Skip to main content
Log in

Desulfurispirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur- and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SR= DSM 18275 = UNIQEM U250).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bokranz M, Katz J, Schröder I, Roberton AM, Kröger A (1983) Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch Microbiol 135:36–41

    Article  CAS  Google Scholar 

  • Buisman CJN (1989) Biotechnological sulfide removal with oxygen. Ph.D. Thesis, Wageningen University, pp 97–107

  • Buisman C, Geraats P, Ijspeert P, Lettinga G (1990) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng 35:50–56

    Article  CAS  PubMed  Google Scholar 

  • Eisenmann E, Beuerle J, Sulger K, Kroneck PMH, Schumacher W (1995) Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia. Arch Microbiol 164:180–185

    CAS  Google Scholar 

  • Marmur J (1961) A procedure for isolation of DNA from microorganisms. J Mol Biol 3:208-214

    Article  CAS  Google Scholar 

  • Janssen AJH, Meijer S, Bontsema J, Lettinga G (1998) Application of the redox potential for controlling a sulfide oxidizing bioreactor. Biotechnol Bioeng 60:147–155

    Article  PubMed  CAS  Google Scholar 

  • Janssen AJH, de Keizer A, van Aelst A, Fokkink R, Yangling H, Lettinga G (1996) Surface characteristics and aggregation of microbiologically produced sulphur particles. Colloids surf B Biointerfaces 6:115–129

    Article  CAS  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  PubMed  CAS  Google Scholar 

  • Klimmek O, Kröger A, Steudel R, Holdt G (1991) Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport. Arch Microbiol 155:187–192

    Article  Google Scholar 

  • Krafft T, Gross R, Kröger A (1995) The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor. Eur J Biochem 230:601–606

    Article  PubMed  CAS  Google Scholar 

  • Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P (2005) Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing alpha-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55:41–47

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckman N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  CAS  Google Scholar 

  • Macy JM, Nunan K, Hagen K, Dixon DR, Harbour PJ, Cahill M, Sly LI (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46:1153–1157

    PubMed  CAS  Google Scholar 

  • Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144:147–150

    Article  CAS  Google Scholar 

  • Pfennig N, Lippert KD (1966) Über das Vitamin B12—bedürfnis phototropher Schwefel bacterien. Arch Microbiol 55:245–256

    CAS  Google Scholar 

  • Schumacher W, Kroneck PMH, Pfennig N (1992) Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch Microbiol 158:287–293

    Article  CAS  Google Scholar 

  • Simon J (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Rev 26:285–309

    Article  CAS  Google Scholar 

  • Sorokin DY, Kuenen JG (2005) Alkaliphilic chemolithotrophs from sodas lakes. FEMS Microbiol Ecol 52:287–295

    Article  PubMed  CAS  Google Scholar 

  • Sorokin DYu, Kuenen JG, Jetten M (2001) Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio denitrificans. Arch Microbiol 175:94–101

    Article  Google Scholar 

  • Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG (2004) Anaerobic growth of the haloalkaliphilic denitrifying sulphur-oxidising bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 150:2435–2442

    Article  PubMed  CAS  Google Scholar 

  • Strömpl C, Tindall BJ, Jarvis GN, Lünsdorf N, Moore ERB, Hippe H (1999) A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of A. glycerini as Anaerosinus glycerini gen. nov., comb. nov., and A. burkinabensis as Anaeroarcus burkinabensis gen. nov., comb. nov. Int J Syst Bacteriol 49:1861–1872

    Article  PubMed  Google Scholar 

  • Tindall BJ (1990a) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199-202

    Article  CAS  Google Scholar 

  • Tindall BJ (1990b A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130

    CAS  Google Scholar 

  • Tindall BJ (1996) Respiratory lipoquinones as biomarkers. In: Akkermans A, de Bruijn F, van Elsas D (eds) Molecular microbial ecology manual, Sect 4.1.5, Suppl 1. Kluwer, Dordrecht

  • Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Mikrobiology (Moscow, English Translation) 68:503–521

    CAS  Google Scholar 

  • Zhang G, Dong H, Xu X, Zhao D, Zhang C (2005) Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling project in China. Appl Environ Microbiol 71:3213–3227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NWO-RFBR (47.011.2004.010), STW (WBC 5939), Program of the Russian Academy of Sciences “Molecular and Cell Biology” and RFBR (04-04-48647). We are grateful to P. Luimes for providing samples from the Thiopaq bioreactor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Sorokin.

Additional information

Communicated by K. Horikoshi.

Nucleotide sequence accession number: the GenBank/EMBL accession number of the 16S rRNA gene sequence of strain SR 1T is DQ666683.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorokin, D.Y., Foti, M., Tindall, B.J. et al. Desulfurispirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur- and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor. Extremophiles 11, 363–370 (2007). https://doi.org/10.1007/s00792-006-0048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0048-8

Keywords

Navigation