Skip to main content
Log in

Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulphur inThiocapsa floridana andChromatium species

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Thiocapsa floridana strain 1711 andChromatium strains 1211 and 1611 utilize sulphide, thiosulphate, and elementary sulphur as electron donors for growth; sulphite can be used only byChromatium strain 1611. In contrast to the other strains, thiosulphate utilization inChromatium strain 1211 is inducible and not constitutive: thiosulphate is consumed only after an induction period of about 20 hours. The turnover rate of different sulphur compounds is controlled by the CO2 fixation rate. Using differently labeled35S thiosulphates in short term experiments in a special stirred cuvette, it was shown that the maximum amount of stored intracellular sulphur depends on the strain as well as on the experimental conditions like pH and thiosulphate concentration. WhileChromatium strain 1211 showed a maximum storage of only 10% from sulphane-labeled thiosulphate at pH 6.7, and of 25.7% at pH 6.2,Thiocapsa floridana accumulated 75–90% of the radioactivity into the cells at pH 6.7. While in theChromatium strains the labeling of the cells remained at a constant level until all thiosulphate was consumed, inThiocapsa floridana a defined peak of radioactivity storage was obtained, followed by a steady but 3–4 times slower rate of excretion. With sulphonelabeled thiosulphate no significant accumulation of radioactivity occurred in the cells. During dark-incubation ofThiocapsa floridana (free of intracellular sulphur) in phosphate buffer, pH 6.5, with thiosulphate a production of sulphide could be measured while sulphite was not detected; no sulphide was produced by disrupted cells under the same conditions. The results obtained withThiocapsa floridana strongly support the concept of an initial cleavage of thiosulphate. The present observations do not allow a decision concerning the enzymatic mechanism of the cleavage itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beijerinck, M. W. 1900. Schwefelwasserstoffbildung in den Stadtgräben und Aufstellung der GattungAërobacter. Centr. Bakteriol. Parasitenk. II. Abt. Orig.6 193–206.

    Google Scholar 

  • Bregoff, H. M. andKamen, M. D. 1952. Photohydrogen production inChromatium. J. Bacteriol.63 147–149.

    PubMed  Google Scholar 

  • Clarke, P. H. 1953. Hydrogen sulphide production by bacteria. J. Gen. Microbiol.8 397–407.

    PubMed  Google Scholar 

  • Evans, M. C. W. andBuchanan, B. B. 1965. Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc. Natl. Acad. Sci.53 1420–1425.

    PubMed  Google Scholar 

  • Eymers, J. G. andWassink, E. C. 1938. On the photochemical carbon dioxide assimilation in purple sulphur bacteria. Enzymologia2 258–304.

    Google Scholar 

  • French, C. S. andMilner, H. W. 1955. Disintegration of bacteria and small particles by high-pressure extrusion, p. 64–67.In S. P. Colowick and N. O. Kaplan, [ed.], Methods in enzymology, Vol. I. Academic Press, New York.

    Google Scholar 

  • Gaffron, H. 1934. Über die Kohlensäure-Assimilation der roten Schwefelbakterien. I. Biochem. Z.269 447–453.

    Google Scholar 

  • Gmelin's Handbuch der anorganischen Chemie. 1960. “Schwefel, Teil B, Lieferung 2”, 8. edition; Verl. Chemie GmbH, Weinheim/Bergstrasse.

  • Hendley, D. D. 1955. Endogenous fermentation in Thiorhodaceae. J. Bacteriol.70 625–634.

    PubMed  Google Scholar 

  • Kaji, A. andMcElroy, W. D. 1959. Mechanism of hydrogen sulfide formation from thiosulfate. J. Bacteriol.77 630–637.

    PubMed  Google Scholar 

  • Kaplan, I. R. andRittenberg, S. C. 1964. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol.34 195–212.

    PubMed  Google Scholar 

  • Kelly, D. P. andSyrett, P. J. 1966. [35S] Thiosulphate oxidation byThiobacillus strain C. Biochem. J.98 537–545.

    PubMed  Google Scholar 

  • Larsen, H. 1952. On the culture and general physiology of the green sulfur bacteria. J. Bacteriol.64 187–196.

    PubMed  Google Scholar 

  • Larsen, H. 1953. On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. Kgl. Norske Videnskab. Selskabs Skrifter1953 1–205.

    Google Scholar 

  • London, J. 1963.Thiobacillus intermedius nov. sp. A novel type of facultative autotroph. Arch. Mikrobiol.46 329–337.

    Google Scholar 

  • London, J. andRittenberg, S. C. 1964. Path of sulfur in sulfide and thiosulfate oxidation by thiobacilli. Proc. Natl. Acad. Sci. U.S.52 1183–1190.

    Google Scholar 

  • Losada, M., Nozaki, M. andArnon, D. I. 1961. Photoproduction of molecular hydrogen from thiosulphate byChromatium cells, p. 570–575.In W. D. McElroy and B. Glass, [ed.], Light and life. Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Neuberg, C. undWelde, E. 1914. Pytochemische Reduktionen. IX. Die Umwandlung von Thiosulfat in Schwefelwasserstoff und Sulfit durch Hefen. Biochem. Z.67 111–118.

    Google Scholar 

  • van Niel, C. B. 1932. On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol.3 1–112.

    Google Scholar 

  • van Niel, C. B. 1936. On the metabolism of the Thiorhodaceae. Arch. Mikrobiol.7 323–358.

    Google Scholar 

  • Pachmayr, F. 1960. Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. Thesis, München (Univ.).

  • Pankhurst, E. S. 1964. Polarographic evidence for the production of polythionates during the bacterial oxidation of thiosulphate. J. Gen. Microbiol.34 427–439.

    PubMed  Google Scholar 

  • Peck, H. D., Jr. 1960. Adenosine 5′-phosphosulfate as an intermediate in the oxidation of thiosulphate byThiobacillus thioparus. Proc. Natl. Acad. Sci. U.S.46 1053–1057.

    Google Scholar 

  • Peck, H. D., Jr. 1962. Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulfur compounds in microorganisms. Bacteriol. Rev.26 67–94.

    PubMed  Google Scholar 

  • Petrova, E. A. 1959. The morphology of sulfur purple bacteria of the genusChromatium as a function of the composition of the medium. (In Russian). Mikrobiologiya28 814–818.

    Google Scholar 

  • Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien.In: Anreicherungskultur und Mutantenauslese. Zentr. Bakteriol. Parasitenk. I. Abt. Orig. Supplementheft1 179–189, 503–505.

    Google Scholar 

  • van Poucke, M. 1962. Enzymic formation of sulfur from polythionates byThiobacillus. Antonie van Leeuwenhoek28 235.

    Google Scholar 

  • la Rivière, J. W. M. 1958. On the microbial metabolism of the tartaric acid isomers. Thesis, Delft.

  • Santer, M., Margulies, M., Klinman, N. andKaback, R. 1960. Role of inorganic phosphate in thiosulfate metabolism byThiobacillus thioparus. J. Bacteriol.79 313–320.

    PubMed  Google Scholar 

  • Schlegel, H. G. undLafferty, R. 1961. Radioaktivitätsmessungen an Einzellern auf Membranfiltern. Arch. Mikrobiol.38 52–54.

    PubMed  Google Scholar 

  • Schmidt, K., Liaaen Jensen, S. undSchlegel, H. G. 1963. Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid vonChromatium okenii Perty. Arch. Mikrobiol.46 117–126.

    PubMed  Google Scholar 

  • Schmidt, K., Pfennig, N. andLiaaen Jensen, S. 1965. Carotenoids of Thiorhodaceae. IV. The carotenoid composition of 25 pure isolates. Arch. Mikrobiol.52 132–146.

    PubMed  Google Scholar 

  • Schmidt, M. 1962. Sulphur polymers, p. 98–185.In F. G. A. Stone and W. A. G. Graham, [ed.], Inorganic polymers. Academic Press, New York, London.

    Google Scholar 

  • Skarżyński, B. andOstrowski, W. 1958. Incorporation of radioactive sulphur byThiobacillus thioparus. Nature182 933–934.

    Google Scholar 

  • Smith, A. J. 1964. Sulphur metabolism ofChromatium strain D and rhodanese activity in extracts. J. Gen. Microbiol.34 IX-X.

    Google Scholar 

  • Smith, A. J. 1965. The discriminative oxidation of the sulphur atoms of thiosulphate by a photosynthetic sulphur bacterium —Chromatium strain D. Biochem. J.94: 27P.

    Google Scholar 

  • Sörbo, B. 1957. A colorimetric method for the determination of thiosulfate. Biochim. Biophys. Acta23 412–416.

    PubMed  Google Scholar 

  • Trudinger, P. A. 1959. The initial products of thiosulphate oxidation byThiobacillus X. Biochim. Biophys. Acta:31 270–272.

    PubMed  Google Scholar 

  • Trudinger, P. A. 1961. Thiosulphate oxidation and cytochromes inThiobacillus X. 2. Thiosulphate-oxidizing enzyme. Biochem. J.78 680–686.

    PubMed  Google Scholar 

  • Trudinger, P. A. 1964a. The metabolism of trithionate byThiobacillus X. Australian J. Biol. Sci.17 459–468.

    Google Scholar 

  • Trudinger, P. A. 1964b. Evidence for a four-sulphur intermediate in thiosulphate oxidation byThiobacillus X. Australian J. Biol. Sci.17 577–579.

    Google Scholar 

  • Trudinger, P. A. 1965. Effect of thiol-binding reagents on the metabolism of thiosulfate and tetrathionate byThiobacillus neapolitanus. J. Bacteriol.89 617–625.

    PubMed  Google Scholar 

  • Trüper, H. G. 1964a. CO2-Fixierung und Intermediärstoffwechsel beiChromatium okenii Perty. Arch. Mikrobiol.49 23–50.

    PubMed  Google Scholar 

  • Trüper, H. G. 1964b. Sulphur metabolism in Thiorhodaceae. II. Stoichiometric relationship of CO2-fixation to oxidation of hydrogen sulphide and intracellular sulphur inChromatium okenii. Antonie van Leeuwenhoek30 385–394.

    PubMed  Google Scholar 

  • Trüper, H. G. andSchlegel, H. G. 1964. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells ofChromatium okenii. Antonie van Leeuwenhoek30 225–238.

    PubMed  Google Scholar 

  • Vishniac, W. andSanter, M. 1957. The Thiobacilli. Bacteriol. Rev.21 195–213.

    PubMed  Google Scholar 

  • Wassink, E. C. 1942. On the ratio between the uptake of carbon dioxide and of the hydrogen donor in purple sulphur bacteria. Enzymologia10 257:268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trüper, H.G., Pfennig, N. Sulphur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulphate sulphur inThiocapsa floridana andChromatium species. Antonie van Leeuwenhoek 32, 261–276 (1966). https://doi.org/10.1007/BF02097469

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097469

Keywords

Navigation