Skip to main content
Log in

Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Flour colour measured as a Commission Internationale de l’Eclairage (CIE) b* value is an important wheat quality attribute for a range of end-products, with genes and enzymes of the xanthophyll biosynthesis pathway providing potential sources of trait variation. In particular, the phytoene synthase 1 (Psy1) gene has been associated with quantitative trait loci (QTL) for flour b* colour variation. Several Psy1 alleles on chromosome 7A (Psy-A1) have been described, along with proposed mechanisms for influencing flour b* colour. This study sought to identify evolutionary relationships among known Psy-A1 alleles, to establish which Psy-A1 alleles are present in selected Australian wheat genotypes and establish their role in controlling variation for flour b* colour via QTL analysis. Phylogenetic analyses showed seven of eight known Psy-A1 alleles clustered with sequences from T. urartu, indicating the majority of alleles in Australian germplasm share a common evolutionary lineage. In this regard, Psy-A1a, Psy-A1c, Psy-A1e and Psy-A1p were common in Australian genotypes with flour b* colour ranging from white to yellow. In contrast Psy-A1s was found to be related to A. speltoides, indicating a possible A–B genome translocation during wheat polyploidisation. A new allele Psy-A1t (similar to Psy-A1s) was discovered in genotypes with yellow flour, with QTL analyses indicating Psy-A1t strongly influences flour b* colour in Australian germplasm. QTL LOD value maxima did not coincide with Psy-A1 gene locus in two of three populations and, therefore, Psy-A1a and Psy-A1p may not be involved in flour colour. Instead two other QTL were identified, one proximal and one distal to Psy-A1 in Australian wheat lines. Comparison of Psy-A1t and Psy-A1p predicted protein sequences suggests differences in putative sites for post-translational modification may influence enzyme activity and subsequent xanthophyll accumulation in the wheat endosperm. Psy-A1a and Psy-A1p were not involved in flour b* colour variation, indicating other genes control variation on chromosome 7A in some wheat genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bariana HS, Parry N, Barclay IR, Loughman R, McLean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Belyayev A, Raskina O, Korol A, Nevo E (2000) Coevolution of A and B genomes in allotetraploid Triticum dicoccoides. Genome 43:1021–1026

    PubMed  CAS  Google Scholar 

  • Botella-Pavía P, Rodríguez-Concepción M (2006) Carotenoid biotechnology in plants for nutritionally improved foods. Physiol Plant 126:369–381

    Article  Google Scholar 

  • Butler D, Gilmour AR (2001) SAMM reference manual. QDPI, Toowoomba

    Google Scholar 

  • Caldwell KS, Dvorak J, Lagudah ES, Akhunov E, Luo MC, Wolters P, Powell W (2004) Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor. Genetics 167:941–947

    Article  PubMed  CAS  Google Scholar 

  • Cenci A, Somma S, Chantret N, Dubcovsky J, Blanco A (2004) PCR identification of durum wheat BAC clones containing genes coding for carotenoid biosynthesis enzymes and their chromosome localization. Genome 47:911–917

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Coombes NE (2002) The reactive tabu search for efficient correlated experimental designs. Dissertation, John Moores University, Liverpool

  • Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393

    Article  Google Scholar 

  • Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA 101:3292–3297

    Article  PubMed  CAS  Google Scholar 

  • de Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365

    Article  PubMed  Google Scholar 

  • Dennis MD, Person MD, Browning KS (2009) Phosphorylation of plant translation initiation factors by CK2 enhances the in Vitro interaction of multifactor complex components. J Biol Chem 284:20615–20628

    Article  PubMed  CAS  Google Scholar 

  • Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2007) Geneious v4.7.5, http://www.geneious.com/

  • Dvorak J, Di Terlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats: Identification of the A genome donor species. Genome 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • Elouafi I, Nachit MM, Martin LM (2001) Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135:255–261

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Levy AA (2009) Genome evolution in allopolyploid wheat-a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36:511–518

    Article  PubMed  CAS  Google Scholar 

  • Francki MG, Crasta OR, Sharma HC, Ohm HW, Anderson JM (1997) Structural organization of an alien Thinopyrum intermedium group 7 chromosome in U.S. soft red winter wheat (Triticum aestivum L.). Genome 40:716–722

    Article  PubMed  CAS  Google Scholar 

  • Francki M, Walker E, Crawford A, Broughton S, Ohm H, Barclay I, Wilson R, McLean R (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281:181–191

    Article  PubMed  CAS  Google Scholar 

  • Fratianni A, Irano M, Panfili G, Acquistucci R (2005) Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimeter measurements. J Agric Food Chem 53:2373–2378

    Article  PubMed  CAS  Google Scholar 

  • Fu BX (2008) Asian noodles: history, classification, raw materials, and processing. Food Res Int 41:888–902

    Article  CAS  Google Scholar 

  • Giles RJ, Brown TA (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet 112:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2:269–273

    Article  Google Scholar 

  • Gilmour AR, Cullis BR, Welham SJ, Thompson R (1999) ASREML reference manual. Biometric bulletin no. 3, NSW Agriculture, Orange

  • Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R (2006) ASREML user guide. Release 2.0. VCN International Ltd, Hemel Hempstead

  • Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four triticeae genomes. Plant Physiol 135:459–470

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glemin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  PubMed  CAS  Google Scholar 

  • He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213–221

    Article  PubMed  CAS  Google Scholar 

  • He XY, He ZH, Ma W, Appels R, Xia XC (2009a) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553–563

    Article  CAS  Google Scholar 

  • He XY, He ZH, Morris CF, Xia XC (2009b) Cloning and phylogenetic analysis of polyphenol oxidase genes in common wheat and related species. Genet Resour Crop Evol 56:311–321

    Article  CAS  Google Scholar 

  • Howitt CA, Pogson BJ (2006) Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ 29:435–445

    Article  PubMed  CAS  Google Scholar 

  • Howitt C, Cavanagh C, Bowerman A, Cazzonelli C, Rampling L, Mimica J, Pogson B (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9:363–376

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Ivanov KI, Puustinen P, Gabrenaite R, Vihinen H, Rönnstrand L, Valmu L, Kalkkinen N, Mäkinen K (2003) Phosphorylation of the potyvirus capsid protein by protein kinase CK2 and its relevance for virus infection. Plant Cell 15:2124–2139

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto A, Nishiyama K, Nakanishi H, Uratsuji Y, Nomura H, Takeyama Y, Nishizuka Y (1985) Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 260:12492–12499

    PubMed  CAS  Google Scholar 

  • Klimczak LJ, Collinge MA, Farini D, Giuliano G, Walker JC, Cashmore AR (1995) Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell 7:105–115

    Article  PubMed  CAS  Google Scholar 

  • Krohn NM, Stemmer C, Fojan P, Grimm R, Grasser KD (2003) Protein kinase CK2 phosphorylates the high mobility group domain protein SSRP1, inducing the recognition of UV-damaged DNA. J Biol Chem 278:12710–12715

    Article  PubMed  CAS  Google Scholar 

  • Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat x maize crosses. Theor Appl Genet 76:393–397

    Article  Google Scholar 

  • Liu B, Xu C, Zhao N, Qi B, Kimatu JN, Pang J, Han F (2009) Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. J Genet Genomics 36:519–528

    Article  PubMed  CAS  Google Scholar 

  • Manly K, Cudmore R, Meer J (2001) Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • Miskelly DM (1984) Flour components affecting paste and noodle colour. J Sci Food Agric 35:463–471

    Article  Google Scholar 

  • Moreno-Romero J, MartÃnez MC (2008) Is there a link between protein kinase CK2 and auxin signaling? Plant Signal Behav 3:695–697

    Article  PubMed  Google Scholar 

  • Oliver JR, Blakeney AB, Allen HM (1992) Measurement of flour color in color space parameters. Cereal Chem 69:546–551

    Google Scholar 

  • Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97:238–245

    Article  CAS  Google Scholar 

  • Patil RM, Oak MD, Tamhankar SA, Sourdille P, Rao VS (2008) Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum). Mol Breed 21:485–496

    Article  Google Scholar 

  • Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM (2009) GenStat for windows (12th Edition) introduction. VSN International, Hemel Hempstead

    Google Scholar 

  • Pinna LA (1990) Casein kinase 2: an ‘eminence grise’ in cellular regulation? Biochim Biophys Acta 1054:267–284

    Article  PubMed  CAS  Google Scholar 

  • Pozniak C, Knox R, Clarke F, Clarke J (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Riera M, Figueras M, López C, Goday A, Pagès M (2004) Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci USA 101:9879–9884

    Article  PubMed  CAS  Google Scholar 

  • Römer S, Hugueney P, Bouvier F, Camara B, Kuntz M (1993) Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum anuum. Biochem Biophys Res Commun 196:1414–1421

    Article  PubMed  Google Scholar 

  • Singh A, Reimer S, Pozniak C, Clarke F, Clarke J, Knox R, Singh A (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118:1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Smith AB, Cullis BR, Appels R, Campbell AW, Cornish GB, Martin D, Allen HM (2001) The statistical analysis of quality traits in plant improvement programs with application to the mapping of milling yield in wheat. Aust J Agric Res 52:1207–1219

    Article  CAS  Google Scholar 

  • Smith AB, Lim P, Cullis BR (2006) The design and analysis of multi-phase plant breeding experiments. J Agric Sci 144:393–409

    Article  Google Scholar 

  • Stefanova KT, Smith AB, Cullis BR (2009) Enhanced diagnostics for the spatial analysis of field trials. J Agric Biol Environ Stat 14:1–19

    Article  Google Scholar 

  • Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451–457

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1987) Construction of hybrid DNA molecules. In: Ausubel M, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (eds) Current protocols in molecular biology 1987–1988. Wiley, New York, pp 3.16.11–13.16.11

  • Takahashi H, Watanabe A, Tanaka A, Hashida SN, Kawai-Yamada M, Sonoike K, Uchimiya H (2006) Chloroplast NAD kinase is essential for energy transduction through the xanthophyll cycle in photosynthesis. Plant Cell Physiol 47:1678–1682

    Article  PubMed  CAS  Google Scholar 

  • Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acid Res 14:4683–4690

    Article  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, He XY, He ZH, Wang H, Xia XC (2009) Cloning and phylogenetic analysis of phytoene synthase 1 (Psy1) genes in common wheat and related species. Hereditas 146:208–256

    Article  PubMed  Google Scholar 

  • Woodget JR, Gould KL, Hunter T (1986) Substrate specificity of protein kinase C: use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur J Biochem 161:177–184

    Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Qu L, Gu H, Gao W, Liu M, Chen J, Chen Z (2002) Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor Appl Genet 104:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Zhang YL, Wu YP, Xiao YG, He ZH, Zhang Y, Yan J, Zhang Y, Xia XC, Ma CX (2009) QTL mapping for flour and noodle colour components and yellow pigment content in common wheat. Euphytica 165:435–444

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms K. Shaw for technical assistance, Ms F. Brigg for helpful comments regarding sequencing of GC rich templates, and Mr D. Diepeveen for statistical assistance. This work was supported by the Grains Research Development Corporation through project CWQ0009 and CWQ0013 and Value Added Wheat Cooperative Research Centre through project 4.3.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Francki.

Additional information

Communicated by G. Bryan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file (TXT 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, A.C., Stefanova, K., Lambe, W. et al. Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes. Theor Appl Genet 123, 95–108 (2011). https://doi.org/10.1007/s00122-011-1569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1569-9

Keywords

Navigation