Skip to main content
Log in

Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A new source of greenbug (Schizaphis graminum Rondani) resistance derived from Aegilops tauschii (Coss.) Schmal was identified in W7984, a synthetic hexaploid wheat line and one parent of the International Triticeae Mapping Initiative (ITMI) mapping population. Segregation analysis of responses to greenbug feeding in a set of recombinant inbred lines (RILs) identified a single, dominant gene governing the greenbug resistance in W7984, which was placed in chromosome arm 7DL by linkage analysis with molecular markers in the ITMI population. Allelism tests based on the segregation of responses to greenbug feeding in F2 and testcross plants revealed that the greenbug resistance in W7984 and Largo, another synthetic line carrying the greenbug resistance gene Gb3, was controlled by different but linked loci. Using the ITMI reference map and a target mapping strategy, we have constructed a microsatellite map of Gb3 in a mapping population of 130 F7 RILs from Largo × TAM 107 and identified one marker (Xwmc634) co-segregating with Gb3 and four markers (Xbarc76, Xgwm037, Xgwm428 and Xwmc824) closely linked with Gb3. Deletion mapping of selected microsatellite markers flanking the Gb3 locus placed this resistance gene into the distal 18% region of 7DL. Comparative mapping in the ITMI and Largo × TAM 107 populations using the same set of microsatellite markers provided further evidence that greenbug resistance in W7984 and Largo is conditioned by two different loci. We suggest that the greenbug resistance gene in W7984 be designated Gb7. The microsatellite map of Gb3 constructed from this study should be a valuable tool for marker-assisted selection of Gb3-conferred greenbug resistance in wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhunov ED, Goodyear AW, Geng S, Qi L et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  CAS  PubMed  Google Scholar 

  • Berzonsky WA, kDing H, Haley SD, Harris MO, Lamb RJ, McKenzie RIH, Ohm HW, Patterson FL, Peairs FB, Porter DR Ratcliffe FH, Shanower (2002) Breeding wheat for resistance to insects. Plant Breed Rev 22:221–296

    Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res 32:3546–3565

    Article  CAS  PubMed  Google Scholar 

  • Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder M et al (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  CAS  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  CAS  PubMed  Google Scholar 

  • Hohmann U, Endo TR, Gill KS, Gill BS (1994) Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Mol Gen Genet 245:644–653

    CAS  PubMed  Google Scholar 

  • Holton TA, Christopher JT, McClure L, Henery RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71

    Article  CAS  Google Scholar 

  • Joppa LR, Williams ND (1982) Registration of Largo, a greenbug resistant hexaploid wheat. Crop Sci 22:901–902

    Google Scholar 

  • Joppa LR, Timian RG, Williams ND (1980) Inheritance to resistance to greenbug toxicity in an amphiploid of Triticum turgidum/T. tauschii. Crop Sci 20:343–344

    Google Scholar 

  • Kosambi D (1944) Estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lage J, Skovmand B, Anderden SB (2003) Expression and suppression of resistance to greenbug in synthetic hexaploid wheats derived from Triticum durum × Aegilops tauschii crosses. J Econ Entomol 96:202–206

    CAS  PubMed  Google Scholar 

  • Lander E, Green P, Barlow A, Daley P, Lincoln S, Newburg L (1987) mapmaker: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lazar MD, Worrall WD, Peterson GL, Porter KB, Rooney LW, Tuleen NA, Marshall DS, McDaniel ME, Nelson LR (1997) Registration of TAM 110. Crop Sci 37:1978–1979

    Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Article  CAS  Google Scholar 

  • Martin TJ, Harvey TL, Hatchett JH (1982) Registration of greenbug and Hessian fly resistant wheat germplasm. Crop Sci 22:1089

    Google Scholar 

  • Mingeot D, Jacquemin JM (1999) Mapping of RFLP probes characterized for their polymorphism on wheat. Theor Appl Genet 98:1132–1137

    Article  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  CAS  PubMed  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JS (1995) Molecular mapping of wheat. Major genes and rearrangements in homoeologous group 4, 5 and 7. Genetics 141:721–731

    CAS  PubMed  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW et al (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Porter KB, Worrall WD, Gardenhire JH, Gilmore EC, McDaniel ME, Tuleen NA (1987) Registration of “TAM 107” wheat. Crop Sci 27:818

    Google Scholar 

  • Porter DR, Burd JD, Webster J, Teetes G (1997) Greenbug (Homoptera, Aphididae) biotypes, selected by resistant cultivars or preadapted opportunists? J Econ Entomol 90:1055–1065

    Google Scholar 

  • Qi L, Gill BS (2001) High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amendable to map-based cloning. Theor Appl Genet 103:998–1006

    Article  CAS  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill B (2002) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MV (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Shi JR, Song QJ, Singh S, Lewis J, Ward RW, Cregan P, Gill BS (2003) Genetic and physical maps of XBARC SSR loci in wheat. In: Proc 2003 Natl Fusarium Head Blight. http://www.scabusa.org/, pp 41–45

  • Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    CAS  Google Scholar 

  • Smith CM, Starkey S (2003) Resistance to greenbug biotype I in Aegilops tauschii synthetic wheat. J Econ Entomol 96:1571–1576

    PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Perretant MP, Charmet G, Leroy P, Gautier MF, Joudrier F, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardiness in wheat. Theor Appl Genet 93:580–586

    Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  CAS  PubMed  Google Scholar 

  • Tyler JM, Webster JA, Merkle OG (1987) Designations for genes in wheat germplasm conferring greenbug resistance. Crop Sci 27:526–527

    Google Scholar 

  • Webster JA, Kenkel P (1999) Benefits of managing small-grain pests with plant resistance. In: Wiseman BR, Webster JA (eds) Economic, environmental, and social benefits of resistance in field crops. Entomol Soc Am, Lanham, pp 87–114

  • Weng Y, Lazar MD (2002) Amplified fragment length polymorphism- and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breed 121:218–223

    Article  CAS  Google Scholar 

  • Weng Y, Tuleen NA, Hart GE (2000) Extended physical maps and a consensus physical map of the homoeologous group-6 chromosomes of wheat. Theor Appl Genet 100:519–527

    CAS  Google Scholar 

  • Weng Y, Lazar MD, Michels GJ Jr, Rudd JC (2004) Phenotypic mechanisms of host resistance against greenbug (Homoptera: Aphidiae) revealed by near isogenic lines of wheat. J Econ Entomol 97:654–660

    PubMed  Google Scholar 

  • Werner J, Endo TR, Gill BS (1992) Toward to cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311

    CAS  PubMed  Google Scholar 

  • Zhu LC, Snith CM, Fritz A, Boyko EV, Flinn MB (2004) Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rondani). Theor Appl Genet 109:289–293

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Peihua Yan and Gary Peterson for technical help. The authors thank Drs. David R. Porter (USDA-ARS, Stillwater, Okla., USA), Calvin O. Qualset (University of California, Davis, Calif., USA) and Bikram S. Gill (Kansas State University, Manhattan, Kan., USA) for providing greenbugs or plant materials for this study. We also thank Dr. Daryl Somers (Cereal Research Center, Winnipeg, Canada) for providing the primer sequences of four WMC microsatellite markers. This research was supported by a grant from the NRICGP program of the United States Department of Agriculture (2002-35301-12044) to Y.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Weng.

Additional information

Communicated by F. Salamini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, Y., Li, W., Devkota, R.N. et al. Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet 110, 462–469 (2005). https://doi.org/10.1007/s00122-004-1853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1853-z

Keywords

Navigation