Skip to main content
Log in

Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions

  • Original paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Natural relationships, improvement of anaerobic growth on hydrocarbons, and properties that may provide clues to an understanding of oxygen-independent alkane metabolism were studied with two mesophilic sulfate-reducing bacteria, strains Hxd3 and Pnd3. Strain Hxd3 had been formerly isolated from an oil tank; strain Pnd3 was isolated from marine sediment. Strains Hxd3 and Pnd3 grew under strictly anoxic conditions on n-alkanes in the range of C12–C20 and C14–C17, respectively, reducing sulfate to sulfide. Both strains shared 90% 16 S rRNA sequence similarity and clustered with classified species of completely oxidizing, sulfate-reducing bacteria within the δ-subclass of Proteobacteria. Anaerobic growth on alkanes was stimulated by α-cyclodextrin, which served as a non-degradable carrier for the hydrophobic substrate. Cells of strain Hxd3 grown on hydrocarbons and α-cyclodextrin were used to study the composition of cellular fatty acids and in vivo activities. When strain Hxd3 was grown on hexadecane (C16H34), cellular fatty acids with C-odd chains were dominant. Vice versa, cultures grown on heptadecane (C17H36) contained mainly fatty acids with C-even chains. In contrast, during growth on 1-alkenes or fatty acids, a C-even substrate yielded C-even fatty acids, and a C-odd substrate yielded C-odd fatty acids. These results suggest that anaerobic degradation of alkanes by strain Hxd3 does not occur via a desaturation to the corresponding 1-alkenes, a hypothetical reaction formerly discussed in the literature. Rather an alteration of the carbon chain by a C-odd carbon unit is likely to occur during activation; one hypothetical reaction is a terminal addition of a C1 unit. In contrast, fatty acid analyses of strain Pnd3 after growth on alkanes did not indicate an alteration of the carbon chain by a C-odd carbon unit, suggesting that the initial reaction differed from that in strain Hxd3. When hexadecane-grown cells of strain Hxd3 were resuspended in medium with 1-hexadecene, an adaptation period of 2 days was observed. Also this result is not in favor of an anaerobic alkane degradation via the corresponding 1-alkene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 25 June 1998 / Accepted: 29 July 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aeckersberg, F., Rainey, F. & Widdel, F. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170, 361–369 (1998). https://doi.org/10.1007/s002030050654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002030050654

Navigation