Skip to main content
Log in

Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov.

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

From anaerobic digestor sludge of a waste water treatment plant, a gram-negative, strictly anaerobic sulfate-reducing bacterium was isolated with acetone as sole organic substrate. The bacterium was characterized as a new species, Desulfococcus biacutus. The strain grew with acetone with doubling times of 72 h to 120 h; the growth yield was 12.0 (±2.1) g · [mol acetone]-1. Acetone was oxidized completely, and no isopropanol was formed. In labelling studies with 14CO2, cell lipids (including approx. 50% PHB) of acetone-grown cells became labelled 7 times as high as those of 3-hydroxy-buyrate-grown cells. Enzyme studies indicated that acetone was degraded via acetoacetyl-CoA, and that acetone was channeled into the intermediary metabolism after condensation with carbon dioxide to a C4-compound, possibly free acetoacetate. Acetoacetyl-CoA is cleaved by a thiolase reaction to acetyl-CoA which is completely oxidized through the carbon monoxide dehydrogenase pathway. Strain KMRActS was deposited with the Deutsche Sammlung von Mikroorganismen, Braunschweig, under the number DSM 5651.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergmeyer HU (ed) (1983) Methods of enzymatic analysis, vol I–III. Verlag Chemie, Weinheim

    Google Scholar 

  • Bonnet-Smits EM, Robertson LA, Van Dijken JP, Senior E, Kuenen JG (1988) Carbon dioxide fixation as the initial step in the metabolism of acetone by Thiophaaera pantotropha. J Gen Microbiol 134:2281–2289

    CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diekert GB, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium thermoaceticum. J Bacteriol 136:597–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dimroth P, Hilpert W (1984) Carboxylation of pyruvate and acetyl coenzyme A by reversal of the Na+ pumps oxaloacetate decarboxylase and methylmalonyl-CoA decarboxylase. Biochemistry 23:5360–5371

    Article  CAS  Google Scholar 

  • Hall LM (1962) Preparation of crystalline lithium acetoacetate. Anal Biochem 3:75–80

    Article  CAS  PubMed  Google Scholar 

  • Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxy-lation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J 3:1665–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unternational Union of Biochemistry. Nomenclature committee (ed) (1984) Enzyme nomenclature. Academic Press, Orlando, USA

    Google Scholar 

  • Johnson MJ (1949) A rapid micromethod for estimation of non volatile organic matter. J Biol Chem 181:707–711

    CAS  PubMed  Google Scholar 

  • Law JH, Slepeky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lukins HB, Foster JW (1963) Methylketone metabolism in hydrocarbon utilizing mycobacteria. J Bacteriol 85:1074–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel M, Igambi L, Bergendahl J, Dodson MR jr, Scheltgen E (1970) Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:330–338

    Google Scholar 

  • Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (ed) The prokaryotes, vol I. Springer, Berlin Heidelberg New York, pp 279–289

    Chapter  Google Scholar 

  • Pfennig N, Wagener S (1986) An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306

    Article  Google Scholar 

  • Platen H (1989) Abbau von Aceton und höheren aliphatischen Ketonen durch anaerobe Bakterien. Thesis, Universität Tübingen, FRG

  • Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141

    Article  CAS  PubMed  Google Scholar 

  • Platen H, Schink B (1989) Anaerobic degradation of acetone and higher ketones via carboxylation by newly isolated denitrifying bacteria. J Gen Microbiol 135:883–891

    CAS  PubMed  Google Scholar 

  • Platen H, Schink B (1990) Enzymes involved in anaerobic degradation of acetone by a denitrifying bacterium. Biodegradation (submitted)

  • Postgate JR (1959) A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183:481–482

    Article  CAS  PubMed  Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172

    Article  CAS  Google Scholar 

  • Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133:195–201

    Article  CAS  Google Scholar 

  • Siegel JM (1950) The metabolism of acetone by the photosynthetic bacterium Rhodopseudomonas gelatinosa. J Bacteriol 60:595–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spormann AM, Thauer RK (1988) Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans. Arch Microbiol 150:374–380

    Article  CAS  Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173

    Article  CAS  Google Scholar 

  • Stern JR (1956) Optical properties of acetoacetate-S-coenzyme A and its metal chelates. J Biol Chem 221:33–44

    CAS  PubMed  Google Scholar 

  • Stern JR, del Campillo A, Raw I (1956) Enzymes of fatty acid metabolism. I. General introduction; crystalline crotonase. J Biol Chem 218:971–983

    CAS  PubMed  Google Scholar 

  • Stieb M, Schink B (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151:126–132

    Article  CAS  Google Scholar 

  • Süßmuth R, Eberspächer J, Haag R, Springer W (1987) Biochemisch-mikrobiologisches Praktikum. Thieme, Stuttgart, FRG

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DG, Trudgill PW, Gripps RE, Harris PR (1980) The microbial metabolism of acetone. J Gen Microbiol 118:159–170

    CAS  Google Scholar 

  • Widdel F (1980) Anaerober Abbau von Fettsäure durch neu isolierte Arten Sulfate-reduzierender Bakterien. Thesis, University Göttingen, FRG

  • Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissmilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of a new sulfate-reducer enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400

    Article  CAS  PubMed  Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol I. Williams & Wilkins, Baltimore, USA, pp 663–679

    Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

  • Zamenhoff S (1957) Preparation and assay of desoxyribonucleic acid from animal tissue. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol III. Academic Press, New York, pp 696–704

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platen, H., Temmes, A. & Schink, B. Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov.. Arch. Microbiol. 154, 355–361 (1990). https://doi.org/10.1007/BF00276531

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276531

Key words

Navigation