Skip to main content
Log in

Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Harjit-Singh, Friebe B, Gill BS, Dhaliwal HS (2002) Ph I induced transfer of leaf and stripe rust resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176

    Article  CAS  Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88(1):97–101

    Article  CAS  Google Scholar 

  • Chen PD, Sun WX, Liu WX, Yuan JH, Liu ZH, Wang SL, Liu DJ (1998) Development of wheat- Leymus racemosus translocation lines with scab resistance. In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium. University Extension Press, Saskatoon, Canada 2:32–34

  • Chen PD, Liu WX, Yuan JH, Wang X, Zhou B, Wang SL, Zhang SZ, Feng YG, Yang BJ, Liu GX, Liu DJ, Qi L, Zhang P, Friebe B, Gill BS (2005) Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor Appl Genet 111(5):941–948

    Article  PubMed  Google Scholar 

  • Chen XM, Moore M, Milus EA, Long DL, Line RF, Marshall D, Jackson L (2002) Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis 86:39–46

    Article  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen X, Penman L (2006) Stripe rust epidemic and races of Puccinia Striiformis in the United States in 2005. APS Abstracts. July 29–Aug 2, Quebec City, Quebec, Canada 96:S23

  • Dhaliwal HS, Harjit-Singh, Gill KS, Randhawa HS (1993) Evaluation and cataloguing of wheat genetic resources for disease resistance and quality. In: Damania AB (ed) Biodiversity and wheat improvement, Wiley, Chichester, pp 123–140

  • Dhaliwal HS, Harjit-Singh, Gupta S, Bagga PS, Gill KS (1991) Evaluation of Aegilops and wild Triticum species for resistance to leaf rust (Puccinia recondita f.sp. tritici) of wheat. Intern J Trop Agric 9(2):118–121

  • Dilbirligi M, Erayman M Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660

    Article  CAS  Google Scholar 

  • Dvorak J (1977) Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol 19:133–141

    Google Scholar 

  • Endo TR (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica in common wheat. J Hered 79:366–370

    Google Scholar 

  • Endo TR (1994) Structural changes of rye chromosome 1R induced by gametocidal chromosome. Jpn J Genet 69:11–19

    Article  Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–669

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Google Scholar 

  • Friebe B, Jiang J, Tuleen N, Gill BS (1995) Standard karyotype of Aegilops umbellulatum and the characterization of the derived chromosome addition and translocations line in common wheat. Theor Appl Genet 90:150–156

    Article  Google Scholar 

  • Gale MD, Miller TE (1987) The introduction of alien genetic variation into wheat. In: Lupton FGH (ed) Wheat breeding: its scientific basis, Chapman & Hall, London pp 173–210

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Gill BS, Raupp WJ (1996) Homoeologous group 5. Progress in genome mapping of wheat and related grasses. In: McGuire PE, Qualset CO (eds) Joint proceedings of the 5th and 6th public workshops of the international Triticeae mapping initiative (ITMI). Genetic Resource Conservation Program, University of California, CA, pp 38–50

  • Harjit-Singh, Dhaliwal HS, Kaur J, Gill KS (1993) Rust resistance and chromosome pairing in Triticum × Aegilops crosses. Wheat Inf Serv 76:23–26

    Google Scholar 

  • Harjit-Singh, Dhaliwal HS (2000) Intraspecific genetic diversity for resistance to wheat rusts in wild Triticum and Aegilops species. Wheat Inf Serv 90:21–30

  • Harjit-Singh, Grewal TS, Dhaliwal HS, Pannu PPS, Bagga PS (1998) Sources of leaf rust and stripe rust resistance in wild relatives of wheat. Crop Improv 256(1):26–33

  • Hiebert C, Thomas J, McCallum B (2005) Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method. Theor Appl Genet 110:1453–1457

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Jiang J, Friebe B, Dhaliwal HS, Martin TJ, Gill BS (1993) Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor Appl Genet 86:41–48

    Article  CAS  Google Scholar 

  • Jolly CJ, Glenn GM, Rahman S (1996) GSP-1 genes are linked to the grain hardness locus (Ha) on wheat chromosome 5D. Proc Natl Acad Sci USA 93:2408–2413

    Article  PubMed  CAS  Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Gill BS (2007) Identification and mapping of tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114(2):285–294

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid organization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    Article  PubMed  CAS  Google Scholar 

  • Long DL, Kolmer JA, Leonard KJ, Hughes ME (2000) Physiologic specialization of Puccinia triticina on wheat in the United States in 2000. Plant Dis 86:981–986

    Article  Google Scholar 

  • Lukaszewski AJ (1995) Physical distribution of translocation breakpoints in homoeologous recombination induced by the absence of the Ph1 gene in wheat and triticale. Theor Appl Genet 90:714–719

    Article  Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225

    Article  CAS  Google Scholar 

  • Lukaszewski AJ (2006) Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci 46:2183–2194

    Article  CAS  Google Scholar 

  • Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski AJ, Lapinski B, Rybka K (2005) Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogen Genome Res 109:373–377

    Article  CAS  Google Scholar 

  • Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS (2005) Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed 124:538–541

    Article  CAS  Google Scholar 

  • Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR (2002) Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Res 10:349–357

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts, an atlas of resistance genes. CSIRO, Melbourne

    Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Anderson OA (2005) Catalogue of gene symbols for wheat: 2005 supplement http://www.wheat.pw.usda.gov

  • Mettin D, Bluthner WD, Schlegel G (1973) Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. In: Sears ER, Sears LMS (eds) Proceedings of the fourth international wheat genet symposium alien genet material, pp 179–184

  • Milus EA, Seyran E, McNew R (2006) Aggressiveness of Puccinia striiformis f. sp. tritici isolates in the South-Central United States. Plant Dis 90:847–852

    Article  Google Scholar 

  • Mukai Y, Endo TR, Gill BS (1991) Physical mapping of the 18S.26S rRNA multigene family in common wheat: identification of a new locus. Chromosoma 100:71–78

    Article  CAS  Google Scholar 

  • Mukai Y, Friebe B, Hatchet JH, Yamamoto M, Gill BS (1993) Molecular cytogentic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95

    Article  Google Scholar 

  • Nasuda S, Friebe B, Busch W, Kynast RG, Gill BS (1998) Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat-Ae. comosa translocations in wheat improvement. Theor Appl Genet 96:780–785

    Article  CAS  Google Scholar 

  • Nelson JC, Sorrels ME, van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5 and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Obert DE, Fritz AK, Moran JL, Singh S, Rudd JC, Menz MA (2005) Identification and molecular tagging of a gene from PI289824 conferring resistance to leaf rust (Puccinia triticina) in wheat. Theor Appl Genet 110:1439–1444

    Article  PubMed  CAS  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagnostic scale for estimating rust severity on leaves and stem of cereals. Can J Res Sect C bot Sci 26:496–500

    Google Scholar 

  • Qi LL, Gill BS (2001) High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Theor Appl Genet 103:998–1006

    Article  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168(2):701–712

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15(1):3–19

    Article  PubMed  CAS  Google Scholar 

  • Riley R, Chapman V, Johnson R (1968a) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384

    Article  Google Scholar 

  • Riley R, Chapman V, Johnson R (1968b) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res Camb 12:198–219

    Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Rogowsky PM, Sorrels ME, Shepherd KW, Langridge P (1993) Characterisation of wheat-rye recombinants with RFLP and PCR probes. Theor Appl Genet 83:489–494

    Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Missouri Agric Exp Stn Bull 572:1–58

    Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–22

    Google Scholar 

  • Sears ER (1961) Identification of the wheat chromosome carrying leaf rust resistance from Aegilops umbellulata. Wheat Inf Serv 12:12–13

    Google Scholar 

  • Sears ER (1966a) Nullisomic–tetrasomic combinations in hexaploid wheat. Univ Mo Agric Exp Stn Bull 572:1–58

    Google Scholar 

  • Sears ER (1966b) Chromosome mapping with the aid of telocentrics. In: MacKey J (ed) Proceedings of the second international wheat genet symp hereditas, Suppl 2:370–381

  • Sears ER (1972) Chromosome engineering in wheat. Stadler Symp, Columbia, Missouri 4:23–38

  • Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ (eds) Wheat science today and tomorrow. pp 75–89

  • Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31

    Article  Google Scholar 

  • Tranquilli G, Lijavetzky D, Muzzi G, Dubcovsky J (1999) Genetic and physical characterization of grain-texture related loci in diploid wheat. Mol Gen Genet 262:846–850

    Article  PubMed  CAS  Google Scholar 

  • Turner M, Mukai Y, Leroy P, Charef B, Appels R, Rahman S (1999) The Ha locus of wheat: Identification of a polymorphic region for tracing grain hardness in crosses. Genome 42:1242–1250

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77(3):353–359

    Article  CAS  Google Scholar 

  • Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Robert McIntosh for providing the new gene designations for the rust resistant genes reported in the present study. We extend a special note of thanks to Duane Wilson and John Raupp for their excellent technical assistance. We also thank Bernd Friebe and Li Huang for their helpful discussions and Xianming Chen for race determination of P. striiformis. This paper is contribution number 07–40-J from the Kansas Agricultural Experimentation Station, Kansas State University, Manhattan, Kansas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikram S. Gill.

Additional information

Communicated by P. Langridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuraparthy, V., Chhuneja, P., Dhaliwal, H.S. et al. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114, 1379–1389 (2007). https://doi.org/10.1007/s00122-007-0524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0524-2

Keywords

Navigation