Skip to main content
Log in

Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Desulfovibrio baarsii is a sulfate reducing bacterium, which can grown on formate plus sulfate as sole energy source and formate and CO2 as sole carbon sources. It is shown by 14C labelling studies that more than 60% of the cell carbon is derived from CO2 and the rest from formate. The cells thus grow autotrophically. Labelling studies with [14C]acetate, 14CO and [14C]formate indicate that CO2 fixation does not proceed via the Calvin cycle. The labelling patterns of alanine, aspartate, glutamate, and glucosamine indicate that acetate (or activated acetic acid) is an early intermediate in formate and CO2 assimilation; the methyl group of acetate is derived from formate, and the carboxyl group from CO2 via CO; pyruvate is formed from acetyl-CoA by reductive carboxylation. The capacity to synthesize an acetate unit from two C1-compounds obviously distinguishes D. baarsii from those Desulfovibrio species, which require acetate as a carbon source in addition to CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez M, Barton LL (1977) Evidence for the presence of phosphoriboisomerase and ribulose-1,5-diphosphate carboxylase in extracts of Desulfovibrio vulgaris. J Bact 131:133–135

    PubMed  Google Scholar 

  • Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol 130:255–261

    Google Scholar 

  • Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49

    PubMed  Google Scholar 

  • Badziong W, Ditter B, Thauer RK (1979) Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source. Arch Microbiol 123:301–305

    Google Scholar 

  • Barton LL (1981) Significance of chemolithotrophy and carbon dioxide fixation in the sulphate-reducing bacteria. In: Dalton H (ed) Microbial growth on C1 compounds. Heyden, London Philadelphia Rheine, pp 83–91

    Google Scholar 

  • Brandis A, Thauer RK (1981) Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. J Gen Microbiol 126:249–252

    Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136:222–229

    Google Scholar 

  • Butlin KR, Adams ME (1947) Autotrophic growth of sulphate-reducing bacteria. Nature (London) 160:154–155

    Google Scholar 

  • Daniels L, Fuchs G, Thauer RK, Zeikus JG (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    PubMed  Google Scholar 

  • Dickert G, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bact 136:597–606

    PubMed  Google Scholar 

  • Diekert G, Ritter M (1983) Carbon monoxide fixation into the carboxyl group of acetate during growth of Acetobacterium woodii on H2 and CO2. FEMS Microbiol Lett 17:299–302

    Article  Google Scholar 

  • Eden G, Fuchs G (1982) Total synthesis of acetyl CoA involved in autotrophic CO2 fixation in Acetobacterium woodii. Arch Microbiol 133:66–74

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    PubMed  Google Scholar 

  • Fuchs G, Stupperich E (1980) Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum. Arch Microbiol 127:267–272

    Google Scholar 

  • Fuchs G, Stupperich E (1983) CO2 fixation pathways in bacteria. Physiol Veg 21:845–854

    Google Scholar 

  • Fuchs G, Stupperich E, Eden G (1980) Autorophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128: 64–71

    Google Scholar 

  • Gebhardt NA, Linder D, Thauer RK (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 2. Evidence from 14C-labelling studies for the operation of the citric acid cycle. Arch Microbiol 136:230–233

    Google Scholar 

  • Gottschalk G (1968) The stereospecificity of the citrate synthase in sulfate-recuding and photosynthetic bacteria. Eur J Biochem 5:346–351

    PubMed  Google Scholar 

  • Gottschalk G, Barker HA (1967) Presence and stereospecificity of citrate synthase in anaerobic bacteria. Biochemistry 6:1027

    PubMed  Google Scholar 

  • Gutmann I, Wahlefeld W (1974) L-(+)-Lactat. Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 2. Verlag Chemie, Weinheim, pp 1510–1514

    Google Scholar 

  • Höpner T, Knappe J (1974) Bestimmung mit Formiat-Dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 2. Verlag Chemie, Weinheim, pp 1596–1600

    Google Scholar 

  • Hu SI, Drake HL, Wood HG (1982) Synthesis of acetyl Coenzyme A from carbon monoxide, methyltetrahydrofolate, and Coenzyme A by enzymes from Clostridium thermoaceticum. J Bacteriol 149:440–448

    PubMed  Google Scholar 

  • Jansen K, Stupperich E, Fuchs G (1982) Carbohydrate synthesis from acetyl CoA in the autotroph Methanobacterium thermoautotrophicum. Arch Microbiol 132:355–364

    Google Scholar 

  • Kenealy WR, Zeikus JG (1982) One-carbon metabolism in methanogens: Evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J Bacteriol 151:932–941

    PubMed  Google Scholar 

  • Ljungdahl L, Wood HG (1982) Acetate synthesis. In: Dolphin D (ed) Vitamin B12. Academic Press, New York, pp 165–202

    Google Scholar 

  • Pfennig N, Widdel F (1981) Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin Heidelberg New York, pp 169–177

    Google Scholar 

  • Pfennig N, Widdel F (1982) The bacteria of the sulphur cycle. Phil Trans R Soc Lond Ser B 298:433–441

    Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol I. Springer, Berlin Heidelberg New York, pp 926–940

    Google Scholar 

  • Postgate J (1970) Carbon monoxide as a basis for primitive life on other planets: a comment. Nature (London) 226:978

    Google Scholar 

  • Postgate JR (1979) The sulphate-reducing bacteria. Cambridge University Press, Cambridge London New York Melbourne

    Google Scholar 

  • Rittenberg SC (1969) The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv Microbiol Physiol 3:159–195

    Google Scholar 

  • Simon H, Floss HG (1967) Bestimmung der Isotopenverteilung in markierten Verbindungen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sisler FD, Zobell CE (1950) Hydrogen-utilizing, sulfate-reducing bacteria in marine sediments. J Bacteriol 60:747–756

    PubMed  Google Scholar 

  • Sisler FD, Zobell CE (1951) Hydrogen utilization by some marine sulfate-reducing bacteria. J Bacteriol 62:117–127

    PubMed  Google Scholar 

  • Sorokin Y (1966a) Sources of energy and carbon for biosynthesis in sulfate-reducing bacteria. Microbiology USSR 35:643–647

    Google Scholar 

  • Sorokin Y (1966b) Investigations of the structural metabolism of sulfate-reducing bacteria with 14C. Microbiology USSR 35:806–814

    Google Scholar 

  • Sorokin Y (1966c) Role of carbon dioxide in the biosynthesis by sulphate reducing bacteria. Nature (London) 210:551–552

    Google Scholar 

  • Stupperich E, Fuchs G (1984a) Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum I. Properties of in vitro system. Arch Microbiol (in press)

  • Stupperich E, Fuchs G (1984b) Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. II. Evidence for different origins of acetate carbon atoms. Arch Microbiol (in press)

  • Stupperich E, Hammel KE, Fuchs G, Thauer RK (1983) Carbon monoxide fixation into the carboxyl group of acetyl Coenzyme A during autotrophic growth of Methanobacterium. FEBS Lett 152:21–23

    Article  PubMed  Google Scholar 

  • Taylor GT, Kelly DP, Pirt SJ (1976) Intermediary metabolism in methanogenic bacteria (Methanobacterium). In: Schlegel HG, Gottschalk G, Pfennig N (eds) Proceedings of symposium on microbial production and utilization of gases (H2, CH4, CO), Akademie der Wissenschaften zu Göttingen. Goltze Göttingen, pp 173–180

    Google Scholar 

  • Watson GR, Williams JP (1970) Rapid method for wet combustion and scintillation counting of 14C-labelled organic materials. Anal Biochem 33:356–365

    PubMed  Google Scholar 

  • Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Ph.D. thesis, University of Göttingen

  • Widdel F (1981) Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 31:382–383

    Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Google Scholar 

  • Yagi T (1958) Enzymic oxidation of carbon monoxide. Biochim Biophys Acta 30:194–195

    Article  PubMed  Google Scholar 

  • Yagi T (1959) Enzymic oxidation of carbon monoxide. J Biochem (Tokyo) 46:949–955

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, K., Thauer, R.K., Widdel, F. et al. Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii . Arch. Microbiol. 138, 257–262 (1984). https://doi.org/10.1007/BF00402132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402132

Key words

Navigation