Skip to main content
Log in

Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Archaeoglobus fulgidus is an extremely thermophilic archaebacterium that can grow at the expense of lactate oxidation with sulfate to CO2 and H2S. The organism contains coenzyme F420, tetrahydromethanopterin, and methanofuran which are coenzymes previously thought to be unique for methanogenic bacteria. We report here that the bacterium contains methylenetetrahydromethanopterin: F420 oxidoreductase (20 U/mg), methenyltetrahydromethanopterin cyclohydrolase (0.9 U/mg), formyltetrahydromethanopterin: methanofuran formyltransferase (4.4 U/mg), and formylmethanofuran: benzyl viologen oxidoreductase (35 mU/mg). Besides these enzymes carbon monoxide: methyl viologen oxidoreductase (5 U/mg), pyruvate: methyl viologen oxidoreductase (0.7 U/mg), and membranebound lactate: dimethylnaphthoquinone oxidoreductase (0.1 U/mg) were found. 2-Oxoglutarate dehydrogenase, which is a key enzyme of the citric acid cycle, was not detectable. From the enzyme outfit it is concluded that in A. fulgidus lactate is oxidized to CO2 via a modified acetyl-CoA/carbon monoxide dehydrogenase pathway involving C1-intermediates otherwise only used by methanogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APS:

adenosine 5′-phosphosulfate

BV:

benzyl viologen

DCPIP:

2,6-dichlorophenolindophenol

DMN:

2,3-dimethyl-1,4-naphthoquinone

DTT:

DL-1,4-dithiothreitol

H4F:

tetrahydrofolate

H4MPT:

tetrahydromethanopterin

CH2 :

H4MPT, methylene-H4MPT

CH:

H4MPT, methenyl-H4MPT

Mes:

morpholinoethane sulfonic acid

MFR:

methanofuran

Mops:

morpholinopropane sulfonic acid

MV:

methyl viologen

Tricine:

N-tris(hydroxymethyl)-methylglycine

U:

μmol product formed per min

References

  • Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible biochemical missing link among archaebacteria. Nature (Lond) 327:348–349

    Google Scholar 

  • Bobik TA, Wolfe RS (1988) Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoyl-threonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium. Proc Natl Acad Sci USA 85:60–63

    Google Scholar 

  • Bode CH, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 5:419–422

    Google Scholar 

  • Börner G (1988) Isolierung von vier Coenzymen der Methanogenese aus Methanobacterium thermoautotrophicum. Diploma thesis, Philipps-Universität Marburg

  • Börner G, Karrasch M, Thauer RK (1989) Formylmethanofuran dehydrogenase activity in cell extracts of Methanobacterium thermoautotrophicum and of Methanosarcina barkeri. FEBS Lett 244:21–25

    Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136:222–229

    Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    Google Scholar 

  • de Wit LEA, Eker APM (1987) 8-Hydroxy-5-deazaflavin-dependent electron transfer in the extreme halophile Halobacterium cutirubrum. FEMS Microbiol Lett 48:121–125

    Google Scholar 

  • DiMarco AA, Donnelly MI, Wolfe RS (1986) Purification and properties of the 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanobacterium thermoautotrophicum. J Bacteriol 168:1372–1377

    Google Scholar 

  • Donnelly MI, Wolfe RS (1986) The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. J Biol Chem 261:16653–16659

    Google Scholar 

  • Eirich LD, Dugger RS (1984) Purification and properties of an F420-dependent NADP reductase from Methanobacterium thermoautotrophicum. Biochim Biophys Acta 802:454–458

    Google Scholar 

  • Fischer R, Thauer RK (1989) Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch Microbiol 151:459–465

    Google Scholar 

  • Fox JA, Livingston DJ, Orme-Johnson WH, Walsh CT (1987) 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. 1. Purification and characterization. Biochemistry 26:4219–4227

    Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39:181–213

    Google Scholar 

  • Gebhardt NA, Thauer RK, Linder D, Kaulfers PM, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch Microbiol 141:392–398

    Google Scholar 

  • Gloss LM, Hausinger RP (1987) Reduction potential characterization of methanogen factor 390. FEMS Microbiol Lett 48:143–145

    Google Scholar 

  • Hartzell PL, Zvilius G, Escalante-Semerena JC, Donnelly MI (1985) Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 133:884–890

    Google Scholar 

  • Jones WJ, Nagle Jr DP, Whitman WB (1987) Methanogens and the diversity of archaebacteria. Microbiol Rev 51:135–177

    Google Scholar 

  • Keltjens JT, Vogels GD (1988) Methanopterin and methanogenic bacteria. BioFactors 1:95–103

    Google Scholar 

  • Kräutler B, Kohler HPE, Stupperich E (1988) 5′-Methylbenzimidazolyl-cobamides are the corrinoids from some sulfate-reducing and sulfur-metabolizing bacteria. Eur J Biochem 176:461–469

    Google Scholar 

  • Kruber O (1929) Über das 2,3-Dimethyl-naphthalin im Steinkohlenteer. Ber Deutsche Chem Ges, pp 3044–3046

  • Länge S, Scholtz R, Fuchs G (1989) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 1. Characterization and metabolic function of the cellular tetrahydropterin. Arch Microbiol 151:77–83

    Google Scholar 

  • Leigh JA, Rinehart Jr KL, Wolfe RS (1985) Methanofuran (carbon dioxide reduction factor), a formyl carrier in methane production from carbon dioxide in Methanobacterium. Biochemistry 24:995–999

    Google Scholar 

  • Livingston DJ, Fox JA, Orme-Johnson WH, Walsh CT (1987) 8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 2. Kinetic and hydrogen-transfer studies. Biochemistry 26:4228–4237

    Google Scholar 

  • Möller D, Schauder R, Fuchs G, Thauer RK (1987) Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148:202–207

    Google Scholar 

  • Möller-Zinkhan D, Thauer RK (1988) Membrane-bound NADPH dehydrogenase- and ferredoxin: NADP oxidoreductase activity involved in electron transport during acetate oxidation to CO2 in Desulfobacter postgatei. Arch Microbiol 150:145–154

    Google Scholar 

  • Rouvière PE, Wolfe RS (1988) Novel biochemistry of methanogenesis. J Biol Chem 263:7913–7916

    Google Scholar 

  • Russ E (1987) Physiologisch-biochemische Untersuchungen an dem extrem thermophilen archaebakteriellen Sulfatreduzierer Archaeoglobus fulgidus. Diploma thesis, University of Regensburg

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172

    Google Scholar 

  • Schauder R, Preuß A, Jetten M, Fuchs G (1989) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch Microbiol 151:84–89

    Google Scholar 

  • Schauer NL, Ferry JG (1986) Mechanistic studies of the coenzyme F420 reducing formate dehydrogenase from Methanobacterium formicicum. Biochemistry 25:7163–7168

    Google Scholar 

  • Speich N, Trüper HG (1988) Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium. J Gen Microbiol 134:1419–1425

    Google Scholar 

  • Spormann AM, Thauer RK (1988) Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans. Demonstration of enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway. Arch Microbiol 150:374–380

    Google Scholar 

  • Spormann AM, Thauer RK (1989) Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans. Isotopic exchange between CO2 and the carbonyl group of acetyl-CoA and topology of enzymes involved. Arch Microbiol 152:189–195

    Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. System Appl Microbiol 10:172–173

    Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: Evidence for a novel branch of archaebacteria. Science 236:822–824

    Google Scholar 

  • Thauer RK (1988) Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 176:497–508

    Google Scholar 

  • Thauer RK (1989) Energy metabolism of sulfate-reducing bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publishers, Madison, pp 397–413

    Google Scholar 

  • Thauer RK, Badziong W (1980) Respiration with sulfate as electron acceptor. In: Knowles CJ (ed) Diversity of bacterial respiratory systems, vol II. CRC Press Inc, Boca Raton, Florida, pp 66–85

    Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67

    Google Scholar 

  • Tindall BJ, Stetter KO, Collins MD (1989) A novel, fully saturated menaquinone from the thermophilic, sulphate-reducing archaebacterium Archaeoglobus fulgidus. J Gen Microbiol 135:693–696

    Google Scholar 

  • van der Drift C, Keltjens JT, Vogels GD (1987) Intermediary steps in methanogenesis. In: van Verseveld HW, Duine JA (eds) Microbial growth on C1 compounds. Nijhoff, Dordrecht Boston Lancaster, pp 62–69

    Google Scholar 

  • Walsh C (1986) Naturally occurring 5-deazaflavin coenzymes: biological redox roles. Acc Chem Res 19:216–221

    Google Scholar 

  • White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170:4594–4597

    Google Scholar 

  • Wolfe RS (1985) Unusual coenzymes of methanogenesis. Trends Biochem Sci 10:396–399

    Google Scholar 

  • Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Rev 39:345–362

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613

    Google Scholar 

  • Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel HP, Stetter KO, Winter J (1989) Isolation and characterization of a thermophilic, sulfate reducting archaebacterium, Archaeoglobus fulgidus strain Z. System Appl Microbiol 11:151–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller-Zinkhan, D., Börner, G. & Thauer, R.K. Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus . Arch. Microbiol. 152, 362–368 (1989). https://doi.org/10.1007/BF00425174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425174

Key words

Navigation