Skip to main content
Log in

Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species

Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov.

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Physiological tests, redetermination of G+C values with HPLC and DNA-DNA hybridization were used to determine the taxonomic affiliation of “Spirillum” 5175. This facultatively sulfur-reducing bacterium was compared to the type strains of the phenotypically most similar species Wolinella succinogenes and Campylobacter sputorum biovar bubulus. In addition to morphology, the following physiological properties were in common: use of elemental sulfur, nitrate, nitrite, aspartate, fumarate or malate as electron acceptor for growth with hydrogen or formate under anoxic conditions; microaerobic growth with 2% (v/v) oxygen. The G+C content of Wolinella succinogenes (51.8 mol%) and Campylobacter sputorum biovar bubulus (30.4 mol%) differs about 10 mol% from the G+C content of “Spirillum” 5175 (40.6 mol%). No significant DNA homology could be detected between the three strains. These differences excluded affiliation of “Spirillum” 5175 with the genera Wolinella or Campylobacter despite phenotypic similarities. On the basis of our results and DNA-rRNA hybridization studies by other authors, we established the new genus Sulfurospirillum for the freeliving Campylobacter-like bacteria “Spirillum” 5175 and “Campylobacter spec.” DSM 806. Strain “Spirillum” 5175 is described as the type strain of the new genus and species Sulfurospirillum deleyianum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bokranz MJ, Katz J, Schröder I, Roberton AM, Kröger A (1983) Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch Microbiol 135: 36–41

    Google Scholar 

  • Boltz DF, Taras MJ (1978) Nitrogen. In: Boltz DF, Howell JA (eds) Colorimetric determination of nonmetals. Chemical analysis, vol 8, 2nd edn. John Wiley & Sons, New York Chichester Brisbane, pp 197–251

    Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14: 454–458

    Google Scholar 

  • Collins MD, Widdel F (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8: 8–18

    Google Scholar 

  • De Ley J (1978) Modern molecular methods in bacterial taxonomy: evaluation, application, prospects. In: Station de pathologie végétale et phytobactériologie (eds) Proceedings of the 4th International Conference of Plant Pathogenic Bacteria, Angers, vol 1. Gibert-Clarey, Tours, France, pp 347–357

  • De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142

    Google Scholar 

  • De Vries W, Niekus HGD, Boellaard M, Stouthamer AH (1980) Growth yields and energy generation by Campylobacter sputorum subspecies bubulus during growth in continuous culture with different hydrogen acceptors. Arch Microbiol 124: 221–227

    Google Scholar 

  • Gebhard NA, Thauer RK, Linder D, Kaulfers P-M, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch Microbiol 141: 392–398

    Google Scholar 

  • Goodwin CS, Armstrong JA, Chilvers T, Peters M, Collins MD, Sly L, McConnell W, Harper WES (1989) Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively. Int J Syst Bacteriol 39: 397–405

    Google Scholar 

  • Jacobs NJ, Wolin MJ (1963a) Electron transport system of Vibrio succinogenes. I. Enzymes and cytochromes of the electron transport system. Biochim Biophys Acta 69: 18–28

    Google Scholar 

  • Jacobs NJ, Wolin MJ (1963b) Electron transport system of Vibrio succinogenes. II. Inhibition of electron transport by 2-heptyl-4-hydroxyquinoline N-oxide. Biochim Biophys Acta 69: 29–39

    Google Scholar 

  • Laanbroek HJ, Kingma W, Veldkamp H (1977) Isolation of an aspartate-fermenting, free-living Campylobacter species. FEMS Microbiol Lett 1: 99–102

    Google Scholar 

  • Laanbroek HJ, Stal LJ, Veldkamp H (1978) Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Arch Microbiol 119: 99–102

    Google Scholar 

  • Lang E, Lang H (1972) Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Z Anal Chem 260: 8–10

    Google Scholar 

  • Lau PP, DeBrunner-Vossbrinck B, Dunn B, Miotto K, MacDonell MT, Rollins DM, Pillidge CJ, Hespell RB, Colwell RR, Sogin ML, Fox GE (1987) Phylogenetic diversity and position of the genus Campylobacter. Syst Appl Microbiol 9: 231–238

    Google Scholar 

  • LeGall J, Postgate JR (1973) The physiology of sulphate-reducing bacteria. Adv Microbial Physiol 10: 82–125

    Google Scholar 

  • Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144: 147–150

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218

    Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167

    Google Scholar 

  • Niederman RA, Wolin MJ (1972) Requirement of succinate for the growth of Vibrio succinogenes. J Bacteriol 109: 546–549

    Google Scholar 

  • Paster BJ, Dewhirst FE (1988) Phylogeny of campylobacters, wolinellas, Bacterioides gracilis, and Bacterioides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int J Syst Bacteriol 38: 56–62

    Google Scholar 

  • Pfennig N, Biebl H (1981) The dissimilatory sulfur-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Springer, Berlin Heidelberg New York, pp 941–947

    Google Scholar 

  • Schumacher W, Kroneck PMH (1991) Dissimilatory hexaheme c nitrite reductase of “Spirillum” strain 5175: purification and properties. Arch Microbiol 156: 70–74

    Google Scholar 

  • Schumacher W, Kroneck PMH (1992) Anaerobic energy metabolism of the sulfur-reducing bacterium “Spirillum” 5175 during dissimilatory nitrate reduction to ammonia. Arch Microbiol 157: 464–470

    Google Scholar 

  • Smibert RM (1984) Genus Campylobacter Sebald and Veron 1963, 907AL. In: Krieg NR, Holt JG (eds), Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 111–118

    Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85

    Google Scholar 

  • Tanner ACR, Socransky SS (1984) Genus VIII. Wolinella Tanner, Badger, Listgarten, Visconti, and Socransky 1981, 439VP. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 646–650

    Google Scholar 

  • Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, Tytgat R, De Ley J (1991) Revision of Campylobacter, Helicobacter, and Wolinella Taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 41: 88–103

    Google Scholar 

  • Veron M, Chatelain R (1973) Taxonomic study of the genus Campylobacter Sebald and Veron and designation of the neotype strain for the type species, Campylobacter fetus (Smith and Taylor) Sebald and Veron. Int J Syst Bacteriol 23: 122–134

    Google Scholar 

  • Wolfe RS, Pfennig N (1977) Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33: 427–433

    Google Scholar 

  • Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic vibrio, Vibrio succinogenes sp. nov. J Bacteriol 81: 911–917

    Google Scholar 

  • Yoshinari T (1980) N2O reduction by Vibrio succinogenes. Appl Environ Microbiol 39: 81–84

    Google Scholar 

  • Zinder SH, Brock TD (1978) Dimethyl sulfoxide as an electron acceptor for anaerobic growth. Arch Microbiol 116: 35–40

    Google Scholar 

  • Zöphel A, Kennedy MC, Beinert H, Kroneck PMH (1991) Investigations on microbial sulfur respiration. 2. Isolation, purification, and characterization of cellular components from Spirillum 5175. Eur J Biochem 195: 849–856

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to R. S. Wolfe on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, W., Kroneck, P.M.H. & Pfennig, N. Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Arch. Microbiol. 158, 287–293 (1992). https://doi.org/10.1007/BF00245247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245247

Key words

Navigation