Skip to main content
Log in

Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A new strain of syntrophically propionate-oxidizing fermenting bacteria, strain KoProp1, was isolated from anoxic sludge of a municipal sewage plant. It oxidized propionate or lactate in cooperation with the hydrogen- and formate-utilizingMethanospirillum hungatei and grew as well in pure culture without a syntrophic partner with propionate or lactate plus sulfate as energy source. In all cases, the substrates were oxidized stoichiometrically to acetate and CO2, with concomitant formation of methane or sulfide. Cells formed gas vesicles in the late growth phase and contained cytochromesb andc, a menaquinone-7, and desulforubidin, but no desulfoviridin. Enzyme measurements in cell-free extracts indicated that propionate was oxidized through the methylmalonyl CoA pathway. Protein pattern analysis by SDS-PAGE of cell-free extracts showed that strain KoProp1 differs significantly fromSyntrophobacter wolinii and from the propionate-oxidizing sulfate reducerDesulfobulbus propionicus. 16S rRNA sequence analysis revealed a significant resemblance toS. wolinii allowing the assignment of strain KoProp1 to the genusSyntrophobacter as a new species,S. pfennigii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartholomew JW (1962) Variables influencing results and the precise definition of steps in gram staining as a means of standadizing the results obtained. Stain Technol 37:139–155

    PubMed  CAS  Google Scholar 

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse, 3rd edn. Verlag Chemie, Weinheim Germany

    Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium,Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    PubMed  CAS  Google Scholar 

  • Boonstra J, Huttunen MT, Konings WN (1975) Anaerobic transport inEscherichia coli membrane vesicles. J Biol Chem 250: 6792–6798

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cashion P, Holder-Franklin MA, McCully J, Franklin M (1977) A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466

    Article  PubMed  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    CAS  Google Scholar 

  • Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287

    Google Scholar 

  • Diekert GB, Thauer RK (1978) Carbon monoxide oxidation byClostridium thermoaceticum. J Bacteriol 136:597–606

    PubMed  CAS  Google Scholar 

  • Dong X, Plugge CM, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838

    PubMed  CAS  Google Scholar 

  • Dörner C (1992) Biochemie und Energetik der Wasserstofffreisetzung in der syntrophen Vergärung von Fettsäuren und Benzoat. Thesis, Universität Tübingen, Germany

    Google Scholar 

  • Harmsen HJM, Wullings B, Akkermans ADL, Ludwig W, Stams AJM (1993) Phylogenetic analysis ofSyntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240

    PubMed  CAS  Google Scholar 

  • Harmsen HJM, Kengen HMP, Akkermans ADL, Stams AJM (1995) Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichment cultures. Syst Appl Microbiol 18:67–73

    CAS  Google Scholar 

  • Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM, Zehnder AJB (1987) 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol Lett 41:269–274

    Article  CAS  Google Scholar 

  • Houwen FP, Plokker J, Stams AJM, Zehnder AJB (1990) Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation bySyntrophobacter wolinii. Arch Microbiol 155:52–55

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Lee JP, Yi CS, LeGall J, Peck HD (1973) Isolation of a new pigment, desulforubidin, fromDesulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J Bacteriol 115:453–455

    PubMed  CAS  Google Scholar 

  • Matthies C, Schink B (1992) Reciprocal isomerization of butyrate and isobutyrate by the strictly anaerobic bacterium strain WoG13, and methanogenic isobutyrate degradation by a defined triculture. Appl Environ Microbiol 58:1435–1438

    PubMed  CAS  Google Scholar 

  • Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167

    Article  CAS  Google Scholar 

  • Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate inMethanobacterium thermoautotrophicum. Arch Microbiol 128:248–252

    Article  PubMed  CAS  Google Scholar 

  • Odom JM, Peck HD (1981) Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacteriumDesulfovibrio gigas. J Bacteriol 147:161–169

    PubMed  CAS  Google Scholar 

  • Pfennig N (1978)Rhodocyclus purpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288

    CAS  Google Scholar 

  • Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141

    Article  PubMed  CAS  Google Scholar 

  • Plugge CM, Dijkema C, Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate-oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76

    Article  CAS  Google Scholar 

  • Samain E, Dubourgier HC, Albagnac G (1984) Isolation and characterization ofDesulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst Appl Microbiol 5:391–401

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn, vol III. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 18.47–18.59

    Google Scholar 

  • Schink B (1985) Mechanisms and kinetics of succinate and propionate degradation in anoxic sediments and sewag sludge. J Gen Microbiol 131:643–650

    CAS  Google Scholar 

  • Schink B (1990) Conservation of small amounts of energy in fermenting bacteria. In: Finn RK, Präve P (eds) Biotechnology, vol 2. Hanser Publishers, Munich, pp 63–89

    Google Scholar 

  • Schink B (1992) Syntrophism among procaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn, vol I. Springer, Berlin Heidelberg New York, pp 276–299

    Google Scholar 

  • Schink B, Friedrich M (1994) Energetics of syntrophic fatty acid oxidation. FEMS Microbiol Rev 15:85–94

    Article  CAS  Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH, Hansen TA (1984) Pathway of propionate formation inDesulfobulbus propionicus. Arch Microbiol 139:167–173

    Article  CAS  Google Scholar 

  • Stams AJM, Grolle KCF, Frijters CTMJ, van Lier JB (1992) Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy withMethanobacterium thermoautotrophicum orMethanobacterium thermoformicicum. Appl Environ Microbiol 58:346–352

    PubMed  CAS  Google Scholar 

  • Stams AJM, Van Dijk J, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119

    PubMed  CAS  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Tholozan JL, Samain E, Grivet JP, Moletta R, Dubourgier HC, Albagnac G (1988) Reductive carboxylation of propionate to butyrate in methanogenic ecosystems. Appl Environ Microbiol 54:441–445

    PubMed  CAS  Google Scholar 

  • Tschech A, Pfennig N (1984) Growth yield increase linked to caffeate reduction inAcetobacterium woodii. Arch Microbiol 137:163–167

    Article  CAS  Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1994) Pure culture and cytological properties ofSyntrophobacter wolinii. FEMS Microbiol Lett 123:249–254

    Article  CAS  Google Scholar 

  • Wallrabenstein C, Gorny N, Springer N, Ludwig W, Schink B (1995) Pure culture ofSyntrophus buswellii, definition of its phylogenetic status, and description ofSyntrophus gentianae sp. nov. Syst Appl Microbiol 18:62–66

    CAS  Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of a new sulfate reducer enriched with acetate from saline environments. Description ofDesulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate byDesulfobulbus propionicus gen. nov. sp. nov. Arch Microbiol 131:360–365

    Article  CAS  Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate reducing bacteria that decompose fatty acids. III. Characterization of the filamentous glidingDesulfonema limicola gen. nov. sp. nov., andDesulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

  • Zehnder AJB (1978) Ecology of methane formation. In: Mitchell R (ed) Water pollution microbiology, vol. 2. John Wiley, New York, pp 349–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallrabenstein, C., Hauschild, E. & Schink, B. Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch. Microbiol. 164, 346–352 (1995). https://doi.org/10.1007/BF02529981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02529981

Key words

Navigation