Skip to main content

Wild Relatives and Their Contributions to Wheat Breeding

  • Chapter
  • First Online:
Ancient Wheats

Abstract

The world is witnessing simultaneous problems of climate change and rapidly increasing population. Research activities have confirmed that the climate change scenario will become more and more adverse and will put extra pressure on the agriculture to produce enough food to feed this and upcoming generations. Wheat is one of the staple crops, serving as a source of nutrition for millions of people all over the world. However, human activities resulted in the genetic erosion in wheat cultivars. Keeping this in view, wheat breeders need new genetic resources having novel alleles that can be used to develop cultivars having higher production, better quality, and resistance to biotic and abiotic stresses. Wild relatives of wheat are promising genetic resources having novel genetic variations that have been used in ensuring food and nutritional security, economic development, as well as environmental sustainability. Technological advances in biotechnology and genomics have broadened our scientific understandings regarding phylogenetic relationships among wheat species and consequently have opened new avenues to reconsider the potential of wheat wild relatives and to provide a context for how we can employ them in future wheat breeding programs. This chapter is focused on revealing the contribution of wild relatives in wheat breeding. We made our best effort by compiling existing information regarding the wild relatives and their contributions to wheat breeding. We are confident that provided information will be helpful to the wheat breeders to utilize wheat wild relatives for future wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alahmad, S., Dinglasan, E., Leung, K. M., et al. (2018). Speed breeding for multiple quantitative traits in durum wheat. Plant Methods, 14(1), 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alemu, A., Feyissa, T., Tuberosa, R., Maccaferri, M., Sciara, G., Letta, T., & Abeyo, B. (2020). Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). The Crop Journal, 8(5), 757–768.

    Article  Google Scholar 

  • Aoun, M., Chen, X., Somo, M., Xu, S. S., Li, X., & Elias, E. M. (2021). Novel stripe rust all-stage resistance loci identified in a worldwide collection of durum wheat using genome-wide association mapping. The Plant Genome, 14(3), e20136.

    Article  CAS  PubMed  Google Scholar 

  • Arora, S., Singh, N., Kaur, S., Bains, N. S., Uauy, C., Poland, J., & Chhuneja, P. (2017). Genome-wide association study of grain architecture in wild wheat Aegilops tauschii. Frontiers in Plant Science, 8, 886.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arora, S., Cheema, J., Poland, J., Uauy, C., & Chhuneja, P. (2019). Genome-wide association mapping of grain micronutrients concentration in Aegilops tauschii. Frontiers in Plant Science, 10, 54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arraiano, L. S., Worland, A. J., Ellerbrook, C., & Brown, J. K. M. (2001). Chromosomal location of a gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6’. Theoretical and Applied Genetics, 103, 758–764.

    Article  CAS  Google Scholar 

  • Asplund, L., Hagenblad, J., & Leino, M. W. (2010). Re-evaluating the history of the wheat domestication gene NAM-B1 using historical plant material. Journal of Archaeological Science, 37, 2303–2307.

    Article  Google Scholar 

  • Avivi, L. (1978). High protein content in wild tetraploid Triticum dicoccoides Korn. In S. Ramanujam (Ed.), Proceedings of the 5th international wheat genetics symposium, New Delhi, 23–28 Feb 1978. The Indian Society of Genetics and Plant Breeding, Indian Agricultural Research Institute, pp 372–380.

    Google Scholar 

  • Bacher, H., Zhu, F., Gao, T., Liu, K., Dhatt, B. K., Awada, T., Zhang, C., Distelfeld, A., Yu, H., Peleg, Z., & Walia, H. (2021). Wild emmer introgression alters root-to-shoot growth dynamics in durum wheat in response to water stress. Plant Physiology, 187(3), 1149–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal, M., Kaur, S., Dhaliwal, H. S., Baines, N. S., Bariana, H. S., Chhuneja, P., & Bansal, U. K. (2017). Mapping of Aegilops umbellulata - derived leaf rust and stripe rust loci in wheat. Plant Pathology, 66, 38–44.

    Article  CAS  Google Scholar 

  • Baranwal, D., Cu, S., Stangoulis, J., Trethowan, R., Bariana, H., & Bansal, U. (2022). Identification of genomic regions conferring rust resistance and enhanced mineral accumulation in a HarvestPlus Association Mapping Panel of wheat. Theoretical and Applied Genetics, 135(3), 865–882.

    Article  CAS  PubMed  Google Scholar 

  • Bariana, H. S., & McIntosh, R. A. (1993). Cytogenetic studies in wheat. XV. location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome, 36, 476–482.

    Article  CAS  PubMed  Google Scholar 

  • Bedő, Z., & Láng, L. (2015). Wheat breeding: Current status and bottlenecks. In M. Molnár-Láng, C. Ceoloni, & J. Doležel (Eds.), Alien introgression in wheat (pp. 77–102). Springer.

    Google Scholar 

  • Ben-David, R., Xie, W. L., Peleg, Z., Saranga, Y., Dinoor, A., & Fahima, T. (2010). Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theoretical and Applied Genetics, 121, 499–510.

    Article  CAS  PubMed  Google Scholar 

  • Bhatta, M., Morgounov, A., Belamkar, V., & Baenziger, P. S. (2018). Genome-wide association study reveals novel genomic regions for grain yield and yield-related traits in drought-stressed synthetic hexaploid wheat. International Journal of Molecular Sciences, 19(10), 3011.

    Article  PubMed Central  CAS  Google Scholar 

  • Bibi, A., Rasheed, A., Kazi, A. G., Mahmood, T., Ajmal, S., Ahmed, I., & Mujeeb-Kazi, A. (2012). High-molecular-weight (HMW) glutenin subunit composition of the Elite-II synthetic hexaploid wheat subset (Triticum turgidum × Aegilops tauschii; 2n = 6x = 42; AABBDD). Plant Genetic Resources: Characterization and Utilization, 10, 1–4.

    Article  CAS  Google Scholar 

  • Blanco, A., Gadaleta, A., Cenci, A., Carluccio, A. V., Abdelbacki, A. M., & Simeone, R. (2008). Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theoretical and Applied Genetics, 117, 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Blanco, A., Giovanni, C. D., Laddomada, B., Sciancalepore, A., Simeone, R., Devos, K. M., & Gale, M. D. (1996). Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breeding, 115, 310–316.

    Article  Google Scholar 

  • Blanco, A., Colasuonno, P., Gadaleta, A., Mangini, G., Schiavulli, A., Simeone, R., Digesu, A. M., De Vita, P., Mastrangelo, A. M., & Cattivelli, L. (2011). Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat. Journal of Cereal Science, 54, 255–264.

    Article  CAS  Google Scholar 

  • Blanco, A., Pasqualone, A., Troccoli, A., Di Fonzo, N., & Simeone, R. (2002). Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Molecular Biology, 48, 615–623.

    Article  CAS  PubMed  Google Scholar 

  • Boehm, J. D., Jr., Zhang, M., Cai, X., & Morris, C. F. (2017). Molecular and cytogenetic characterization of the 5DS-5BS chromosome translocation conditioning soft kernel texture in durum wheat. The Plant Genome, 10, 1–11.

    Article  CAS  Google Scholar 

  • Börner, A., Schumann, E., Fürste, A., Cöster, H., Leithold, B., Röder, M., & Weber, W. (2002). Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 105, 921–936.

    Article  PubMed  Google Scholar 

  • Briggs, J., Chen, S., Zhang, W., Nelson, S., Dubcovsky, J., & Rouse, M. N. (2015). Mapping of SrTm4, a recessive stem rust resistance gene from diploid wheat effective to Ug99. Phytopathology, 105(10), 1347–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown-Guedira, G. L., Singh, S., & Fritz, A. K. (2003). Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology, 93, 784–789.

    Article  CAS  PubMed  Google Scholar 

  • Buerstmayr, H., Stierschneider, M., Steiner, B., Lemmens, M., Griesser, M., Nevo, E., & Fahima, T. (2003). Variation for resistance to head blight caused by Fusarium graminearum in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica, 130, 17–23.

    Article  Google Scholar 

  • Buerstmayr, M., Lemmens, M., Steiner, B., & Buerstmayr, H. (2011). Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population. Theoretical and Applied Genetics, 123, 293–306.

    Article  PubMed  Google Scholar 

  • Buerstmayr, M., Huber, K., Heckmann, J., Steiner, B., Nelson, J. C., & Buerstmayr, H. (2012). Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Theoretical and Applied Genetics, 25, 1751–1765.

    Article  Google Scholar 

  • Cat, A., Tekin, M., Akar, T., & Catal, M. (2019). First report of Stagonospora nodorum blotch caused by Parastagonospora nodorum on emmer wheat (Triticum dicoccum Schrank) in Turkey. Journal of Plant Pathology, 101(2), 433–433.

    Article  Google Scholar 

  • Cat, A., Tekin, M., Akan, K., Akar, T., & Catal, M. (2021). Races of Puccinia striiformis f. sp. tritici identified from the coastal areas of Turkey. Can. Journal of Plant Pathology, 43(sup2), S323–S332.

    Google Scholar 

  • Celik, A. (2022). A novel technology for the one-step detection of prune dwarf virus: Colorimetric reverse transcription loop-mediated isothermal amplification assay. Crop Protection, 155, 105910.

    Article  CAS  Google Scholar 

  • Celik, A., & Ertunc, F. (2021). Reverse transcription loop-mediated isothermal amplification (RT-LAMP) of plum pox potyvirus Turkey (PPV-T) strain. The Journal of Plant Diseases and Protection, 128(3), 663–671.

    Article  CAS  Google Scholar 

  • Celik, A., & Morca, A. F. (2021). Development of colorimetric and real time loop-mediated isothermal amplification (cr-LAMP) assay for rapid detection of wheat dwarf virus (WDV). Crop Protection, 149, 105786.

    Article  CAS  Google Scholar 

  • Celik, A., Santosa, A. I., Gibbs, A. J., & Ertunc, F. (2022). Prunus necrotic ringspot virus in Turkey: An immigrant population. Archives of Virology, 167, 553–562.

    Google Scholar 

  • Chen, X. M., Luo, Y. H., Xia, X. C., Xia, L. Q., Chen, X., Ren, Z. L., He, Z. H., & Jia, J. Z. (2005). Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breeding, 124, 225–228.

    Article  CAS  Google Scholar 

  • Chen, X. F., Faris, J. D., Hu, J. G., Stack, R. W., Adhikari, T., Elias, E. M., Kianian, S. F., & Cai, X. W. (2007). Saturation and comparative mapping of a major Fusarium head blight resistance QTL in tetraploid wheat. Molecular Breeding, 19, 113–124.

    Article  CAS  Google Scholar 

  • Chen, S., Rouse, M. N., Zhang, W., Zhang, X., Guo, Y., Briggs, J., & Dubcovsky, J. (2020). Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. The New Phytologist, 225, 948–959.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X. M., Wang, M., Wan, A., Bai, Q., Li, M., Lopez, P. F., et al. (2021). Virulence characterization of Puccinia striiformis f. sp. tritici collections from six countries in 2013 to 2020. Canadian Journal of Plant Pathology, 43(sup2), S308–S322.

    Article  Google Scholar 

  • Chhuneja, P., Kaur, S., Garg, T., Ghai, M., Kaur, S., Prashar, M., Bains, N. S., Goel, R. K., Keller, B., Dhaliwal, H. S., & Singh, K. (2008). Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theoretical and Applied Genetics, 116, 313–324.

    Article  CAS  PubMed  Google Scholar 

  • Chhuneja, P., Kumar, K., Stirnweis, D., Hurni, S., Keller, B., Dhaliwal, H. S., & Singh, K. (2012). Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L. Theoretical and Applied Genetics, 124, 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  • Chu, C. G., Friesen, T. L., Xu, S. S., Faris, J. D., & Kolmer, J. A. (2009). Identification of novel QTLs for seedling and adult plant leaf rust resistance in a wheat doubled haploid population. Theoretical and Applied Genetics, 119(2), 263–269.

    Article  PubMed  Google Scholar 

  • Cox, T. S., Raupp, W. J., & Gill, B. S. (1994). Leaf rust-resistance genes Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Science, 34, 339–343.

    Article  Google Scholar 

  • Crawford, A. C., Stefanova, K., Lambe, W., et al. (2011). Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes. Theoretical and Applied Genetics, 123(1), 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Crespo-Herrera, L. A., Akhunov, E., Garkava-Gustavsson, L., et al. (2014). Mapping resistance to the bird cherry-oat aphid and the greenbug in wheat using sequence-based genotyping. Theoretical and Applied Genetics, 127, 1963–1973.

    Article  CAS  PubMed  Google Scholar 

  • Crespo-Herrera, L. A., Govindan, V., Stangoulis, J., et al. (2017). QTL mapping of grain Zn and Fe concentrations in two hexaploid wheat RIL populations with ample transgressive segregation. Frontiers in Plant Science, 8, 1800.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crespo-Herrera, L. A., Crossa, J., Huerta-Espino, J., Vargas, M., Mondal, S., Velu, G., Payne, T. S., Braun, H., & Singh, R. P. (2018). Genetic gains for grain yield in CIMMYT’s semi-arid wheat yield trials grown in suboptimal environments. Crop Science, 58, 1890–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuthbert, P. A., Somers, D. J., & Brule-Babel, A. (2007). Mapping of Fhb2 on chromosome 6BS: A gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 114, 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., & Munns, R. (2005). Control of sodium transport in durum wheat. Plant Physiology, 137, 807–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delorean, E., Gao, L., JFC, L., Open Wild Wheat Consortium, BBH, W., Ibba, M. I., & Poland, J. (2021). High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Communications Biology, 4, 1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distelfeld, A., Uauy, C., Olmos, S., Schlatter, A. R., Dubcovsky, J., & Fahima, T. (2004). Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Functional & Integrative Genomics, 4, 59–66.

    Article  CAS  Google Scholar 

  • Dorofeev, V. F., Udachin, R. A., Semenova, L. V., Novikova, M. V., Grazhdaninova, O. D., Shitova, I. P., Merezhko, A. F., & Filatenko, A. A. (1987). World wheat. Agropromizdat. (in Russian).

    Google Scholar 

  • Dubcovsky, J., Luo, M. C., Zhong, G. Y., Bransteitter, R., Desai, A., Kilian, A., Kleinhofs, A., & Dvorak, J. (1996). Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics, 143, 983–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyck, P. L. (1992). Transfer of a gene for stem rust resistance from Triticum araraticum to hexaploid wheat. Genome, 35, 788–792.

    Article  Google Scholar 

  • Dyck, P. L., & Kerber, E. R. (1970). Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa. Canadian Journal of Genetics and Cytology, 13, 480–483.

    Article  Google Scholar 

  • Eastwood, R. F., Lagudah, E. S., Appels, R., Hannah, M., & Kollmorgen, J. F. (1991). Triticum tauschii: A novel source of resistance to cereal cyst nematode (Heterodera avenae). Australian Journal of Agricultural Research, 42, 69–77.

    Google Scholar 

  • Elouafi, I., Nachit, M. M., & Martin, L. M. (2001). Identification of a microsatellite on chromosome 7b showing a strong linkage with yellow pigment in durum wheat Triticum turgidum L var durum. Hereditas, 135, 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Fang, Y., Wang, L., Sapey, E., et al. (2021). Speed-breeding system in soybean: Integrating off-site generation advancement, fresh seeding, and marker-assisted selection. Frontiers in Plant Science, 12, 717077.

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT. (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL. Accessed 20 Mar 2022.

  • Faris, J. D., Xu, S. S., Cai, X., Friesen, T. L., & Jin, Y. (2008). Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Research, 16, 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  • Fatiukha, A., Filler, N., Lupo, I., Lidzbarsky, G., Klymiuk, V., Korol, A. B., Pozniak, C., Fahima, T., & Krugman, T. (2020). Grain protein content and thousand kernel weight QTLs identified in a durum× wild emmer wheat mapping population tested in five environments. Theoretical and Applied Genetics, 133, 119–131.

    Article  CAS  PubMed  Google Scholar 

  • Friesen, T. L., Xu, S. S., & Harris, M. O. (2008). Stem rust, tan spot, Stagonospora nodorum blotch, and hessian fly resistance in Langdon durum–Aegilops tauschii synthetic hexaploid wheat lines. Crop Science, 48, 1062–1070.

    Article  Google Scholar 

  • Gerechter-Amitai, Z. K., & Stubbs, R. W. (1970). A valuable source of yellow rust resistance in Israeli population of wild emmer Triticum dicoccoides Koern. Euphytica, 19, 12–21.

    Article  Google Scholar 

  • Gerechter-Amitai, Z. K., Wahl, I., Vardi, A., & Zohary, D. (1971). Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica, 20, 281–285.

    Article  Google Scholar 

  • Gerechter-Amitai, Z. K., Van Silfhout, C. H., Grama, A., & Kleitman, F. (1989). Yr15: A new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica, 43, 187–190.

    Article  Google Scholar 

  • Ghosh, S., Watson, A., Gonzalez-Navarro, O. E., Ramirez-Gonzalez, R. H., Yanes, L., Mendoza-Suárez, M., & Hafeez, A. (2018). Speed breeding in growth chamber sand glass houses for crop breeding and model plant research. Nature Protocols, 13(12), 2944–2963.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Hernandez, J. L., Elias, E. M., & Kianian, S. F. (2004). Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica, 139(3), 217–225.

    Google Scholar 

  • González-Barrios, P., Bhatta, M., Halley, M., et al. (2021). Speed breeding and early panicle harvest accelerates oat (Avena sativa L.) breeding cycles. Crop Science, 61(1), 320–330.

    Article  CAS  Google Scholar 

  • Haldar, A., Tekieh, F., Balcerzak, M., Wolfe, D., Lim, D., Joustra, K., Konkin, D., Han, F., Fedak, G., & Oullet, T. (2021). Introgression of Thinopyrum elongatum DNA fragments carrying resistance to fusarium head blight into Triticum aestivum cultivar Chinese Spring is associated with alteration of gene expression. Genome, 64, 1009–1020.

    Article  CAS  PubMed  Google Scholar 

  • Hale, I., Zhang, X., Fu, D., & Dubcovsky, J. (2012). Registration of wheat lines carrying the partial stripe rust resistance gene Yr36 without the Gpc-B1 high grain protein content allele. Journal of Plant Registrations, 7, 108–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, M. D., Brown-Guedira, G., Klatt, A., & Fritz, A. K. (2009). Genetic analysis of resistance to soil-borne wheat mosaic virus derived from Aegilops tauschii. Euphytica, 169, 169–176.

    Article  CAS  Google Scholar 

  • Hao, M., Zhang, L., Ning, S., Huang, L., Yuan, Z., Wu, B., Yan, Z., Dai, S., Jiang, B., Zheng, Y., & Liu, D. (2020). The resurgence of introgression breeding, as exemplified in wheat improvement. Frontiers in Plant Science, 11, 252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harlan, J., & de Wet, J. M. J. (1971). Towards a rationale classification of cultivated plants. Taxon, 20, 509–517.

    Article  Google Scholar 

  • Helguera, M., Khan, I. A., & Dubcovsky, J. (2000). Development of PCR markers for the wheat leaf rust gene Lr47. Theoretical and Applied Genetics, 101, 625–631.

    Article  CAS  Google Scholar 

  • Helguera, M., Vanzetti, L., Soria, M., Khan, I. A., Kolmer, J., & Dubcovsky, J. (2005). PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Science, 45, 728–734.

    Article  CAS  Google Scholar 

  • Hernandez-Espinosa, N., Payne, T., Huerta-Espino, J., Cervantes, F., Gonzalez-Santoyo, H., Ammar, K., & Guzman, C. (2019). Preliminary characterization for grain quality traits and high and low molecular weight glutenins subunits composition of durum wheat landraces from Iran and Mexico. Journal of Cereal Science, 88, 47–56.

    Article  CAS  Google Scholar 

  • Hickey, L. T., Germán, S. E., Pereyra, S. A., et al. (2017). Speed breeding for multiple disease resistance in barley. Euphytica, 213(3), 64.

    Article  Google Scholar 

  • Hsam, S. L. K., Huang, X. Q., Ernst, F., Hartl, L., & Zeller, F. J. (1998). Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theoretical and Applied Genetics, 96, 1129–1134.

    Google Scholar 

  • Hu, J., Wang, X., Zhang, G., Jiang, P., Chen, W., Hao, Y., Ma, X., Xu, S., Jia, J., Kong, L., & Wang, H. (2020). QTL mapping for yield-related traits in wheat based on four RIL populations. Theoretical and Applied Genetics, 133, 917–933.

    Article  CAS  PubMed  Google Scholar 

  • Hua, W., Liu, Z. J., Zhu, J., Xie, C. J., Yang, T. M., Zhou, Y. L., Duan, X. Y., Sun, Q. X., & Liu, Z. Y. (2009). Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 119, 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X. Q., Cöster, H., Ganal, M. W., & Röder, M. S. (2003). Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 106, 1379–1389.

    Google Scholar 

  • Hussein, T., Bowden, R. L., Gill, B. S., Cox, T. S., & Marshall, D. S. (1997). Performance of four new leaf rust resistance genes transferred to common wheat from Aegilops tauschii and Triticum monococcum. Plant Disease, 81, 582–586.

    Article  Google Scholar 

  • Imren, M., Waeyenberge, L., Koca, A. S., Duman, N., Yildiz, S., & Dababat, A. A. (2017). Genetic variation and population dynamics of the cereal cyst nematode, Heterodera filipjevi in wheat areas of Bolu, Turkey. Tropical Plant Pathology, 42(5), 362–369.

    Article  Google Scholar 

  • Itam, M., Abdelrahman, M., Yamasaki, Y., Mega, R., Gorafi, Y., Akashi, K., & Tsujimoto, H. (2020). Aegilops tauschii introgressions improve physio-biochemical traits and metabolite plasticity in bread wheat under drought stress. Agronomy, 10, 1588.

    Article  CAS  Google Scholar 

  • Jauhar, P. (2014). Durum wheat genetic stocks involving chromosome 1E of diploid wheatgrass: Resistance to Fusarium head blight. Nucleus, 57, 19–23.

    Article  Google Scholar 

  • Ji, X. L., Xie, C. J., Ni, Z. F., Yang, T. M., Nevo, E., Fahima, T., Liu, Z. Y., & Sun, Q. X. (2007). Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica, 159, 385–390.

    Article  CAS  Google Scholar 

  • Jin, Y., Singh, R. P., Ward, R. W., Wanyera, R., Kinyua, M., Njau, P., & Pretorius, Z. A. (2007). Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Disease, 91, 1096–1099.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, M., Kumar, A., Oladzad-Abbasabadi, A., Salsman, E., Aoun, M., Manthey, F. A., & Elias, E. M. (2019). Association mapping for 24 traits related to protein content, gluten strength, color, cooking, and milling quality using balanced and unbalanced data in durum wheat [Triticum turgidum L. var. durum (Desf).]. Frontiers in Genetics, 10, 717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joppa, L. R., & Cantrell, R. G. (1990). Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Science, 30, 1059–1064.

    Article  CAS  Google Scholar 

  • Joppa, L. R., Du, C., Hart, G. E., & Hareland, G. A. (1997). Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Science, 37, 1586–1589.

    Article  CAS  Google Scholar 

  • Kaloshian, I., Roberts, P. A., Waines, J. G., & Thomason, I. J. (1990). Inheritance of resistance to root-knot nematodes in Aegilops squarrosa L. The Journal of Heredity, 81, 170–172.

    Google Scholar 

  • Kavak, H., & Celik, A. (2021). Comparison of some morphological and physiological characters of apple scab pathogen (Venturia inaequalis) in two different agricultural ecology of Turkey. Erwerbs-Obstbau, 63(1), 47–52.

    Article  Google Scholar 

  • Keilwagen, J., Lehnert, H., Berner, T., Badaeva, E., Himmelbach, A., Börner, A., & Kilian, B. (2022). Detecting major introgressions in wheat and their putative origins using coverage analysis. Scientific Reports, 12, 1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kema, G. H. J. (1992). Resistance in spelt wheat to yellow rust I. Formal analysis and variation for gliadin patterns. Euphytica, 63, 207–217.

    Article  Google Scholar 

  • Kerber, E. R., & Dyck, P. L. (1973). Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Canadian Journal of Genetics and Cytology, 15, 397–409.

    Article  Google Scholar 

  • Kerber, E. R., & Dyck, P. L. (1979). Resistance to stem rust and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploidy wheat. In Proceedings of the 5th international wheat genetics symposium, ed. S. Ramanujam (New Delhi: Indian Society of Genetics and Plant Breeding), 358–364.

    Google Scholar 

  • Kerber, E. R. (1987). Resistance to leaf rust in hexaploid wheat: Lr32 a third gene derived from Triticum tauschii. Crop Science, 27, 204–206.

    Article  Google Scholar 

  • Kerber, E. R., & Dyck, P. L. (1990). Transfer to hexaploid wheat of linked genes for adult plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides x Triticum monococcum. Genome, 33, 530–537. https://doi.org/10.1139/g90-079

    Article  CAS  Google Scholar 

  • Kieliszek, M., & Błażejak, S. (2016). Current knowledge on the importance of selenium in food for living organisms: A review. Molecules, 21(5), 609.

    Article  PubMed Central  CAS  Google Scholar 

  • Knot, D. R. (1989). The wheat rusts: Breeding for resistance. Monographs on theoretical applied genetics 12. Springer Verlag, Berlin.

    Book  Google Scholar 

  • Knox, A. K., Li, C., Vágújfalvi, A., Galiba, G., Stockinger, E. J., & Dubcovsky, J. (2008). Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Molecular Biology, 67, 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Kolmer, J. A., Anderson, J. A., & Flor, J. M. (2010). Chromosome location, linkage with simple sequence repeat markers and leaf rust resistance conditioned by gene Lr63 in wheat. Crop Science, 50, 2392–2395.

    Article  Google Scholar 

  • Krishnappa, G., Singh, A. M., Chaudhary, S., et al. (2017). Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS One, 12, e0174972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, S., Stack, R. W., Friesen, T. L., & Faris, J. D. (2007). Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology, 97, 592–597.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, J., Jaiswal, V., Kumar, A., Kumar, N., Mir, R. R., Kumar, S., Dhariwal, R., Tyagi, S., Khandelwal, M., Prabhu, K. V., Prasad, R., Balyan, H. S., & Gupta, P. K. (2011). Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crops Research, 123, 226–233.

    Article  Google Scholar 

  • Kuraparthy, V., Chhuneja, P., Dhaliwal, H. S., Kaur, S., Bowden, R. L., & Gill, B. S. (2007a). Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theoretical and Applied Genetics, 114, 1379–1389.

    Article  CAS  PubMed  Google Scholar 

  • Kuraparthy, V., Sood, S., Chhuneja, P., Dhaliwal, H. S., Kaur, S., Bowden, R. L., & Gill, B. S. (2007b). A cryptic wheat–Aegilops triuncialis translocation with leaf rust resistance gene Lr58. Crop Science, 47(5), 1995–2003.

    Article  CAS  Google Scholar 

  • Kuraparthy, V., Sood, S., Guedira, G. B., & Gill, B. S. (2011). Development of a PCR assay and marker-assisted transfer of leaf rust resistance gene Lr58 into adapted winter wheats. Euphytica, 180, 227–234.

    Article  Google Scholar 

  • Laido, G., Marone, D., Russo, M. A., Colecchia, S. A., Mastrangelo, A. M., De Vita, P., & Papa, R. (2014). Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PloS One, 9(4), e95211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Landjeva, S., Neumann, K., Lohwasser, U., & Börner, A. (2008). Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biologia Plantarum, 52, 259–266.

    Article  Google Scholar 

  • Leonova, I. N., Laikova, L. I., Popova, O. M., Unger, O., Börner, A., & Röder, M. S. (2007). Detection of quantitative trait loci for leaf rust resistance in wheat––T. timopheevii/T. tauschii introgression lines. Euphytica, 155(1), 79–86.

    Article  Google Scholar 

  • Leonova, I. N., Röder, M. S., Kalinina, N. P., & Budashkina, E. B. (2008). Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines. Russian Journal of Genetics, 44(12), 1431–1437.

    Article  CAS  Google Scholar 

  • Li, G. Q., Fang, T. L., Zhang, H. T., Xie, C. J., Li, H. J., Yang, T. M., Nevo, E., Fahima, T., Sun, Q. X., & Liu, Z. Y. (2009). Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 119, 531–539.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z. Y., Sun, Q. X., Ni, Z. F., Nevo, E., & Yang, T. M. (2002). Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 123, 21–29.

    Article  CAS  Google Scholar 

  • Liu, X. M., Brown-Guidera, G. L., Hatchett, J. H., Owuoche, J. O., & Chen, M. S. (2005). Genetic characterization and molecular mapping of a Hessian fly resistance gene transferred from T. turgidum ssp dicoccum to wheat. Theoretical and Applied Genetics, 111, 1308–1315.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Zhang, X., Pumphrey, M. O., Stack, R. W., Gill, B. S., & Anderson, J. A. (2006). Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Functional & Integrative Genomics, 6, 83–89.

    Article  CAS  Google Scholar 

  • Liu, Z., Zhu, J., Cui, Y., Liang, Y., Wu, H., Song, W., Liu, Q., Yang, T., Sun, Q., & Liu, Z. Y. (2012). Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theoretical and Applied Genetics, 124(6), 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Jia, L., Lu, L., Qin, D., Zhang, J., Guan, P., Ni, Z., Yao, Y., Sun, Q., & Peng, H. (2014). Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theoretical and Applied Genetics, 127, 2415–2432.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wang, L., Mao, S., Liu, K., Lu, Y., Wang, J., Wei, Y., & Zheng, Y. (2015). Genome-wide association study of 29 morphological traits in Aegilops tauschii. Scientific Reports, 5, 15562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, D. C., Hao, M., Li, A. L., Zhang, L. Q., Zheng, Y. L., & Mao, L. (2017a). Allopolyploidy and interspecific hybridization for wheat improvement. In A. S. Mason (Ed.), Polyploidy and Hybridization for Crop Improvement (pp. 27–52). CRC Press.

    Google Scholar 

  • Liu, W., Koo, D. H., Xia, Q., Li, C., Bai, F., Song, Y., et al. (2017b). Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theoretical and Applied Genetics, 130, 841–848.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Maccaferri, M., Chen, X., Laghetti, G., Pignone, D., Pumphrey, M., & Tuberosa, R. (2017c). Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum). Theoretical and Applied Genetics, 130(11), 2249–2270.

    Article  CAS  PubMed  Google Scholar 

  • Liu, K., Xu, H., Liu, G., Guan, P., Zhou, X., Peng, H., Yao, Y., Ni, Z., Sun, Q., & Du, J. (2018). QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 131, 839–849.

    Google Scholar 

  • Liu, J., Huang, L., Wang, C., Liu, Y., Yan, Z., Wang, Z., Xiang, L., Zhong, Z., Gong, F., Zheng, Y., Liu, D., & Wu, B. (2019). Genome-wide association study reveals novel genomic regions associated with high grain protein content in wheat lines derived from wild emmer wheat. Frontiers in Plant Science, 10, 464.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Huang, L., Li, T., Liu, Y., Yan, Z., Tang, G., Zheng, Y., Liu, D., & Wu, B. (2021). Genome-wide association study for grain micronutrient concentrations in wheat advanced lines derived from wild emmer. Frontiers in Plant Science, 12, 792.

    Google Scholar 

  • Lohwasser, U., Röder, M. S., & Börner, A. (2005). QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica, 143(3), 247–249.

    Article  CAS  Google Scholar 

  • Loughman, R., Lagudah, E. S., Trottet, M., Wilson, R. E., & Mathews, A. (2001). Septoria nodorum blotch resistance in Aegilops tauschii and its expression in synthetic amphiploids. Australian Journal of Agricultural Research, 52, 1393–1402.

    Article  Google Scholar 

  • Lu, M. J., Lu, Y. Q., Li, H. H., Pan, C. L., Guo, Y., Zhang, J. P., Yang, X. M., Li, X. Q., Liu, W. H., & Li, L. H. (2017). Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS One, 11, e0159577.

    Article  CAS  Google Scholar 

  • Lutz, J., Hsam, S. L. K., Limpert, E., & Zeller, F. J. (1995). Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity, 74, 152–156.

    Article  Google Scholar 

  • Ma, Z. Q., Gill, B. S., Sorrells, M. E., & Tanksley, S. D. (1993). RFLP markers linked to two Hessian fly-resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (Coss.) Schmal. Theoretical and Applied Genetics, 85, 750–754.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J., Luo, W., Zhang, H., Zhou, X. H., Qin, N. N., Wei, Y. M., Liu, Y. X., Jiang, Q. T., Chen, G. Y., Zheng, L., & Lan, X. J. (2017). Identification of quantitative trait loci for seedling root traits from Tibetan semi-wild wheat (Triticum aestivum subsp. tibetanum). Genome, 60, 1068–1075.

    Article  CAS  PubMed  Google Scholar 

  • Macer, R. C. F. (1966). The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. Hereditas, 2(suppl), 127–142.

    Google Scholar 

  • Mahjoob, M. M. M., Gorafi, Y. S. A., Kamal, N. M., Yamasaki, Y., Tahir, I. S. A., Matsuoka, Y., & Tsujimoto, H. (2021). Genome-wide association study of morpho-physiological traits in Aegilops tauschii to broaden wheat genetic diversity. Plants, 10, 211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malihipour, A., Gilbert, J., Fedak, G., Brûlé-Babel, A., & Cao, W. (2017). Mapping the A genome for QTL conditioning resistance to Fusarium head blight in a wheat population with Triticum timopheevii background. Plant Disease, 101(1), 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Marais, G. F., Wessels, W. G., Horn, M., & du Toit, F. (1998). Association of a stem rust resistance gene (Sr45) and two Russian wheat aphid resistance genes (Dn5 and Dn7) with mapped structural loci in common wheat. South African Journal of Plant and Soil, 15, 67–71.

    Article  Google Scholar 

  • Marais, G. F., Pretorius, Z. A., Wellings, C. R., McCallum, B., & Marais, A. S. (2005a). Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica, 143, 115–123.

    Article  CAS  Google Scholar 

  • Marais, G. F., McCallum, B., Snyman, J. E., Pretorius, Z. A., & Marais, A. S. (2005b). Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breeding, 124, 538–541.

    Article  CAS  Google Scholar 

  • Marais, G. F., McCallum, B., & Marais, A. S. (2008). Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breeding, 127, 340–345.

    Article  Google Scholar 

  • Marais, G. F., Bekker, T. A., Eksteen, A., McCallum, B., Fetch, T., & Marais, A. S. (2009a). Attempts to remove gametocidal genes co-transferred to wheat with rust resistance from Aegilops speltoides. Euphytica, 171, 71–85.

    Article  CAS  Google Scholar 

  • Marais, G. F., Marais, A. S., McCallum, B., & Pretorius, Z. (2009b). Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Science, 49, 871–879.

    Article  CAS  Google Scholar 

  • Marais, G. F., Badenhorst, P. E., Eksteen, A., & Pretorius, Z. A. (2010). Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica, 171, 15–22.

    Article  CAS  Google Scholar 

  • Martin-Sanchez, J. A., Gomez-Colmenarejo, M., Del Morel, J., Sin, E., Montes, M. J., Gonzalez-Belinchon, C., Lopez-Brana, L., & Delibes, A. (2003). A new hessian fly resistance gene (H30) transferred from wild grass Aegilops triuncialis to hexaploid wheat. Theoretical and Applied Genetics, 106, 1248–1255.

    Article  CAS  PubMed  Google Scholar 

  • Marone, D., Rodriguez, M., Saia, S., Papa, R., Rau, D., Pecorella, I., Laidò, G., Pecchioni, N., Lafferty, J., Rapp, M., Longin, F. H., & De Vita, P. (2020). Genome-wide association mapping of prostrate/erect growth habit in winter durum wheat. International Journal of Molecular Sciences, 21, 394.

    Article  CAS  PubMed Central  Google Scholar 

  • McCallum, B., Hiebert, C., Huerta-Espino, J., & Cloutier, S. (2012). Wheat leaf rust. In I. Sharma (Ed.), Disease resistance in wheat (pp. 33–62). Cab International.

    Chapter  Google Scholar 

  • McIntosh, R. A., & Gyarfas, J. (1971). Triticum timopheevi as a source of resistance to wheat stem rust. Zeit Pflaz, 66, 240–248.

    Google Scholar 

  • McIntosh, R. A., Dyck, P. L., The, T. T., Cusick, J. E., & Milne, D. L. (1984). Cytogenetical studies in wheat XIII. Sr35 – a third gene from Triticum monococcum for resistance to Puccinia graminis tritici. Zeit Pflaz, 92, 1–14.

    Google Scholar 

  • McIntosh, R. A., Wellings, C. R., & Park, R. F. (1995). Wheat rusts: An atlas of resistance genes. CSIRO Publishing.

    Book  Google Scholar 

  • McIntosh, R. A., Devos, K. M., Dubcovsky, J., Rogers, W. J., Morris, C. F., Appels, R., & Anderson, O. D. (2005). Catalogue of gene symbols: 2005 supplement. In KOMUGI–Integrated wheat science database. http://www.grs.nig.ac.jp/wheat/komugi

  • McIntosh, R. A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Somers, D. J., Appels, R., & Devos, K.M. (2008). Catalogue of gene symbols for wheat. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/

  • McIntosh, R. A., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., & Xia, X. C. (2009). Catalogue of gene symbols for wheat: 2009 Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2009.pdf

  • Merchuk-Ovnat, L., Barak, V., Fahima, T., Ordon, F., Lidzbarsky, G. A., Krugman, T., & Saranga, Y. (2016). Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Frontiers in Plant Science, 7, 452.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milner, S. G., Maccaferri, M., Huang, B. E., Mantovani, P., Massi, A., Frascaroli, E., Tuberosa, R., & Salvi, S. (2016). A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnology Journal, 14, 735–748.

    Article  CAS  PubMed  Google Scholar 

  • Miranda, L. M., Murphy, J. P., Marshall, D., & Leath, S. (2006). Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. To common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 113, 1497–1504.

    Article  CAS  PubMed  Google Scholar 

  • Miranda, L. M., Murphy, J. P., Marshall, D., Cowger, C., & Leath, S. (2007). Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 114, 1451–1456.

    Article  CAS  PubMed  Google Scholar 

  • Mobini, S. H., & Warkentin, T. D. (2016). A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cellular & Developmental Biology-Plant, 52(5), 530–536.

    Article  CAS  Google Scholar 

  • Mohler, V., Zeller, F. J., Wenzel, G., & Hsam, S. L. K. (2005). Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 142, 161–167.

    Article  CAS  Google Scholar 

  • Molero, G., Coombes, B., Joynson, R., Pinto, F., Piñera-Chávez, F. J., Rivera-Amado, C., Hall, A., & Reynolds, M. P. (2022). Exotic alleles contribute to heat tolerance in wheat under field conditions. bioRxiv. https://doi.org/10.1101/2022.02.09.479695

  • Mondal, S., Dutta, S., Crespo-Herrera, L., Huerta-Espino, J., Braun, H. J., & Singh, R. P. (2020). Fifty years of semi-dwarf spring wheat breeding at CIMMYT: Grain yield progress in optimum, drought and heat stress environments. Field Crops Research, 250, 107757.

    Article  Google Scholar 

  • Morca, A. F., Celik, A., Coskan, S., Santosa, A. I., & Akbas, B. (2022). Population analysis on tomato spotted wilt virus isolates inducing various symptoms on tomato, pepper, and Chenopodium album in Turkey. Physiological and Molecular Plant Pathology, 118, 101786.

    Article  CAS  Google Scholar 

  • Morris, C. F. (2021). Bread-baking quality and the effects of Glu-D1 gene introgressions in durum wheat (Triticum turgidum ssp. durum). Cereal Chemistry, 98, 1151–1158.

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi, A., Gul, A., Farooq, M., Rizwan, S., & Ahmad, I. (2008). Rebirth of synthetic hexaploids with global implications for wheat improvement. Australian Journal of Agricultural Research, 59, 391–398.

    Article  Google Scholar 

  • Munns, R., Rebetzke, G. J., Husain, S., James, R. A., & Hare, R. A. (2003). Genetic control of sodium exclusion in durum wheat. Australian Journal of Agricultural Research, 54, 627–635.

    Article  CAS  Google Scholar 

  • Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025–1043.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., James, R. A., Xu, B., Athman, A., Conn, S. J., Jordans, C., Byrt, C. S., Hare, R. A., Tyerman, S. D., Tester, M., Plett, D., & Gilliham, M. (2012). Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 30, 360–364.

    Article  CAS  PubMed  Google Scholar 

  • Mutlu, Ç., Koca, A. S., & Zeybekoğlu, Ü. (2017). Some additional notes on density and distribution of Cercopis sanguinolenta (Scopoli, 1763) (Hem.: Cercopidae) in cereals cultivated areas of Southeast Anatolia Region, Turkey. International Journal of Agriculture and Wildlife Science, 3(2), 80–86.

    Google Scholar 

  • Mutlu, C., Ciftci, V., Yeken, M. Z., & Mamay, M. (2020). The influence of different intensities of chalky spot damage on seed germination, grain yield and economic returns of red lentil. Phytoparasitica, 48(2), 191–202.

    Article  CAS  Google Scholar 

  • Nadeem, M. A., Yeken, M. Z., Shahid, M. Q., Habyarimana, E., Yılmaz, H., Alsaleh, A., Hatipoglu, R., Cilesiz, Y., Khawar, K. M., Ludidi, N., Ercisli, S., Aasim, M., Karakoy, T., & Baloch, F. S. (2021). Common bean as a potential crop for future food security: An overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. Biotechnology & Biotechnological Equipment, 35, 758–786.

    Article  CAS  Google Scholar 

  • Nelson, J. C., Andreescu, C., Breseghello, F., Finney, P. L., Gualberto, D. G., Bergman, C. J., Pena, R. J., Perretant, M. R., Leroy, P., Qualset, C. Q., & Sorrells, M. E. (2006). Quantitative trait locus analysis of wheat quality traits. Euphytica, 149, 145–159.

    Article  CAS  Google Scholar 

  • Nelson, J. C., Sorrells, M. E., Van Deynze, A. E., Lu, Y. H., Atkinson, M., Bernard, M., Leroy, P., Faris, J. D., & Anderson, J. A. (1995). Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 141, 721–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nocento, F., Gazza, L., & Pasquini, M. (2007). Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica, 155, 329–336.

    Article  CAS  Google Scholar 

  • Nsarellah, N., Amri, A., Nachit, M. M., El Bouhssini, M., & Lhaloui, S. (2003). New durum wheat with Hessian fly resistance from Triticum araraticum and T. carthlicum in Morocco. Plant Breeding, 122, 435–437.

    Article  Google Scholar 

  • O’Connor, D. J., Wright, G. C., Dieters, M. J., et al. (2013). Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut science, 40(2), 107–114.

    Google Scholar 

  • Olmos, S., Distelfeld, A., Chicaiza, O., et al. (2003). Precise mapping of a locus affecting grain protein content in durum wheat. Theoretical and Applied Genetics, 107(7), 1243–1251.

    Article  CAS  PubMed  Google Scholar 

  • Oliver, R. E., Stack, R. W., Miller, J. D., & Cai, X. (2007). Reaction of wild emmer wheat accessions to Fusarium head blight. Crop Science, 47, 893–899.

    Article  Google Scholar 

  • Oliver, R. E., Cai, X., Friesen, T. L., Halley, S., Stack, R. W., & Xu, S. S. (2008). Evaluation of Fusarium head blight resistance in tetraploid wheat (Triticum turgidum L.). Crop Science, 48, 213–222.

    Article  Google Scholar 

  • Olson, E. L., Brown-Guedira, G., Marshall, D., Stack, E., Bowden, R. L., Jin, Y., Rouse, M., & Pumphrey, M. O. (2010). Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Science, 50, 1823–1830.

    Article  CAS  Google Scholar 

  • Palacıoğlu, G., Özer, G., Yeken, M. Z., Çiftçi, V., & Bayraktar, H. (2021). Resistance sources and reactions of common bean (Phaseolus vulgaris L.) cultivars in Turkey to anthracnose disease. Genetic Resources and Crop Evolution, 68(8), 3373–3381.

    Article  CAS  Google Scholar 

  • Patil, R., Oak, M., Tamhankar, S., et al. (2008). Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum). Mol Breeding, 21, 485–496.

    Article  Google Scholar 

  • Peleg, Z., Cakmak, I., Ozturk, L., et al. (2009). Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theoretical and Applied Genetics, 119, 353–369.

    Article  CAS  PubMed  Google Scholar 

  • Peng, J., Korol, A. B., Fahima, T., Röder, M. S., Ronin, Y. I., Li, Y. C., & Nevo, E. (2000). Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: Genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Research, 10, 1509–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen, S., Lyerly, J. H., Worthington, M. L., Parks, W. R., Cowger, C., Marshall, D. S., et al. (2015). Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theoretical and Applied Genetics, 128, 303–312.

    Article  CAS  PubMed  Google Scholar 

  • Pourkhorshid, Z., Dadkhodaie, A., & Niazi, A. (2022). Molecular mapping of the Aegilops speltoides-derived leaf rust resistance gene Lr36 in common wheat (Triticum aestivum). Euphytica, 218(3), 1–9.

    Article  CAS  Google Scholar 

  • Pozniak, C. J., Knox, R. E., & Clarke, F. R. (2007). Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theoretical and Applied Genetics, 114(3), 525–537.

    Article  CAS  PubMed  Google Scholar 

  • Prat, N., Buerstmayr, M., Steiner, B., Robert, O., & Buerstmayr, H. (2014). Current knowledge on resistance to Fusarium head blight in tetraploid wheat. Molecular Breeding, 34, 1689–1699.

    Article  CAS  Google Scholar 

  • Prat, N., Guilbert, C., Prah, U., Wachter, E., Steiner, B., Langin, T., Robert, O., & Buerstmayr, H. (2017). QTL mapping of Fusarium head blight resistance in three related durum wheat populations. Theoretical and Applied Genetics, 130, 13–27.

    Article  PubMed  Google Scholar 

  • Pu, Z., Pei, Y., Yang, J., et al. (2018). A QTL located on chromosome 3D enhances the selenium concentration of wheat grain by improving phytoavailability and root structure. Plant and Soil, 425(1), 287–296.

    Article  CAS  Google Scholar 

  • Pu, Z. E., Yu, M., He, Q. Y., et al. (2014). Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. Journal of Integrative Agriculture, 13, 2322–2329.

    Article  CAS  Google Scholar 

  • Qi, L. L., Pumphrey, M. O., Friebe, B., Chen, P. D., & Gill, B. S. (2008). Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 117, 1155–1166.

    Article  CAS  PubMed  Google Scholar 

  • Qin, P., Lin, Y., Hu, Y., Liu, K., Mao, S., Li, Z., Wang, J., Liu, Y., Wei, Y., & Zheng, Y. (2016). Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genetics and Molecular Biology, 39, 398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qui, Y. C., Zhou, R. H., Kong, X. Y., Zhang, S. S., & Jia, J. Z. (2005). Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 111, 1524–1531.

    Article  CAS  Google Scholar 

  • Rasheed, A., Safdar, T., Gul-Kazi, A., Mahmood, T., Akram, Z., & Mujeeb-Kazi, A. (2012). Characterization of HMW-GS and evaluation of their diversity in morphologically elite synthetic hexaploid wheats. Breeding Science, 62, 365–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reader, S. M., & Miller, T. E. (1991). The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 53, 57–60.

    Article  Google Scholar 

  • Reynolds, M., Foulkes, J., Furbank, R., Griffiths, S., King, J., Murchie, E., Parry, M., & Slafer, G. (2012). Achieving yield gains in wheat. Plant, Cell and Environment, 35, 1799–1823.

    Article  PubMed  Google Scholar 

  • Riley, R., Chapman, V., & Johnson, R. (1968). The incorporation of alien disease resistance to wheat by genetic interference with regulation of meiotic chromosome synapsis. Genetical Research, Cambridge, 12, 199–219.

    Article  Google Scholar 

  • Roncallo, P. F., Cervigni, G. L., Jensen, C., et al. (2012). QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 185(1), 77–92.

    Article  Google Scholar 

  • Rong, J. K., Millet, E., Manisterski, J., & Feldman, M. (2000). A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 115, 121–126.

    Article  CAS  Google Scholar 

  • Rosewarne, G. M., Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Lan, C. X., & He, Z. H. (2013). Quantitative trait loci of stripe rust resistance in wheat. Theoretical and Applied Genetics, 126, 2427–2449.

    Article  CAS  PubMed  Google Scholar 

  • Rowland, G. G., & Kerber, E. R. (1974). Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Canadian Journal of Genetics and Cytology, 16, 137–144.

    Article  Google Scholar 

  • Saleh, A., İmren, M., Özer, G., Yeken, M. Z., Çiftçi, V., & Dababat, A. A. (2021). Host suitability of different common bean varieties in a growth room to the plant-parasitic nematodes Pratylenchus thornei and P. neglectus. Nematology, 23(10), 1197–1203.

    Article  Google Scholar 

  • Salina, E. A., Leonova, I. N., Efremova, T. T., & Röder, M. S. (2006). Wheat genome structure: Translocations during the course of polyploidization. Functional & Integrative Genomics, 6(1), 71–80.

    Article  CAS  Google Scholar 

  • Sardesai, N., Nemacheck, J. A., Subramanyam, S., & Williams, C. E. (2005). Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theoretical and Applied Genetics, 111, 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  • Schmolke, M., Mohler, V., Hartl, L., Zeller, F. J., & Hsam, S. L. K. (2012). A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Molecular Breeding, 29, 449–456.

    Article  CAS  Google Scholar 

  • Shi, A. N., Leath, S., & Murphy, J. P. (1998). A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology, 88, 144–147.

    Article  CAS  PubMed  Google Scholar 

  • Shiferaw, B., Smale, M., Braun, H. J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5, 291–317.

    Article  Google Scholar 

  • Singh, R. P., Nelson, J. C., & Sorrells, M. E. (2000). Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 40, 1148–1155.

    Article  CAS  Google Scholar 

  • Singh, S., Franks, C. D., Huang, L., Brown-Guedira, G. L., Marshall, D. S., Gill, B. S., & Fritz, A. (2004). Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theoretical and Applied Genetics, 108, 586–591.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K., Chhuneja, P., Ghai, M., Kaur, S., Goel, R. K., Bains, N. S., Keller, B., & Dhaliwal, H. S. (2007). Molecular mapping of leaf and stripe rust resistance genes in Triticum monococcum and their transfer to hexaploid wheat. In H. Buck, J. E. Nisi, & N. Solomon (Eds.), Wheat production in stressed environments (pp. 779–786). Springer.

    Chapter  Google Scholar 

  • Singh, N., Steeves, R., Chen, M. S., El Bouhssini, M., Pumphrey, M., & Poland, J. (2020). Registration of Hessian fly-resistant germplasm KS18WGRC65 carrying H26 in hard red winter wheat ‘Overley’ background. Journal of Plant Registrations, 14, 206–209.

    Article  Google Scholar 

  • Somers, D. J., Fedak, G., Clarke, J., & Cao, W. (2006). Mapping of FHB resistance QTLs in tetraploid wheat. Genome, 49, 1586–1593.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasa, J., Arun, B., Mishra, V. K., et al. (2014). Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theoretical and Applied Genetics, 127, 1643–1651.

    Article  CAS  PubMed  Google Scholar 

  • Stack, R. W., Miller, J. D., & Joppa, L. R. (2003). A wild emmer having multiple genes for resistance to Fusarium head blight. In N.E. Pogna, M. Romano, E. A. Pogna, & E. Galteno (Eds.), Proceeding of the tenth international wheat genetics symposium, Paestum, Italy, pp. 1257–1259.

    Google Scholar 

  • Stetter, M. G., Zeitler, L., Steinhaus, A., et al. (2016). Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Frontiers in Plant Science, 7, 816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, Q., Wei, Y., Ni, Z., Xie, C., & Yang, T. (2002). Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breeding, 121, 539–541.

    Article  CAS  Google Scholar 

  • Tabbita, F., Pearce, S., & Barneix, A. J. (2017). Breeding for increased grain protein and micronutrient content in wheat: Ten years of the GPC-B1 gene. Journal of Cereal Science, 73, 183–191.

    Article  CAS  Google Scholar 

  • Tadesse, W., Schmolke, M., Hsam, S. L. K., Mohler, V., Wenzel, G., & Zeller, F. J. (2007). Molecular mapping of resistance genes to tan spot (Pyrenophora tritici-repentis race 1) in synthetic wheat lines. Theoretical and Applied Genetics, 114, 855–862.

    Article  CAS  PubMed  Google Scholar 

  • Tadesse, W., Sanchez-Garcia, M., Assefa, S. G., Amri, A., Bishaw, Z., Ogbonnaya, F. C., & Baum, M. (2019). Genetic gains in wheat Breeding and its role in feeding the world. Crop Breeding, Genetics and Genomics, 1, e190005.

    Google Scholar 

  • Talini, R. F., Brandolini, A., Miculan, M., Brunazzi, A., Vaccino, P., Pè, M. E., & Dell'Acqua, M. (2020). Genome-wide association study of agronomic and quality traits in a world collection of the wild wheat relative Triticum urartu. The Plant Journal, 102(3), 555–568.

    Article  CAS  PubMed  Google Scholar 

  • Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277, 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  • Tekin, M., Cengiz, M. F., Abbasov, M., Aksoy, A., Canci, H., & Akar, T. (2018). Comparison of some mineral nutrients and vitamins in advanced hulled wheat lines. Cereal Chemistry, 95, 436–444.

    Article  CAS  Google Scholar 

  • Tekin, M., Cat, A., Akan, K., Catal, M., & Akar, T. (2021). A new virulent race of wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) on the resistance gene Yr5 in Turkey. Plant Disease, 105(10), 3292.

    Article  Google Scholar 

  • The, T. T. (1973). Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploidy wheat. Nature: New Biology, 241, 256.

    CAS  Google Scholar 

  • The, T. T., Latter, B. D. H, McIntosh, C. A., Ellison, F. W., Brennan, P. S., Fisher, J., Hollamby, G. J., Rathjen, A. J., & Wilson, R. E. (1988). Grain yields of near-isogenic lines with added genes for stem rust resistance. In T. E. Miller & R. M. D. Koebner (Ed.) Proceeding of the 7th international wheat genetics symposium, Cambridge, UK. 13–19 July 1988. Institute of Plant Sciences Research, Cambridge, pp. 901–906.

    Google Scholar 

  • Tiwari, V. K., Rawat, N., Chhuneja, P., et al. (2009). Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. The Journal of Heredity, 100, 771–776.

    Article  CAS  PubMed  Google Scholar 

  • Uauy, C., Brevis, J. C., Chen, X., Khan, I., Jackson, L., Chicaiza, O., Distelfeld, A., Fahima, T., & Dubcovsky, J. (2005). High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied Genetics, 112, 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., & Dubcovsky, J. (2006). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314, 1298–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah, N., Asif, M., Badshah, H., Bashir, T., & Mumtaz, A. S. (2016). Introgression lines obtained from the cross between Triticum aestivum and Triticum turgidum (durum wheat) as a source of leaf and stripe (yellow) rust resistance genes. Turkish Journal of Biology, 40(3), 547–553.

    Article  CAS  Google Scholar 

  • Ullah, S., Bramley, H., Mahmood, T., & Trethowan, R. (2021a). Implications of emmer (Triticum dicoccon Schrank) introgression on bread wheat response to heat stress. Plant Science, 304, 110738.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, S., Randhawa, I. A., & Trethowan, R. (2021b). Genome-wide association study of multiple traits linked to heat tolerance in emmer-derived hexaploid wheat genotypes. Molecular Breeding, 41, 29.

    Article  CAS  Google Scholar 

  • Valkoun, J., Kucerova, D., & Bartos, P. (1986). Transfer of leaf rust resistance from Triticum monococcum to hexaploid wheat. Z Pflanzenzüchtg, 96, 271–278.

    Google Scholar 

  • Vasu, K., Hayit-Singh, S., Chhuneja, P., Singh, S., & Dhaliwal, H. S. (2000). Molecular tagging of Karnal bunt resistance genes of Triticum monococcum L. transferred to Triticum aestivum L. Crop Improvement, 27, 33–42.

    Google Scholar 

  • Velu, G., Tutus, Y., Gomez-Becerra, H. F., et al. (2017). QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant and Soil, 411(1), 81–99.

    Article  CAS  Google Scholar 

  • Vikas, V. K., Sivasamy, M., Jayaprakash, P., et al. (2021). Customized speed breeding as a potential tool to advance generation in wheat. Indian J Genet Plant Breed, 81(02), 199–207.

    Google Scholar 

  • Vishwakarma, M. K., Mishra, V. K., Gupta, P. K., Yadav, P. S., Kumar, H., & Joshi, A. K. (2014). Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic plains through marker assisted backcross breeding. Current Plant Biology, 1, 60–67.

    Article  Google Scholar 

  • Vishwakarma, M. K., Arun, B., Mishra, V. K., Yadav, P. S., Kumar, H., & Joshi, A. K. (2016). Marker-assisted improvement of grain protein content and grain weight in Indian bread wheat. Euphytica, 208, 313–321.

    Article  CAS  Google Scholar 

  • Wang, M., Wan, A., & Chen, X. (2022). Race characterization of Puccinia striiformis f. sp. tritici in the United States from 2013 to 2017. Plant Disease, 106, 1462–1473.

    Article  PubMed  Google Scholar 

  • Wang, T., Xu, S. S., Harris, M. O., Hu, J., Liu, L., & Cai, X. (2006). Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theoretical and Applied Genetics, 113(4), 611–618.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Yan, N., Chen, H., Li, S., Hu, H., Lin, Y., Shi, H., Zhou, K., Jiang, X., Yu, S., Li, C., Chen, G. D., Yang, Z., & Liu, Y. (2021). Genome-wide association study of kernel traits in Aegilops tauschii. Frontiers in Genetics, 12, 651785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson, A., Ghosh, S., & Williams, M. J. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nat plants, 4(1), 23.

    Article  PubMed  Google Scholar 

  • Weng, Y., Li, W., Devkota, R. N., & Rudd, J. C. (2005). Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theoretical and Applied Genetics, 110, 462–469.

    Article  CAS  PubMed  Google Scholar 

  • Wiersma, A. T., Pulman, J. A., Brown, L. K., Cowger, C., & Olson, E. L. (2017). Identification of Pm58 from Aegilops tauschii. Theoretical and Applied Genetics, 130, 1123–1133.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, A. S. (1876). Wheat and rye hybrids. Trans Proc Bot Soc (Edinb), 12, 286–288.

    Article  Google Scholar 

  • Xu, S. S., Friesen, T. L., & Mujeeb-Kazi, A. (2004). Seedling resistance to tan spot and Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Science, 44, 2238–2245.

    Article  Google Scholar 

  • Xu, H., Yao, G., Xiong, L., Yang, L., Jiang, Y., Fu, B., Zhao, W., Zhang, Z., Zhang, C., & Ma, Z. (2008). Identification and mapping of pm2026: A recessive powdery mildew resistance gene in an einkorn (Triticum monococcum L.) accession. Theoretical and Applied Genetics, 117, 471–477.

    Article  CAS  PubMed  Google Scholar 

  • Xue, F., Ji, W., Wang, C., Zhang, H., & Yang, B. (2012). High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theoretical and Applied Genetics, 124(8), 1549–1560.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J., Xue, W. T., Yang, R. Z., et al. (2018). Quantitative trait loci conferring grainselenium nutrient in durum wheat × wild emmer wheat RIL population. Czech Journal of Genetics and Plant Breeding, 54, 52–58.

    Article  CAS  Google Scholar 

  • Yao, G., Zhang, J., Yang, L., Xu, H., Jiang, Y., Xiong, L., Zhang, C., Zhengzhi, Z., Ma, Z., & Sorrells, M. E. (2007). Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theoretical and Applied Genetics, 114, 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Yayla, E., Güleç, T., Sönmez, M. E., Demir, B., Zeki, M. U. T., & Aydin, N. (2021). Development of bread wheat genotypes tolerant to pre-harvest sprouting by speed breeding technology and marker-assisted backcross method. COMU J Agric Fac, 9(20), 369–377.

    Google Scholar 

  • Yeken, M. Z., Özer, G., Çelik, A., & Çiftçi, V. (2018). Identification of genes related to resistance for bean common mosaic virus and bean common mosaic necrosis virus in commercial common bean cultivars in Turkey. Turkish Journal of Agricultural and Natural Sciences, 5(4), 613–619.

    Google Scholar 

  • Yeken, M. Z., Özer, G., Çelik, A., & Çiftçi, V. (2019). Determination of the resistance to the bean rust (Uromyces appendiculatus) in registered bean varieties by using SCAR markers. Turkish Journal of Agricultural and Natural Sciences, 6, 410–416.

    Google Scholar 

  • Yu, G., Zhang, Q., Friesen, T. L., Rouse, M. N., Jin, Y., Zhong, S., et al. (2015). Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. Theoretical and Applied Genetics, 128, 431–443.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. Q., Liu, D. C., Yan, Z. H., Lan, X. J., Zheng, Y. L., & Zhou, Y. H. (2004). Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China (Series C: Life Sciences), 47, 553–561.

    Google Scholar 

  • Zhang, W., & Dubcovsky, J. (2008). Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theoretical and Applied Genetics, 116, 635–645.

    Google Scholar 

  • Zhang, H. T., Guan, H. Y., Li, J. T., Zhu, J., Xie, C. J., Zhou, Y. L., Duan, X. Y., Yang, T., Sun, Q. X., & Liu, Z. Y. (2010). Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 121, 1613–1621.

    Article  PubMed  Google Scholar 

  • Zhang, D., Zhu, K., Dong, L., Liang, Y., Li, G., Fang, T., Guo, G. H., Wu, Q. H., et al. (2019). Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. The Crop Journal, 7(6), 761–770.

    Article  Google Scholar 

  • Zhang, G. S., Zhao, Y. Y., Kang, Z. S., & Zhao, J. (2020). First report of a Puccinia striiformis f. sp. tritici race virulent to wheat stripe rust resistance gene Yr5 in China. Plant Disease, 104, 284.

    Article  Google Scholar 

  • Zhao, M., Leng, Y., Chao, S., et al. (2018). Molecular mapping of QTL for Fusarium head blight resistance introgressed into durum wheat. Theoretical and Applied Genetics, 131(9), 1939–1951.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Lv, L., Li, J., Ma, F., Bai, S., Zhou, Y., Zhang, D., Li, S., & Song, C. P. (2021). Genome-wide association study of grain shapes in Aegilops tauschii. Euphytica, 217, 144.

    Article  CAS  Google Scholar 

  • Zhu, Z., Zhou, R., Kong, X., Dong, Y., & Jia, J. (2005a). Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 48, 585–590.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L. C., Smith, C. M., Fritz, A., Boyko, E., Voothuluru, P., & Gill, B. S. (2005b). Inheritance and molecular mapping of new green bug resistance genes in wheat germ plasms derived from Aegilops tauschii. Theoretical and Applied Genetics, 111, 831–837.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and prospects of association mapping in plants. The Plant Genome, 1, 5–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tekin, M., Emiralioğlu, O., Yeken, M.Z., Nadeem, M.A., Çiftçi, V., Baloch, F.S. (2022). Wild Relatives and Their Contributions to Wheat Breeding. In: Zencirci, N., Ulukan, H., Baloch, F.S., Mansoor, S., Rasheed, A. (eds) Ancient Wheats. Springer, Cham. https://doi.org/10.1007/978-3-031-07285-7_9

Download citation

Publish with us

Policies and ethics