Skip to main content
Log in

Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In several sulfate-reducing bacteria capable of complete oxidation of acetate (or acetyl CoA), the citric acid cycle is not operative. No 2-oxoglutarate dehydrogenase activity was found in these organisms, and the labelling pattern of oxaloacetate excludes its synthesis via 2-oxo-glutarate. These sulfate-reducers contained, however, high activities of the enzymes carbon monoxide dehydrogenase and formate dehydrogenase and catalyzed an isotope exchange between CO2 and the carboxyl group of acetate (or acetyl CoA), showing a direct C-C-cleavage of activated acetic acid. These findings suggest that in the investigated sulfate-reducers acetate is oxidized to CO2 via C1 intermediates. The proposed pathway provides a possible explanation for the reported different fluoroacetate sensitivity of acetate oxidation by anaerobic bacteria, for mini-methane formation, as well as for the postulated anaerobic methane oxidation by special sulfate-reducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alperin MJ, Reeburgh WS (1985) Inhibition experiments on anaerobic methane oxidation. Appl Environ Microbiol 50:940–945

    Google Scholar 

  • Badziong W, Ditter B, Thauer RK (1979) Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy sources. Arch Microbiol 123:301–305

    Google Scholar 

  • Banat IM, Lindström EB, Nedwell DB, Balba MT (1981) Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment. Appl Environ Microbiol 42:985–992

    Google Scholar 

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse, 3rd ed. Verlag Chemie, Weinheim

    Google Scholar 

  • Blakley RL (1969) The biochemistry of folic acid and related pteridines. North Holland Publishing Co, Amsterdam London

    Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136:222–229

    Google Scholar 

  • Brysch K (1984) Kohlenstoffautotrophie bei sulfatreduzierenden Bakterien. Diplom thesis, Univ Konstanz

  • Cline JD (1969) Spectrophotometric determination of hydrogen-sulfide in natural waters. Limnol Oceanogr 14:454–458

    Google Scholar 

  • Diekert G, Fuchs G, Thauer RK (1985) Properties and function of carbon monoxide dehydrogenase from anaerobic bacteria. In: Poole RK, Dow CS (eds) Microbial gas metabolism: Mechanistic, metabolic and biotechnological aspects. Academic Press, London, pp 115–130

    Google Scholar 

  • Eikmanns B, Thauer RK (1984) Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch Microbiol 138:365–370

    Google Scholar 

  • Eikmanns B, Fuchs G, Thauer RK (1985) Formation of carbon monoxide from CO2 and H2 in Methanobacterium thermoautotrophicum. Eur J Biochem 146:149–154

    Google Scholar 

  • Evans MCW, Buchanan BB, Arnon DI (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci USA 55:928–934

    Google Scholar 

  • Fuchs G, Stupperich E (1984) CO2 reduction to cell carbon in methanogens. In: Crawford RL, Hanson RS (eds) Microbial growth on C1-compounds. American Society for Microbiology, Washington D.C., pp 100–202

    Google Scholar 

  • Fuchs G, Stupperich E (1986) Carbon assimilation pathways in Archaebacteria. J System Appl Microbiol (in press)

  • Fuchs G, Stupperich E, Jaenchen R (1980) Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch Microbiol 128:56–63

    Google Scholar 

  • Gebhardt NA, Linder D, Thauer RK (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 2. Evidence from 14C-labelling studies for the operation of the citric acid cycle. Arch Microbiol 136:230–233

    Google Scholar 

  • Gebhardt NA, Thauer RK, Linder D, Kaulfers PM, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch Microbiol 141: 392–398

    Google Scholar 

  • Gottschalk G (1968) The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria. Eur J Biochem 5:346–351

    Google Scholar 

  • Hu SI, Drake HL, Wood HG (1982) Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and co-enzyme A by enzymes from Clostridium thermoaceticum. J Bacteriol 149:440–448

    Google Scholar 

  • Imhoff-Stuckle D, Pfennig N (1983) Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136:194–198

    Google Scholar 

  • Iversen N, Jørgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30: 944–955

    Google Scholar 

  • Jansen K, Thauer RK, Widdel F, Fuchs G (1984) Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate by Desulfovibrio baarsii. Arch Microbiol 138:257–262

    Google Scholar 

  • Krebs HA (1974) Cyclic processes in living matter. Enzymologia 12:88–100

    Google Scholar 

  • Ljungdahl LG, Wood HG (1982) Acetate biosynthesis. In: Dolphin D (ed) B12, vol 2. Wiley, New York, pp 165–202

    Google Scholar 

  • Lupton FS, Conrad R, Zeikus JG (1984) CO metabolism of Desulfovibrio vulgaris strain Madison: physiological function in the absence or presence of exogeneous subtrates. FEMS Microbiol Lett 23:263–268

    Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Berlin Heidelberg New York, pp 926–947

    Google Scholar 

  • Phelps TJ, Conrad R, Zeikus JG (1985) Sulfate-dependent inter-species H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate and methanol. Appl Environ Microbiol 50:589–594

    Google Scholar 

  • Postgate JR (1969) Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria. J gen Microbiol 57:293–302

    Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria. 2nd ed. Cambridge University Press

  • Ragsdale SW, Wood HG (1985) Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis. J Biol Chem 260:3970–3977

    Google Scholar 

  • Scholtz R (1985) Untersuchungen zum Wachstum und zur CO2-Assimilation von neu isolierten autotrophen, sulfatreduzierenden Bakterien. Diplom thesis, Univ Ulm

  • Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1985) The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch Microbiol 141:198–203

    Google Scholar 

  • Simon H, Floss HG (1967) Anwendung von Isotopen in der organischen Chemie und Biochemie, vol 1. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stupperich E, Fuchs G (1984) Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. I. Properties of in vitro system. Arch Microbiol 139:8–13

    Google Scholar 

  • Stupperich E, Hammel KE, Fuchs G, Thauer RK (1983) Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium. FEBS Letters 152:21–23

    Google Scholar 

  • Tabatabai MA (1974) Determination of sulfate in water sample. Sulphur Inst J 10:11–13

    Google Scholar 

  • Thauer RK, Rupprecht E, Jungermann K (1970) Separation of 14C-formate from CO2 fixation metabolites by isionic exchange chromatography. Anal Biochem 38:461

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Widdel F (1986) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Environmental microbiology of anaerobes, chapt 10. John Wiley & Sons, New York London (in press)

    Google Scholar 

  • Widdel F, Pfennig N (1977) A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112:119–122

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400

    Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, IX ed, vol 1. William and Wilkins, Baltimore, pp 663–679

    Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limocola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Google Scholar 

  • Yagi T (1959) Enzymic oxidation of carbon monoxide. II. J Biochem (Tokyo) 46:949–955

    Google Scholar 

  • Zehnder AJB, Brock TD (1980) Anaerobic methane oxidation: Occurence and ecology. Appl Environ Microbiol 39:194–204

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxido-reductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613

    Google Scholar 

  • Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic synthrophic coculture. Arch Microbiol 138:263–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauder, R., Eikmanns, B., Thauer, R.K. et al. Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch. Microbiol. 145, 162–172 (1986). https://doi.org/10.1007/BF00446775

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446775

Key words

Navigation