Skip to main content
Log in

Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

From granular sludge of an upflow anaerobic sludge bed (UASB) reactor treating paper-mill wastewater, a sulfate-reducing bacterium (strain ASRB1) was isolated with acetate as sole carbon and energy source. The bacterium was rod-shaped, (1.4–1.9×2.5–3.4 μm), nonmotile, and gram-negative. Optimum growth with acetate occurred around 37°C in freshwater medium (doubling time: 3.5–5.0 days). The bacterium grew on a range of organic acids, such as acetate, propionate, and butyrate, and on alcohols, and grew autotrophically with H2, CO2 and sulfate. Fastest growth occurred with formate, propionate, and ethanol (doubling time: approx. 1.5 days). Strain ASRB1 clusters with the delta subdivision of Proteobacteria and is closely related toSyntrophobacter wolinii a syntrophic propionate oxidizer. Strain ASRB1 was characterized as a new genus and species:Desulforhabdus amnigenus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alphenaar PA, Visser A, Lettinga G (1993) The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content. Bioresource Technol 43:249–258

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  PubMed  CAS  Google Scholar 

  • De Rijk P, Neefs JM, Van de Peer Y, De Wachter R (1992) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 20:2075–2089

    PubMed  Google Scholar 

  • Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington DC, pp 21–33

    Google Scholar 

  • Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57:379–404

    Article  Google Scholar 

  • Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    CAS  Google Scholar 

  • Harada H, Uemura S, Momonoi K (1994) Interaction between sulfate-reducing and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res 28:355–367

    Article  CAS  Google Scholar 

  • Harmsen HJM, Wullings B, Akkermans ADL, Ludwig W, Stams AJM (1993) Phylogenetic analysis ofSyntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240

    PubMed  CAS  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3b. Academic Press, New York London, pp 117–132

    Google Scholar 

  • Isa Z, Grusenmeyer S, Verstraete W (1986) Sulfate reduction relative to methane production in high-rate anaerobic digestion: technical aspects. Appl Environ Microbiol 51:572–579

    PubMed  CAS  Google Scholar 

  • Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using C14 tracers. J Water Pollut Control Fed 37:178–192

    CAS  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1990) Acetate threshold values and acetate-activating enzymes in methanogenic bacteria. FEMS Microbiol Ecol 73:339–344

    Article  CAS  Google Scholar 

  • Jetten MSMS Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate: a comparison of the acetate metabolism inMethanothrix soehngenii andMethanosarcina sp. FEMS Microbiol Rev 88:181–198

    Article  CAS  Google Scholar 

  • Kengen SWM, Stams AJM (1994) Formation ofl-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archeonPyrococcus furiosus. Arch Microbiol 161:168–175

    CAS  Google Scholar 

  • Larsen N, Olsen GJ, Maidak BL, McCaughey MJ, Overbeek R, Macke TJ, Marsh TL, Woese CR (1993) The ribosomal database project. Nucleic Acids Res 21:3021–3023

    PubMed  CAS  Google Scholar 

  • Love CA, Patel BKC, Nichols PD, Stackebrandt E (1993)Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16:244–251

    Google Scholar 

  • McCartney DM, Oleszkiewicz JA (1991) Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Res 25:203–209

    Article  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167

    Article  CAS  Google Scholar 

  • Olsen GJ, Overbeek R, Larsen N, Marsh TL, McCaughey MJ, Maciukenas MA, Kuan WM, Macke TJ, Xing Y, Woese CR (1992) The ribosomal database project. Nucleic Acids Res 20: 2199–2200

    PubMed  CAS  Google Scholar 

  • Ostle AG, Holt JG (1982) Nile blue A as a fluorescent stain for poly-(-hydroxybutyrate. Appl Environ Microbiol 44:238–241

    PubMed  CAS  Google Scholar 

  • Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM, (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15:119–136

    Article  CAS  Google Scholar 

  • Platen H, Temmes A, Schink B (1990) Anaerobic degradation of acetone byDesulfococcus biacutus sp. nov. Arch Microbiol 154:355–361

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1959) A diagnostic reaction ofDesulphovibrio desulphuricans. Nature 183:481–482

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172

    Article  CAS  Google Scholar 

  • Smith PH, Mah RA (1966) Kinetics of acetate metabolism during sludge digestion. Appl Microbiol 14:368–371

    PubMed  CAS  Google Scholar 

  • Stams AJM, Van Dijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119

    PubMed  CAS  Google Scholar 

  • Szewzyk R, Pfennig N (1987) Complete oxidation of catechol by the strictly anaerobic sulfate-reducingDesulfobacterium catecholicum sp. nov. Arch Microbiol 147:162–168

    Article  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells ofChromatium okenii. Antonie Van Leeuwenhoek 30:225–238

    Article  Google Scholar 

  • Visser A, Beeksma I, Van der Zee F, Stams AJM, Lettinga G (1993a) Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Appl Microbiol Biotechnol 40:549–556

    CAS  Google Scholar 

  • Visser A, Alphenaar PA, Gao Y, Van Rossem G, Lettinga G (1993b) Granulation and immobilisation of methanogenic and sulfate-reducing bacteria in high-rate anaerobic reactors. Appl Microbiol Biotechnol 40:575–581

    CAS  Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1994) Pure culture properties of ‘Syntrophobacter wolinii’. FEMS Microbiol Lett 123:249–254

    Article  CAS  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (1992) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol. 2. Springer, Berlin Heidelberg New York, pp 719–767

    Google Scholar 

  • Widdel F (1980) Anaerober Abbau van Fettsäuren und Benzoesäure durch neue isolierte Arten Sulfat-reduzierender Bakterien. PhD thesis, University of Göttingen, Germany

    Google Scholar 

  • Widdel F (1987) New types of acetate-oxidizing, sulfate-reducingDesulfobacter sp.,D. hydrogenophilus sp. nov.,D. latus sp. nov., andD. curvatus sp. nov. Arch Microbiol 148:286–291

    Article  CAS  Google Scholar 

  • Widdel F (1992) The genusDesulfotomaculum. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 2. Springer, Berlin Heidelberg New York, pp 1792–1799

    Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducting bacteria. In: Balows A, Trüper HG, Dworkin M., Harder W, Schleifer K-H (eds) The prokaryotes, vol 2. Springer, Berlin Heidelberg New York, pp 3352–3378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie J. W. H. Oude Elferink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oude Elferink, S.J.W.H., Maas, R.N., Harmsen, H.J.M. et al. Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164, 119–124 (1995). https://doi.org/10.1007/BF02525317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02525317

Key words

Navigation