Skip to main content
Log in

Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Desulfovibrio vulgaris (Marburg) was grown on H2 plus sulfate and H2 plus thiosulfate as the sole energy sources and acetate plus CO2 as the sole carbon sources. Conditions are described under which the bacteria grew exponentially. Specific growth rates (μ) and molar growth yields (Y) at different pH were determined.

μ and Y were found to be strongly dependent on the pH. Highest growth rates and molar growth yields were observed for growth on H2 plus sulfate at pH 6.5 (μ=0.15h-1; Y SO 2-4 =8.3g·mol-1) and for growth on H2 plus thiosulfate at pH 6.8 (μ=0.21h-1; Y S 2O 23 =16.9g·mol-1).

The growth yields were found to increase with increasing growth rates: plots of 1/Y versus 1/μ were linear. Via extrapolation to infinite growth rates a Y 2-SO4 /max of 12.2g·mol-1 and a YS2O 2-3 /max of 33.5g·mol-1 was obtained.

The growth yield data are interpred to indicate that dissimilatory sulfate reduction to sulfide is associated with a net synthesis of 1 mol of ATP and that near to 3 mol of ATP are formed during dissimilatory sulfite reduction to sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew, I. G., Morris, J. G.: The biosynthesis of alanin by Clostridium kluyveri. Biochim. Biophys. Acta 97, 176–179 (1965)

    PubMed  Google Scholar 

  • Badziong, W., Thauer, R. K., Zeikus J. G.: Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Micribiol. 116 41–49 (1978)

    Google Scholar 

  • Barton, L. L., LeGall, J., Peck. H. D., Jr.: Oxidative phosphorylation in the obligate anaerobe, Desulfovibrio gigas. In: Horizons of bioenergetics (A. San Pietro, H. Gest, eds.), pp. 33–51, New York: Academic Press 1972

    Google Scholar 

  • Bray, G. A.: A simple efficient liquid scintillator for counting equeous solutions in a liquid scintillation counter. Analyt. Biochem. 1, 279–285 (1960)

    Google Scholar 

  • Brenchley, J. E., Prival, M., Magasanik, B.: Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J. Biol. Chem. 248, 6122–6128 (1973)

    PubMed  Google Scholar 

  • Decker, K., Jungermann, K., Thauer, R. K.: Energy production in anaerobic organisms. Agew. Chem. Int. Ed. Engl. 9, 138–158 (1970)

    Article  Google Scholar 

  • Gunsalus, I. C., Shuster, C. W.: Energy-yielding metabolism in bacteria. In: The bacteria (I. C. Gunsalus, R. Y. Stanier, eds.) pp. 1–58. New York: Academic Press 1961

    Google Scholar 

  • Haschke, R. H., Campbell, L. L.: Thiosulfate reductase of Desulfovibrio vulgaris. J. Bacteriol. 106, 603–607 (1971)

    PubMed  Google Scholar 

  • Haschikian, E. C.: Purification and properties of thiosulfate reductase from Desulfovibrio gigas. Arch. Microbiol. 105, 249–256 (1975)

    PubMed  Google Scholar 

  • Hatchikian, E. C., Chaigneau, M., LeGall, J.: Analysis of gas production by growing cultures of three species of sulfatereducing bacteria. In: Proc. Symp. Microbial Production and Utilization of Gases (H2, CH4, CO) H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 109–118. Göttingen: Goltze 1976

    Google Scholar 

  • Hungate, R. E.: A roll tube method for cultivation of strict anaerobes. In: Methods in microbiology, Vol. 3 B (J. R. Norris, D. W. Ribbons, eds.), pp. 117–132: London-New York: Academic Press 1969

    Google Scholar 

  • Ishimoto, M., Fujimoto, D.: Adenosine-5′ phosphosulfonate as an intermediate in the reduction of sulfate by a sulfate-reducing bacterium. Proc. Jpn. Acad. Sci. 35, 243–245 (1959)

    Google Scholar 

  • Khosrovi, B., Mac Pherson, R., Miller, J. D. A.: Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris. Arch. Microbiol. 80, 324–337 (1974)

    Google Scholar 

  • King, T. E., Morris, R. O.: Determination of acid-labile sulfide and sulfhydryl groups. In: Methods in enzymology, Vol. 10 (S. P. Colowik, N. O. Kaplan eds.) pp. 634–641. New York: Academic Press 1967

    Google Scholar 

  • Le Gall, J., Postgate, J. R.: The physiology of sulfate-reducing bacteria. Adv. Microbiol. Physiol. 10, 81–133 (1973)

    Google Scholar 

  • Luria, S. E.: The bacterial protoplasm: composition and organization. In: The bacteria, Vol. 1 (I. C. Gunsalus, R. Y. Stanier, eds.), pp. 1–34. New York: Academic Press 1960

    Google Scholar 

  • Nakatsukasa, W., Akagi, J. M.: Thiosulfate reductase isolated from Desulfotomaculum nigrificans. J. Bacteriol. 98, 429–433 (1969)

    PubMed  Google Scholar 

  • Pankhurst, E. S.: The isolation and enumeration of sulphatereducing bacteria. In: Isolation of anaerobes (D. A. Shapton, R. G. Board. eds.), pp. 223–240. New York: Academic Press 1971

    Google Scholar 

  • Peck, H. D.: The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. U.S.A. 45, 701–708 (1959)

    Google Scholar 

  • Peck, H. D., Jr.: The role of adenosine-5′-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J. Biol. Chem. 237, 198–203 (1962)

    PubMed  Google Scholar 

  • Pirt, S. J.: The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. London 163B, 224–231 (1965)

    Google Scholar 

  • Postgate, J. R.: Media for sulfur bacteria. Lab. Practice 15, 1239–1244 (1966)

    Google Scholar 

  • Postgate, J. R.: Media for sulfur bacteria: Some amendments. Lab. Practice. 18, 286 (1969)

    Google Scholar 

  • Reeves, R. E.: How useful is the energy in inorganic pyrophosphate? TIBS 1, 53–55 (1976)

    Google Scholar 

  • Senez, J. C.: Some considerations on the energetics of bacterial growth. Bacteriol. Rev. 26, 95–107 (1962)

    PubMed  Google Scholar 

  • Siegel, L. M.: Biochemistry of the sulfur cycle. In: Metabolic pathways, Vol. 7 (D. M. Greenberg, ed.), pp. 217–286. New York: Academic Press 1975

    Google Scholar 

  • Sorokin, Yu. I.: Sources of energy and carbon for biosynthesis in sulfate-reducing bacteria [Engl. Transl.]. Microbiology (USSR) 35, 643–647 (1966a)

    Google Scholar 

  • Sorokin, Yu. I.: Investigations of the structural metabolism of sulfate-reducing bacteria with 14C [Engl. Transl.]. Microbiogy (USSR) 35, 806–814 (1966b)

    Google Scholar 

  • Sorokin, Yu. I.: Role of carbon dioxide and acetate in the biosynthesis by sulphate-reducing bacteria. Nature 210, 551–552 (1966c)

    PubMed  Google Scholar 

  • Stouthamer, A. H.: A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek. J. Microbiol. Serol. 39, 545–565 (1973)

    Google Scholar 

  • Stouthamer, A. H.: Yield studies in microorganisms. Durham, England: Meadowfield Press 1976

    Google Scholar 

  • Stouthamer, A. H., Bettenhaussen, C.: Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys. Acta 301, 53–70 (1973)

    PubMed  Google Scholar 

  • Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemothrophic anaerobic bacteria. Bacteriol Rev. 41, 100–180 (1977)

    PubMed  Google Scholar 

  • Tomlinson, N.: Carbon dioxide and acetate utilization by Clostridium kluyveri. II. Synthesis of amino acids. J. Biol. Chem. 209, 597–603 (1954)

    PubMed  Google Scholar 

  • Tomlinson, N., Barker, H. A.: Carbon dioxide and acetate utilisation by Clostridium kluyveri. I. Influence of nutritional conditions on utilisation patterns. J. Biol. Chem. 209, 585–595 (1954)

    PubMed  Google Scholar 

  • van Uden, N.: Kinetics of nutrient-limited growth. Annu. Rev. Microbiol. 23, 473–486 (1969)

    Article  PubMed  Google Scholar 

  • Vosjan, J. H.: ATP generation by electron transport in Desulfovibrio desulfuricans. Antonie van Leeuwenhoek J. Microbiol. Serol. 36, 584–586 (1970)

    Google Scholar 

  • Vosjan, J. H.: Respiration and fermentation of the sulphate-reducing bacterium Desulfovibrio desulfuricans in a continuous culture. Plant and Soil 43, 141–152 (1975)

    Google Scholar 

  • Ware, D. A., Postgate, J. R.: Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio desulfuricans. J. Gen. Microbiol. 67, 145–160 (1971)

    PubMed  Google Scholar 

  • Widdel, F., Pfennig, N.: A new anaerobic, sporing, acetate-oxidizing sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112, 119–122 (1977)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badziong, W., Thauer, R.K. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch. Microbiol. 117, 209–214 (1978). https://doi.org/10.1007/BF00402310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00402310

Key words

Navigation