesis tool from Tn7. Appl Environ Microbiol 62:3762–3767

    PubMed  CAS  Google Scholar 

  • Wallrabenstein C, Hausschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352

    Article  CAS  Google Scholar 

  • Warthmann R, Cypionka H (1990) Sulfate transport in Desulfobulbus propionicus and Desulfococcus multivorans. Arch Microbiol 154:144–149

    Article  CAS  Google Scholar 

  • Watson GMF, Tabita FR (1997) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22

    Article  PubMed  CAS  Google Scholar 

  • Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. nov., sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 144:1–7

    Article  Google Scholar 

  • Wawer C, Jetten MSM, Muyzer G (1997) Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples. Appl Environ Microbiol 63:4360–4369

    PubMed  CAS  Google Scholar 

  • Wei J, Leyh TS (1998) Conformational change rate-limits GTP hydrolysis: the mechanism of the ATP sulfurylase-GTPase. Biochemistry 37:17163–17169

    Article  PubMed  CAS  Google Scholar 

  • Wei J, Leyh TS (1999) Isomerization couples chemistry in the ATP sulfurylase-GTPase system. Biochemistry 38:6311–6316

    Article  PubMed  CAS  Google Scholar 

  • Werkman CH, Weaver HJ (1927) Studies in the bacteriology of sulphur stinker spoilage of canned sweet corn. Iowa State Coll J Sci 2:57–67

    CAS  Google Scholar 

  • White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170:4594–4597

    PubMed  CAS  Google Scholar 

  • Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfat-reduziernder Bakterien Georg-August-Universität zu Göttingen

    Google Scholar 

  • Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51:1056–1062

    PubMed  CAS  Google Scholar 

  • Widdel F (1987) New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch Microbiol 148:286–291

    Article  CAS  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Widdel F (1992) Microbial corrosion. In: Finn RK, Präve P, Schlingmann M, Crueger W, Esser K, Thauer R, Wagner F (eds) Biotechnology focus 3: fundamentals, applications, information. Hanser, Munich, pp 261–300

    Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 3, 2nd edn. Springer, New York, pp 3352–3378

    Google Scholar 

  • Widdel F, Pfennig N (1977) A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112:119–122

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Pfennig N (1981a) Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Arch Microbiol 129:401–402

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Pfennig N (1981b) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. solation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131:360–365

    Article  CAS  Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate-and sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 663–679

    Google Scholar 

  • Widdel F, Kohring G-W, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

  • Wight KM, Starkey RL (1945) Utilization of hydrogen by sulfate-reducing bacteria and its significance in anaerobic corrosion. J Bacteriol 50:238

    Google Scholar 

  • Wilson LG, Bandurski RS (1958) Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem 233:975–981

    PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11:245–252

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Achenbach L, Rouviere P, Mandelco L (1991) Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol 14:364–371

    Article  PubMed  CAS  Google Scholar 

  • Wolfe RS, Pfennig N (1977) Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33:427–433

    PubMed  CAS  Google Scholar 

  • Wolfe BM, Lui SM, Cowan JA (1994) Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). FEBS Lett 223:79–89

    CAS  Google Scholar 

  • Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic vibrio, Vibrio succinogenes, sp. nov. J Bacteriol 81:911–917

    PubMed  CAS  Google Scholar 

  • Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Rev 39:345–362

    Article  CAS  Google Scholar 

  • Woolfolk CA (1962) Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. J Bacteriol 84:659–668

    PubMed  CAS  Google Scholar 

  • Wu L-F, Mandrand MA (1993) Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev 104:243–270

    Article  CAS  Google Scholar 

  • Yagi T (1969) Formate: cytochrome oxidoreductase of Desulfovibrio vulgaris. J Biochem 66:473–478

    PubMed  CAS  Google Scholar 

  • Yagi T (1979) Purification and properties of cytochrome c 553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki. Biochim Biophys Acta 548:96–105

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto I, Ishimoto M (1978) Hydrogen-dependent growth of Escherichia coli in anaerobic respiration and the presence of hydrogenases with different functions. J Biochem 84:673–679

    PubMed  CAS  Google Scholar 

  • Yen H, Marrs B (1977) Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide. Arch Biochem Biophys 181:411–418

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari T (1980) N2O reduction by Vibrio succinogenes. Appl Environ Microbiol 39:81–84

    PubMed  CAS  Google Scholar 

  • Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420–432

    PubMed  CAS  Google Scholar 

  • Zehnder AJB, Brock TD (1980) Anaerobic methane oxidation: occurrence and ecology. Appl Environ Microbiol 39:194–204

    PubMed  CAS  Google Scholar 

  • Zeikus JG (1983) Metabolism of one carbon compounds by chemotrophic anaerobes. Adv Microb Physiol 24:215–299

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JG, Dawson MA, Thompson TE, Ingvorsen K, Hatchikian EC (1983) Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169

    CAS  Google Scholar 

  • Zellner G, Jargon A (1997) Evidence for a tungsten-stimulated aldehyde dehydrogenase activity of Desulfovibrio simplex that oxidizes aliphatic and aromatic aldehydes with flavins as coenzymes. Arch Microbiol 168:480–485

    Article  PubMed  CAS  Google Scholar 

  • Zellner G, Winter J (1987) Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst Appl Microbiol 9:284–292

    Article  CAS  Google Scholar 

  • Zellner G, Vogel P, Kneifel H, Winter J (1987) Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia. Appl Microbiol Biotechnol 27:306–314

    Article  Google Scholar 

  • Zellner G, Messner P, Kneifel H, Winter J (1989a) Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester. Arch Microbiol 152:329–334

    Article  CAS  Google Scholar 

  • Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, De Macario EC, Zabel H-P, Stetter KO, Winter J (1989b) Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. Syst Appl Microbiol 11:151–160

    Article  CAS  Google Scholar 

  • Zengler K, Richnow HH, Rosselló-Moura R, Michaelis W, Widdel F (1999a) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  PubMed  CAS  Google Scholar 

  • Zengler K, Heider J, Roselló-Mora R, Widdel F (1999b) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172:204–212

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63:4759–4764

    PubMed  CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfatars. Zentralbl Bakteriol C 2:205–227

    CAS  Google Scholar 

  • Zillig W, Stetter KO, Prangishvilli D, Schäfer W, Wunderl S, Janekovic D, Holz I, Palm P (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralbl Bakteriol C 3:304–317

    CAS  Google Scholar 

  • Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Yeats S, Holz I, Böck A, Gropp F, Rettenberger M, Lutz S (1985) Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. Nature 313:789–791

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Yeats S, Holz I, Böck A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203

    Article  CAS  Google Scholar 

  • Zillig W, Holz I, Wunderl S (1991) Hyperthermus butylicus gen. nov., sp. nov., a hyperthermophilic, anaerobic, peptide-fermenting, facultatively H2S-generating archaebacterium. Int J Syst Bacteriol 41:169–170

    Article  Google Scholar 

  • Zillig W, Prangishvilli D, Schleper C, Elferink M, Holz I, Albers S, Janekovic D, Götz D (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol Rev 18:225–236

    Article  PubMed  CAS  Google Scholar 

  • Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J, Widdel F (1988) Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Arch Microbiol 150:254–266

    Article  CAS  Google Scholar 

  • Zinder SH, Brock TD (1978a) Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Arch Microbiol 116:35–40

    Article  PubMed  CAS  Google Scholar 

  • Zinder SH, Brock TD (1978b) Dimethyl sulphoxide reduction by micro-organisms. J Gen Microbiol 105:335–342

    Article  PubMed  CAS  Google Scholar 

  • Zinoni F, Heider J, Böck A (1990) Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc Natl Acad Sci USA 87:4660–4664

    Article  PubMed  CAS  Google Scholar 

  • Zumft W (1972) Ferredoxin: nitrite oxidoreductase from Chlorella. Purification and properties. Biochim Biophys Acta 276:363–375

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max-Planck-Gesellschaft and the Fonds der Chemischen Industrie.

We thank Heribert Cypionka (Oldenburg), Christine Dahl (Bonn), Günter Fritz (Konstanz), Achim Kröger (Frankfurt), Peter Kroneck (Konstanz), Bernhard Schink (Konstanz), and Rolf Thauer (Marburg) for providing informative material.

We would very much appreciate any type of comments and further information that may help to improve future releases of this chapter. Comments and information may be sent via email to Dr. Rabus or to Dr. Widdel.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rabus, R., Hansen, T.A., Widdel, F. (2013). Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_70

Download citation

Publish with us

Policies and ethics