Skip to main content

Species with Haploid or Doubled Haploid Protocols

  • Protocol
  • First Online:
Doubled Haploid Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2287))

Abstract

In this chapter, we present a list of species (and few interspecific hybrids) where haploids and/or doubled haploids have been published, including the method by which they were obtained and the corresponding references. This list is an update of the compilation work of Maluszynski et al. published in 2003, including new species for which protocols were not available at that time, and also novel methodologies developed during these years. The list includes 383 different backgrounds. In this book, we present full protocols to produce DHs in 43 of the species included in this list. In addition, this book includes a chapter for one species not included in the list. This makes a total of 384 species where haploids and/or DHs have been reported up to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic, Dordrecht, pp 309–335

    Chapter  Google Scholar 

  2. Hatano K, Shoyama Y, Nishioka I (1987) Somatic embryogenesis and plant regeneration from the anther of Aconitum carmichaeli Debx. Plant Cell Rep 6(6):446–448

    Article  CAS  PubMed  Google Scholar 

  3. Wang GF, Qin HY, Sun D, Fan ST, Yang YM, Wang ZX, Xu PL, Zhao Y, Liu YX, Ai J (2018) Haploid plant regeneration from hardy kiwifruit (Actinidia arguta Planch.) anther culture. Plant Cell Tissue Organ Cult 134(1):15–28. https://doi.org/10.1007/s11240-018-1396-7

    Article  CAS  Google Scholar 

  4. Chat J, Decroocq S, Petit RJ (2003) A one-step organelle capture: gynogenetic kiwifruits with paternal chloroplasts. Proc R Soc Lond Ser B Biol Sci 270(1517):783–789

    Article  Google Scholar 

  5. Pandey KK, Przywara L, Sanders PM (1990) Induced parthenogenesis in kiwifruit (Actinidia deliciosa) through the use of lethally irradiated pollen. Euphytica 51(1):1–9. https://doi.org/10.1007/bf00022886

    Article  Google Scholar 

  6. Marinkovié N, Radojevié L (1992) The influence of bud length, age of the tree and culture media on androgenesis induction in Aesculus carnea Hayne anther culture. Plant Cell Tissue Organ Cult 31(1):51–59

    Article  Google Scholar 

  7. Jörgensen J (1991) Androgenesis in Quercus petraea, Fagus sylvatica and Aesculus hippocastanum. In: Ahuja MR (ed) Woody plant biotechnology. NATO ASI series (series A: life sciences). Springer, New York, NY, pp 353–354

    Chapter  Google Scholar 

  8. Radojevic L, Marinkovic N, Jervremovic S (2000) Influence of the sex of flowers on androgenesis in Aesculus hippocastanum L. anther culture. In Vitro Cell Dev Biol Plant 36(6):464–469

    Article  Google Scholar 

  9. Ćalić D, Zdravković-Korać S, Jevremović S, Guć-Šćekić M, Radojević L (2003) Variability and bimodal distribution of size in microspores of Aesculus hippocastanum. Biol Plant 47(2):289

    Article  Google Scholar 

  10. Calic D, Zdravkovic-Korac S, Pemac D, Radojevic L (2005) The effect of low temperature on germination of androgenic embryos of Aesculus hippocastanum L. Biol Plant 49(3):431–433

    Article  Google Scholar 

  11. Radojevic L, Marinkovic N, Jevremovic S, Calic D (1999) Plant regeneration from uninuclear microspore suspension cultures of Aesculus hippocastanum L. In: Plant biotechnology and in vitro biology in the 21st century. Springer, New York, NY, pp 201–204

    Chapter  Google Scholar 

  12. Calic D, Zdravkovic-Korac S, Radojevic L (2005) Secondary embryogenesis in androgenic embryo cultures of Aesculus hippocastanum L. Biol Plant 49(3):435–438

    Article  Google Scholar 

  13. Marburger J, Wang R-C (1988) Anther culture of some perennial triticeae. Plant Cell Rep 7(5):313–317

    Article  CAS  PubMed  Google Scholar 

  14. Chekurov V, Razmakhnin E (1999) Effect of inbreeding and growth regulators on the in vitro androgenesis of wheatgrass, Agropyron glaucum. Plant Breed 118(6):571–573

    Article  CAS  Google Scholar 

  15. Gharyal P, Rashid A, Maheshwari S (1983) Production of haploid plantlets in anther cultures of Albizzia lebbeck L. Plant Cell Rep 2(6):308–309

    Article  CAS  PubMed  Google Scholar 

  16. Gémes-Juhasz A, Venczel G, Sagi ZS, Gajdos L, Kristof Z, Vagi P, Zatyko L (2006) Production of doubled haploid breeding lines in case of paprika, spice paprika, eggplant, cucumber, zucchini and onion. Acta Hortic 725:845–854

    Article  Google Scholar 

  17. Jakše M, Hirschegger P, Bohanec B, Havey MJ (2010) Evaluation of gynogenic responsiveness and pollen viability of selfed doubled haploid onion lines and chromosome doubling via somatic regeneration. J Am Soc Hortic Sci 135(1):67–73

    Article  Google Scholar 

  18. Bohanec B, Jakse M, Havey MJ (2003) Genetic analyses of gynogenetic haploid production in onion. J Am Soc Hortic Sci 128(4):571–574

    Article  Google Scholar 

  19. Bohanec B (2002) Doubled-haploid onions. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI Publishing, Wallingford, pp 145–157

    Chapter  Google Scholar 

  20. Grzebelus E, Adamus A (2004) Effect of anti-mitotic agents on development and genome doubling of gynogenic onion (Allium cepa L.) embryos. Plant Sci 167(3):569–574. https://doi.org/10.1016/j.plantsci.2004.05.001

    Article  CAS  Google Scholar 

  21. Havey MJ (2007) Onion inbred line ‘b8667 a&b’ and synthetic populations ‘Sapporo-Ki-1 A&B’ and ‘onion haploid-1’. HortScience 42(7):1731–1732

    Article  Google Scholar 

  22. Campion B, Azzimonti MT, Vicini E, Schiavi M, Falavigna A (1992) Advances in haploid plant induction in onion (Allium cepa L.) through in vitro gynogenesis. Plant Sci 86(1):97–104. https://doi.org/10.1016/0168-9452(92)90183-M

    Article  Google Scholar 

  23. Dunstan DI, Short KC (1977) Improved growth of tissue cultures of the onion, Allium cepa. Physiol Plant 41(1):70–72. https://doi.org/10.1111/j.1399-3054.1977.tb01525.x

    Article  Google Scholar 

  24. Ponce MT (2007) Ginogénesis en cebolla. Adv Hortic 5:1–12

    Google Scholar 

  25. Foschi ML, Martínez L, Ponce MT, Galmarini CR (2009) Doblehaploides, una estrategia biotecnológica para el mejoramiento genético en cebolla (Allium cepa). Hortic Argentina 28(66):40–47

    Google Scholar 

  26. Alan AR, Lim W, Mutschler MA, Earle ED (2007) Complementary strategies for ploidy manipulations in gynogenic onion (Allium cepa L.). Plant Sci 173(1):25–31. https://doi.org/10.1016/j.plantsci.2007.03.010

    Article  CAS  Google Scholar 

  27. Geoffriau E, Kahane R, Bellamy C, Rancillac M (1997) Ploidy stability and in vitro chromosome doubling in gynogenic clones of onion (Allium cepa L.). Plant Sci 122(2):201–208. https://doi.org/10.1016/S0168-9452(96)04556-6

    Article  CAS  Google Scholar 

  28. Michalik B, Adamus A, Nowak E (2000) Gynogenesis in Polish onion cultivars. J Plant Physiol 156(2):211–216. https://doi.org/10.1016/s0176-1617(00)80308-9

    Article  CAS  Google Scholar 

  29. Martínez L (2003) In vitro gynogenesis induction and doubled haploid production in onion (Allium cepa L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Dordrecht, pp 275–279. https://doi.org/10.1007/978-94-017-1293-4_40

    Chapter  Google Scholar 

  30. Fayos O, Vallés MP, Garcés-Claver A, Mallor C, Castillo AM (2015) Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00384

  31. Jakše M, Havey MJ, Bohanec B (2003) Chromosome doubling procedures of onion (Allium cepa L.) gynogenic embryos. Plant Cell Rep 21(9):905–910

    Article  PubMed  CAS  Google Scholar 

  32. Alan AR, Mutschler MA, Brants A, Cobb E, Earle ED (2003) Production of gynogenic plants from hybrids of Allium cepa L. and A. roylei Stearn. Plant Sci 165(6):1201–1211

    Article  CAS  Google Scholar 

  33. Alan AR, Brants A, Cobb E, Goldschmied PA, Mutschler MA, Earle ED (2004) Fecund gynogenic lines from onion (Allium cepa L.) breeding materials. Plant Sci 167(5):1055–1066

    Article  CAS  Google Scholar 

  34. Dore C, Marie F (1993) Production of gynogenetic plants of onion (Allium cepa L.) after crossing with irradiated pollen. Plant Breed 111(2):142–147

    Article  Google Scholar 

  35. Jakse M, Bohanec B (2003) Haploid induction in onion via gynogenesis. In: MMe (ed) Doubled haploid producion in crop plants. Springer, Dordrecht

    Google Scholar 

  36. Sulistyaningsih E, Aoyagi Y, Tashiro Y (2006) Flower bud culture of shallot (Allium cepa L. Aggregatum group) with cytogenetic analysis of resulting gynogenic plants and somaclones. Plant Cell Tissue Organ Cult 86(2):249–255

    Article  Google Scholar 

  37. Cho KS, Hong SY, Yun BK, Kwon YS, Huh EJ (2006) Production and analysis of doubled haploid lines in long-day onion (Allium cepa) through in vitro gynogenesis. Hortic Environ Biotechnol 47(3):110–116

    Google Scholar 

  38. Ibrahim AM, Kayat F, Susanto D, Kashiani P, Arifullah M (2016) Haploid induction in spring onion (Allium fistulosum L.) via gynogenesis. Biotechnology 15(1):10–16

    CAS  Google Scholar 

  39. Inagaki N, Matsunaga H, Kanechi M, Maekawa S (1994) In vitro micropropagation of Allium giganteum R. 2: Embryoid and plantlet regeneration through the anther culture of Allium giganteum R. Science Reports of Faculty of Agriculture Kobe University

    Google Scholar 

  40. Suh S, Park H (1986) Studies on the anther culture of garlic (Allium sativum L.). 1. Callus formation and plant regeneration. J Korean Soc Hortic Sci 27:89–95

    Google Scholar 

  41. Kim CK, Oh JY, Chung JD (1998) Plant regeneration of Korean native Chinese chive by unpollinated ovule culture. J Korean Soc Hortic Sci 39(6):693–696

    Google Scholar 

  42. Ewais EA, Ismail MA, Amin MA, Abd-El-moety ES (2019) Phytochemical contents of white and pink flowers of marshmallow (Althaea officinalis L) plants and their androgenesis potential on anther culture in response to chemical elicitors. Biosci Res 16(2):1276–1289

    Google Scholar 

  43. Ferrie AMR, Bethune TD, Mykytyshyn M (2011) Microspore embryogenesis in Apiaceae. Plant Cell Tissue Organ Cult 104(3):399–406. https://doi.org/10.1007/s11240-010-9770-0

    Article  Google Scholar 

  44. Ferrie AMR, Bethune T, Kernan Z (2005) An overview of preliminary studies on the development of doubled haploid protocols for nutraceutical species. Acta Physiol Plant 27(4B):735–741

    Article  Google Scholar 

  45. Fialho JS, Bueno DM, Júnior AT, daSilveira Carvalho P (2005) Methodology development to obtain cashwe tree haploids (Anacardium occidentale L.) through rising of anthers. Rev Ciênc Agron 36(2):195

    Google Scholar 

  46. Benega R, Isidrón M, Arias E, Cisneros A, Martínez J, Companioni L, Borroto CG (1997) Plant regeneration from pineapple ovules (Ananas comosus L. Merr.). International Society for Horticultural Science (ISHS), Leuven, pp 247–250. https://doi.org/10.17660/ActaHortic.1997.425.27

    Book  Google Scholar 

  47. Johansson LB, Calleberg E, Gedin A (1990) Correlations between activated-charcoal, Fe-EDTA and other organic media ingredients in cultured anthers of Anemone canadensis. Physiol Plant 80(2):243–249

    Article  CAS  Google Scholar 

  48. Ari E, Buyukalaca S, Abak K, Cetiner S (2007) Callus initiation for indirect pollen embryogenesis in Anemone coronaria. Proceedings of the 22nd international eucarpia symposium section ornamentals: breeding for beauty Pt II 743:87–90

    CAS  Google Scholar 

  49. Nair S, Gupta PK, Mascarenhas AF (1983) Haploid plants from in vitro anther culture of Annona squamosa Linn. Plant Cell Rep 2(4):198–200. https://doi.org/10.1007/bf00270103

    Article  CAS  PubMed  Google Scholar 

  50. Ferrie AMR, Bethune TD, Arganosa GC, Waterer D (2011) Field evaluation of doubled haploid plants in the Apiaceae: dill (Anethum graveolens L.), caraway (Carum carvi L.), and fennel (Foeniculum vulgare Mill.). Plant Cell Tissue Organ Cult 104(3):407–413. https://doi.org/10.1007/s11240-010-9821-6

    Article  Google Scholar 

  51. Sharma R, Babber S (1990) In vitro studies of anther culture of Antirrhinum majus. Ann Biol (Ludhiana) 6(2):175–178

    Google Scholar 

  52. Dohya N, Matsubara S, Murakami K (1997) Callus formation and regeneration of adventitious embryos from celery microspores by anther and isolated microspore cultures. J Jpn Soc Hortic Sci 65(4):747–752

    Article  CAS  Google Scholar 

  53. Amos JA, Scholl RL (1978) Induction of haploid callus from anthers of four species of Arabidopsis. Z Pflanzenphysiol 90(1):33–43

    Article  Google Scholar 

  54. Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615–618. https://doi.org/10.1038/nature08842

    Article  CAS  PubMed  Google Scholar 

  55. Ravi M, Marimuthu MP, Tan EH, Maheshwari S, Henry IM, Marin-Rodriguez B, Urtecho G, Tan J, Thornhill K, Zhu F, Panoli A, Sundaresan V, Britt AB, Comai L, Chan SW (2014) A haploid genetics toolbox for Arabidopsis thaliana. Nat Commun 5:5334. https://doi.org/10.1038/ncomms6334

    Article  CAS  PubMed  Google Scholar 

  56. Ravi M, Bondada R (2016) Genome elimination by tailswap CenH3: in vivo haploid production in Arabidopsis thaliana. In: Murata M (ed) Chromosome and genomic engineering in plants: methods and protocols. Springer, New York, NY, pp 77–99. https://doi.org/10.1007/978-1-4939-4931-1_6

    Chapter  Google Scholar 

  57. Avetisov V (1976) Production of haploids during in vitro culturing of Arabidopsis thaliana (L.) Heynh. anthers and isolated protoplasts. Genetika (USSR) 12:17–25

    Google Scholar 

  58. Avetisov V (1976) Production of haploids during in vitro culturing of Arabidopsis thaliana (L.) Heynh. anthers and isolated protoplasts. Genetika (USSR) 12:17–25

    Google Scholar 

  59. Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, Banaei-Moghaddam AM, Fuchs J, Schubert V, Koch K, Weiss O, Demidov D, Schmidt K, Kumlehn J, Houben A (2015) Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci 112(36):11211–11216. https://doi.org/10.1073/pnas.1504333112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gresshoff PM, Doy CH (1972) Haploid Arabidopsis thaliana callus and plants from anther culture. Aust J Biol Sci 25(2):259

    Article  Google Scholar 

  61. Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E, McCuiston J, Gu W, Sun Y, Strebe T, Roberts J, Bate NJ, Que Q (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37(3):287–292. https://doi.org/10.1038/s41587-019-0038-x

    Article  CAS  PubMed  Google Scholar 

  62. Kuppu S, Ron M, Marimuthu MPA, Li G, Huddleson A, Siddeek MH, Terry J, Buchner R, Shabek N, Comai L, Britt AB (2020) A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnol J. https://doi.org/10.1111/pbi.13365

  63. Seymour DK, Filiault DL, Henry IM, Monson-Miller J, Ravi M, Pang A, Comai L, Chan SW, Maloof JN (2012) Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proc Natl Acad Sci 109(11):4227–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bajaj Y, Ram A, Labana K, Singh H (1981) Regeneration of genetically variable plants from the anther-derived callus of Arachis hypogaea and Arachis villosa. Plant Sci Lett 23(1):35–39

    Article  Google Scholar 

  65. Bansal U, Bassi G, Gosal S, Satija D (1991) Induction of pollen embryogenesis and cytological variability in Arachis hypogaea L. through anther culture. Ind J Genet 51:125–129

    Google Scholar 

  66. Willcox MC, Reed SM, Burns JA, Wynne JC (1990) Microsporogenesis in peanut (Arachis hypogaea). Am J Bot 77(10):1257–1259. https://doi.org/10.1002/j.1537-2197.1990.tb11377.x

    Article  Google Scholar 

  67. Lee J-K, Yeh M-S (2001) Studies on the anther culture of peanut IV. Pollen development, Somatic embryogenesis and shoot regeneration from anther culture in Arachis hypogaea L. J Agric Forest Taichung 50(2):65–79

    CAS  Google Scholar 

  68. Falavigna A, Casali PE, Valente MT (2012) Recent progress of asparagus breeding in Italy. International Society for Horticultural Science (ISHS), Leuven, pp 133–142. https://doi.org/10.17660/ActaHortic.2012.950.14

    Book  Google Scholar 

  69. Delaitre C, Ochatt S, Deleury E (2001) Electroporation modulates the embryogenic responses of asparagus (Asparagus officinalis L.) microspores. Protoplasma 216(1):39–46. https://doi.org/10.1007/bf02680129

    Article  CAS  PubMed  Google Scholar 

  70. Kenny L, Caligari P (1996) Androgenesis of the salt tolerant shrub Atriplex glauca. Plant Cell Rep 15(11):829–832

    Article  CAS  PubMed  Google Scholar 

  71. Bajaj YPS (1978) Effect of super-low temperature on excised anthers and pollen-embryos of Atropa. Phytomorphology 28(2):171–176

    Google Scholar 

  72. Mazzolani G, Pasqua G, Monacelli B (1981) Condizioni per la formazione di piante aploidi da pollini coltivati in vitro [Nicotiana tabacum e Atropa belladonna]. Ann Bot 38(2):107–117

    Google Scholar 

  73. Zenkteler M (1971) In vitro production of haploid plants from pollen grains of Atropa belladonna L. Experientia 27(9):1087–1087. https://doi.org/10.1007/bf02138897

    Article  Google Scholar 

  74. Kiviharju E, Moisander S, Tanhuanpää P (2017) Oat anther culture and use of DH-lines for genetic mapping. In: Gasparis S (ed) Oat Methods Protoc. Springer New York, New York, NY, pp 71–93. https://doi.org/10.1007/978-1-4939-6682-0_6

    Chapter  Google Scholar 

  75. Sidhu PK, Davies PA (2009) Regeneration of fertile green plants from oat isolated microspore culture. Plant Cell Rep 28(4):571–577. https://doi.org/10.1007/s00299-009-0684-4

    Article  CAS  PubMed  Google Scholar 

  76. Sidhu PK, Howes NK, Aung T, Zwer PK, Davies PA (2006) Factors affecting oat haploid production following oat × maize hybridization. Plant Breed 125:243–247

    Article  Google Scholar 

  77. Warchoł M, Czyczyło-Mysza I, Marcińska I, Dziurka K, Noga A, Kapłoniak K, Pilipowicz M, Skrzypek E (2019) Factors inducing regeneration response in oat (Avena sativa L.) anther culture. In Vitro Cell Dev Biol Plant 55(5):595–604. https://doi.org/10.1007/s11627-019-09987-1

    Article  CAS  Google Scholar 

  78. Warchoł M, Czyczyło-Mysza I, Marcińska I, Dziurka K, Noga A, Skrzypek E (2018) The effect of genotype, media composition, pH and sugar concentrations on oat (Avena sativa L.) doubled haploid production through oat × maize crosses. Acta Physiol Plant 40(5). https://doi.org/10.1007/s11738-018-2669-9

  79. Ferrie A, Irmen K, Beattie A, Rossnagel B (2014) Isolated microspore culture of oat (Avena sativa L.) for the production of doubled haploids: effect of pre-culture and post-culture conditions. Plant Cell Tissue Organ Cult 116(1):89–96

    Article  CAS  Google Scholar 

  80. Marcińska I, Nowakowska A, Skrzypek E, Czyczyło-Mysza I (2013) Production of double haploids in oat (Avena sativa L.) by pollination with maize (Zea mays L.). Centr Eur J Biol 8(3):306–313

    Google Scholar 

  81. Warchol M, Czyczylo-Mysza I, Marcinska I, Dziurka K, Noga A, Kaploniak K, Pilipowicz M, Skrzypek E (2019) Factors inducing regeneration response in oat (Avena sativa L.) anther culture. In Vitro Cell Dev Biol Plant 55(5):595–604. https://doi.org/10.1007/s11627-019-09987-1

    Article  CAS  Google Scholar 

  82. Dziurka K, Dziurka M, Warchol M, Czyczylo-Mysza I, Marcinska I, Noga A, Kaploniak K, Skrzypek E (2019) Endogenous phytohormone profile during oat (Avena sativa L.) haploid embryo development. In Vitro Cell Dev Biol Plant 55(2):221–229. https://doi.org/10.1007/s11627-019-09967-5

    Article  CAS  Google Scholar 

  83. Noga A, Skrzypek E, Warchol M, Czyczylo-Mysza I, Dziurka K, Marcinska I, Juzon K, Warzecha T, Sutkowska A, Nita Z, Werwinska K (2016) Conversion of oat (Avena sativa L.) haploid embryos into plants in relation to embryo developmental stage and regeneration media. In Vitro Cell Dev Biol Plant 52(6):590–597. https://doi.org/10.1007/s11627-016-9788-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Skrzypek E, Warchol M, Czyczylo-Mysza I, Marcinska I, Nowakowska A, Dziurka K, Juzon K, Noga A (2016) The effect of light intensity on the production of oat (Avena sativa L.) doubled haploids through oat × maize crosses. Cereal Res Commun 44(3):490–500. https://doi.org/10.1556/0806.44.2016.007

    Article  Google Scholar 

  85. Nowakowska A, Skrzypek E, Marcinska I, Czyczylo-Mysza I, Dziurka K, Juzon K, Cyganek K, Warchol M (2015) Application of chosen factors in the wide crossing method for the production of oat doubled haploids. Open Life Sci 10(1):112–118. https://doi.org/10.1515/biol-2015-0014

    Article  CAS  Google Scholar 

  86. Kiviharju E, Puolimatka M, Pehu E (1997) Regeneration of anther-derived plants of Avena sterilis. Plant Cell Tissue Organ Cult 48(2):147–152

    Article  Google Scholar 

  87. Kiviharju E, Pehu E (1998) The effect of cold and heat pretreatments on anther culture response of Avena sativa and A. sterilis. Plant Cell Tissue Organ Cult 54(2):97–104

    Article  Google Scholar 

  88. Chaturvedi R, Razdan M, Bhojwani S (2003) Production of haploids of neem (Azadirachta indica A. Juss.) by anther culture. Plant Cell Rep 21(6):531–537

    Article  CAS  PubMed  Google Scholar 

  89. Khoder M, Villemur P, Jonard R (1984) Obtainment of monoploid and triploid plants by in vitro androgenesis in Begonia × hiemalis Fotsch cv. (A). Bull Soc Bot Fr Lett Bot 131:43–48

    Google Scholar 

  90. Eujayl I, Strausbaugh C, Lu C (2016) Registration of Sugarbeet doubled haploid line KDH13 with resistance to beet curly top. J Plant Registr 10(1):93–96. https://doi.org/10.3198/jpr2015.09.0055crgs

    Article  Google Scholar 

  91. Pazuki A, Aflaki F, Gürel S, Ergül A, Gürel E (2018) Production of doubled haploids in sugar beet (Beta vulgaris): an efficient method by a multivariate experiment. Plant Cell Tissue Organ Cult 132(1):85–97. https://doi.org/10.1007/s11240-017-1313-5

    Article  CAS  Google Scholar 

  92. Pazuki A, Aflaki F, Gürel E, Ergül A, Gürel S (2018) Gynogenesis induction in sugar beet (Beta vulgaris) improved by 6-benzylaminopurine (BAP) and synergized with cold pretreatment. Sugar Tech 20(1):69–77

    Article  CAS  Google Scholar 

  93. Levites E, Svirshchevskaya A, Kirikovich S, Mil’ko L (2005) Variation at isozyme loci in culturedin vitro sugar beet regenerants of gynogenetic origin. Sugar Tech 7(1):71–75

    Article  CAS  Google Scholar 

  94. Pazuki A, Aflaki F, GÜREL S, ERGÜL A, GÜREL E (2018) The effects of proline on in vitro proliferation and propagation of doubled haploid sugar beet (Beta vulgaris). Turk J Bot 42(3):280–288

    CAS  Google Scholar 

  95. Aflaki F, Pazuki A, Gurel S, Stevanato P, Biancardi E, Gurel E (2017) Doubled haploid sugar beet: an integrated view of factors influencing the processes of gynogenesis and chromosome doubling. Int Sugar J 119(1427):884–895

    Google Scholar 

  96. Huhtinen O (1978) Callus and plantlet regeneration from anther culture of Betula pendula Roth. 4th Int Cong Plant Tissue Cell Culture 1978:20–25

    Google Scholar 

  97. Kato J, Ichihashi S (2018) Haploid seed formation via parthenogenesis in Bletilla. In: Lee Y-I, Yeung EC-T (eds) Orchid propagation: from laboratories to greenhouses—methods and protocols. Springer New York, New York, NY, pp 303–315. https://doi.org/10.1007/978-1-4939-7771-0_16

    Chapter  Google Scholar 

  98. Hoveida ZS, Abdollahi MR, Mirzaie-Asl A, Moosavi SS, Seguí-Simarro JM (2017) Production of doubled haploid plants from anther cultures of borage (Borago officinalis L.) by the application of chemical and physical stress. Plant Cell Tissue Organ Cult 130(2):369–378. https://doi.org/10.1007/s11240-017-1233-4

    Article  CAS  Google Scholar 

  99. Chardoli Eshaghi Z, Abdollahi MR, Moosavi SS, Deljou A, Seguí-Simarro JM (2015) Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell Tissue Organ Cult 2015:1–9. https://doi.org/10.1007/s11240-015-0768-5

    Article  CAS  Google Scholar 

  100. Prakash DVSSR, Chand S, Kishor PBK (1999) In vitro response from cultured anthers of Boswellia serrata Roxb. In: Plant tissue culture and biotechnology: emerging trends. Universities Press Ltd, Hyderabad, pp 226–231

    Google Scholar 

  101. Niu L, Shi F, Feng H, Zhang Y (2019) Efficient doubled haploid production in microspore culture of Zengcheng flowering Chinese cabbage (Brassica campestris L. ssp. chinensis [L.] Makino var. utilis Tsen et Lee). Sci Hortic 245:57–64. https://doi.org/10.1016/j.scienta.2018.09.076

    Article  CAS  Google Scholar 

  102. Guo YD, Pulli S (1995) In vitro pollen culture and the regeneration of Brassica campestris L plants. Agric Sci Finl 4(5–6):513–518

    Google Scholar 

  103. Aslam FN, Macdonald MV, Loudon P, Ingram DS (1990) Rapid-cycling Brassica species – inbreeding and selection of Brassica campestris for anther culture ability. Ann Bot 65(5):557–566

    Article  Google Scholar 

  104. Aslam FN, Macdonald MV, Ingram DS (1990) Rapid-cycling Brassica species – anther culture potential of Brassica campestris L and Brassica napus L. New Phytol 115(1):1–9

    Article  Google Scholar 

  105. Gao Y, Jia J, Cong J, Ma Y, Feng H, Zhang Y (2019) Non-ionic surfactants improved microspore embryogenesis and plant regeneration of recalcitrant purple flowering stalk (Brassica campestris ssp. chinensis var. purpurea Bailey). In Vitro Cell Dev Biol Plant. https://doi.org/10.1007/s11627-019-10033-3

  106. Ferrie AMR, Keller WA (2007) Optimization of methods for using polyethylene glycol as a non-permeating osmoticum for the induction of microspore embryogenesis in the Brassicaceae. In Vitro Cell Dev Biol Plant 43(4):348–355. https://doi.org/10.1007/s11627-007-9053-6

    Article  CAS  Google Scholar 

  107. Ferrie AMR, Dirpaul J, Krishna P, Krochko J, Keller WA (2005) Effects of brassinosteroids on microspore embryogenesis in Brassica species. In Vitro Cell Dev Biol Plant 41(6):742–745

    Article  CAS  Google Scholar 

  108. Yadav R, Sareen P, Chowdhury J (1988) High frequency induction of androgenesis in Ethiopian mustard (Brassica carinata A. Br.). Cruciferae Newsl 13:77

    Google Scholar 

  109. Chuong PV, Beversdorf WD (1985) High frecuency embryogenesis through isolated microspore culture in Brassica napus L. and B. carinata Braun. Plant Sci 39:219–226

    Article  Google Scholar 

  110. Yazdi EJ, Falk KC, Séguin-Swartz G (2013) Improvement in efficiency of microspore culture to produce doubled haploid lines of Ethiopian mustard. In Vitro Cell Dev Biol Plant 49(6):682–689

    Article  CAS  Google Scholar 

  111. Geng X, Chen S, Astarini I, Yan G, Tian E, Meng J, Li Z, Ge X, Nelson M, Mason A (2013) Doubled haploids of novel trigenomic Brassica derived from various interspecific crosses. Plant Cell Tissue Organ Cult 113(3):501–511

    Article  CAS  Google Scholar 

  112. Agarwal PK, Agarwal P, Custers JBM, Liu CM, Bhojwani SS (2006) PCIB an antiauxin enhances microspore embryogenesis in microspore culture of Brassica juncea. Plant Cell Tissue Organ Cult 86(2):201–210

    Article  CAS  Google Scholar 

  113. Prem D, Gupta K, Agnihotri A (2005) Effect of various exogenous and endogenous factors on microspore embryogenesis in Indian mustard (Brassica juncea (L.) Czern and Coss). In Vitro Cell Dev Biol Plant 41(3):266–273

    Article  Google Scholar 

  114. Chanana NP, Dhawan V, Bhojwani SS (2005) Morphogenesis in isolated microspore cultures of Brassica juncea. Plant Cell Tissue Organ Cult 83(2):169–177

    Article  Google Scholar 

  115. Lionneton E, Beuret W, Delaitre C, Ochatt S, Rancillac M (2001) Improved microspore culture and doubled-haploid plant regeneration in the brown condiment mustard (Brassica juncea). Plant Cell Rep 20(2):126–130

    Article  CAS  PubMed  Google Scholar 

  116. Liu C, Xu ZH, Chua NH (1993) Proembryo culture: in vitro development of early globular-stage zygotic embryos from Brassica juncea. Plant J 3(2):291–300

    Article  Google Scholar 

  117. Prem D, Gupta K, Sarkar G, Agnihotri A (2008) Activated charcoal induced high frequency microspore embryogenesis and efficient doubled haploid production in Brassica juncea. Plant Cell Tissue Organ Cult 93(3):269–282. https://doi.org/10.1007/s11240-008-9373-1

    Article  CAS  Google Scholar 

  118. Ahmadi B, Shariatpanahi M, Ojaghkandi M, Heydari A (2014) Improved microspore embryogenesis induction and plantlet regeneration using putrescine, cefotaxime and vancomycin in Brassica napus L. Plant Cell Tissue Organ Cult 118(3):497–505. https://doi.org/10.1007/s11240-014-0501-9

    Article  CAS  Google Scholar 

  119. Prem D, Solís MT, Bárány I, Rodríguez-Sanz H, Risueño MC, Testillano PS (2012) A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol 12:127

    Article  PubMed  PubMed Central  Google Scholar 

  120. Custers JBM (2004) Efficient in vitro production of embryos with suspensors in a refined Brassica napus microspore culture procedure. In: Proceedings of the COST action 851. Technology advancement in gametic embryogenesis of recalcitrant genotypes, vol 1. Workshop of the Working Group, Palermo

    Google Scholar 

  121. Custers J (2003) Microspore culture in rapeseed (Brassica napus L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Kluwer Academic, Dordrecht, pp 185–193

    Chapter  Google Scholar 

  122. Custers JBM, Cordewener JHG, Fiers MA, Maassen BTH, van Lookeren-Campagne MM, Liu CM (2001) Androgenesis in Brassica: a model system to study the initiation of plant embryogenesis. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperm. Kluwer Academic, Dordrecht, pp 451–470

    Chapter  Google Scholar 

  123. Binarova P, Hause G, Cenklova V, Cordewener JHG, van Lookeren-Campagne MM (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10(4):200–208

    Article  Google Scholar 

  124. Zhao JP, Simmonds DH, Newcomb W (1996) Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L cv Topas. Planta 198(3):433–439

    Article  CAS  Google Scholar 

  125. Hansen NJP, Andersen SB (1996) In vitro chromosome doubling potential of colchicine, oryzalin, trifluralin, and APM in Brassica napus microspore culture. Euphytica 88(2):159–164

    Article  CAS  Google Scholar 

  126. Zhao JP, Simmonds DH (1995) Application of trifluralin to embryogenic microspore cultures to generate doubled haploid plants in Brassica napus. Physiol Plant 95(2):304–309

    Article  CAS  Google Scholar 

  127. Simmonds DH, Long NE, Keller WA (1991) High plating efficiency and plant regeneration frequency in low density protoplast cultures derived from an embryogenic Brassica napus cell suspension. Plant Cell Tissue Organ Cult 27(3):231–241. https://doi.org/10.1007/bf00157586

    Article  Google Scholar 

  128. Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105(5):427–434

    Article  Google Scholar 

  129. Lichter R (1981) Anther culture of Brassica napus in a liquid culture medium. Z Pflanzenphysiol 103(3):229–237

    Article  CAS  Google Scholar 

  130. Keller WA, Armstrong KC (1977) Embryogenesis and plant regeneration in Brassica napus anther cultures. Can J Bot 55(10):1383–1388. https://doi.org/10.1139/b77-160

    Article  Google Scholar 

  131. Fu SH, Yin LQ, Xu MC, Li Y, Wang ML, Yang J, Fu TD, Wang JS, Shen JX, Ali A, Zou Q, Yi B, Wen J, Tao LR, Kang ZM, Tang R (2018) Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta 247(1):113–125. https://doi.org/10.1007/s00425-017-2772-y

    Article  CAS  PubMed  Google Scholar 

  132. Liu S, Wang H, Zhang J, Fitt BDL, Xu Z, Evans N, Liu Y, Yang W, Guo X (2005) In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep 24(3):133–144. https://doi.org/10.1007/s00299-005-0925-0

    Article  CAS  PubMed  Google Scholar 

  133. Mohammadi P, Moieni A, Ebrahimi A, Javidfar F (2012) Doubled haploid plants following colchicine treatment of microspore-derived embryos of oilseed rape (Brassica napus L.). Plant Cell Tissue Organ Cult 108(2):251–256. https://doi.org/10.1007/s11240-011-0036-2

    Article  CAS  Google Scholar 

  134. Ahuja I, Borgen BH, Hansen M, Honne BI, Muller C, Rohloff J, Rossiter JT, Bones AM (2011) Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L. J Exp Bot. https://doi.org/10.1093/jxb/err195

  135. Takahira J, Cousin A, Nelson MN, Cowling WA (2011) Improvement in efficiency of microspore culture to produce doubled haploid canola (Brassica napus L.) by flow cytometry. Plant Cell Tissue Organ Cult 104(1):51–59. https://doi.org/10.1007/s11240-010-9803-8

    Article  Google Scholar 

  136. Weber S, ÜNker F, Friedt W (2005) Improved doubled haploid production protocol for Brassica napus using microspore colchicine treatment in vitro and ploidy determination by flow cytometry. Plant Breed 124:511–513. https://doi.org/10.1111/j.1439-0523.2005.01114.x

    Article  Google Scholar 

  137. Nelson M, Mason A, Castello M-C, Thomson L, Yan G, Cowling W (2009) Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L. × Brassica carinata Braun. Theor Appl Genet 119(3):497–505. https://doi.org/10.1007/s00122-009-1056-8

    Article  PubMed  Google Scholar 

  138. Yang S, Chen S, Zhang KN, Li L, Yin YL, Gill RA, Yan GJ, Meng JL, Cowling WA, Zhou WJ (2018) A high-density genetic map of an allohexaploid Brassica doubled haploid population reveals quantitative trait loci for pollen viability and fertility. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.01161

  139. Mwathi MW, Schiessl SV, Batley J, Mason AS (2019) “Doubled-haploid” allohexaploid Brassica lines lose fertility and viability and accumulate genetic variation due to genomic instability. Chromosoma. https://doi.org/10.1007/s00412-019-00720-w

  140. Govil S, Babbar SB, Gupta SC (1986) Plant regeneration from in vitro cultured anthers of black mustard (Brassica nigra Koch). Plant Breed 97(1):64–71. https://doi.org/10.1111/j.1439-0523.1986.tb01302.x

    Article  Google Scholar 

  141. Kurtar ES (2017) Anther culture in red cabbage (Brassica oleraceae L. var. capitata subvar. rubra): embryogenesis and plantlet initiation. Ekin J Crop Breed Genet 3(2):82–87

    Google Scholar 

  142. Yuan S, Su Y, Liu Y, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Sun P (2015) Chromosome doubling of microspore-derived plants from cabbage (Brassica oleracea var. capitata L.) and broccoli (Brassica oleracea var. italica L.). Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.01118

  143. da Silva Dias JC (1999) Effect of activated charcoal on Brassica oleracea microspore culture embryogenesis. Euphytica 108(1):65–69. https://doi.org/10.1023/a:1003634030835

    Article  Google Scholar 

  144. Chen W, Zhang Y, Ren J, Ma Y, Liu Z, Hui F (2019) Effects of methylene blue on microspore embryogenesis and plant regeneration in ornamental kale (Brassica oleracea var. acephala). Sci Hortic 248:1–7. https://doi.org/10.1016/j.scienta.2018.12.048

    Article  CAS  Google Scholar 

  145. Gu H, Zhao Z, Sheng X, Yu H, Wang J (2014) Efficient doubled haploid production in microspore culture of loose-curd cauliflower (Brassica oleracea var. botrytis). Euphytica 195(3):467–475

    Article  Google Scholar 

  146. Sato S, Katoh N, Iwai S, Hagimori M (2005) Frequency of spontaneous polyploidization of embryos regenerated from cultured anthers or microspores of Brassica rapa var. pekinensis L. and B. oleracea var. capitata L. Breed Sci 55(1):99–102

    Article  Google Scholar 

  147. Takahata Y, Keller WA (1991) High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci 74(2):235–242

    Article  Google Scholar 

  148. Mousa MA, Haridy AG, Abbas HS, Mohammed MF (2014) Improved androgenesis of broccoli (Brassica oleracea var italica) anthers using sucrose and growth regulators. Asian J Crop Sci 6(2):133–141

    Article  Google Scholar 

  149. Stipic M, Campion B (1997) An improved protocol for androgenesis in cauliflowers (Brassica oleracea var. botrytis). Plant Breed 116(2):153–157

    Article  Google Scholar 

  150. Pilih KR, Potokar UK, Bohanec B (2018) Improvements of doubled haploid production protocol for white cabbage (Brassica oleracea var. capitata L.). Folia Hortic 30(1):57–66

    Article  Google Scholar 

  151. Arnison PG, Donaldson P, Ho LCC, Keller WA (1990) The influence of various physical parameters on anther culture of broccoli (Brassica oleracea var. italica). Plant Cell Tissue Organ Cult 20(3):147–155. https://doi.org/10.1007/bf00041875

    Article  Google Scholar 

  152. Rudolf K, Bohanec B, Hansen M (1999) Microspore culture of white cabbage, Brassica oleracea var. capitata L.: genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed 118(3):237–241

    Article  CAS  Google Scholar 

  153. Zeng A, Yan Y, Yan J, Song L, Gao B, Li J, Hou X, Li Y (2015) Microspore embryogenesis and plant regeneration in Brussels sprouts (Brassica oleracea L. var. gemmifera). Sci Hortic 191:31–37. https://doi.org/10.1016/j.scienta.2015.05.002

    Article  CAS  Google Scholar 

  154. Bhatia R, Dey SS, Parkash C, Sharma K, Sood S, Kumar R (2018) Modification of important factors for efficient microspore embryogenesis and doubled haploid production in field grown white cabbage (Brassica oleracea var. capitata L.) genotypes in India. Sci Hortic 233:178–187. https://doi.org/10.1016/j.scienta.2018.01.017

    Article  Google Scholar 

  155. Bhatia R, Dey SS, Sood S, Sharma K, Sharma VK, Parkash C, Kumar R (2016) Optimizing protocol for efficient microspore embryogenesis and doubled haploid development in different maturity groups of cauliflower (B. oleracea var. botrytis L.) in India. Euphytica 212(3):439–454. https://doi.org/10.1007/s10681-016-1775-2

    Article  Google Scholar 

  156. Osolnik B, Bohanec B, Jelaska S (1993) Stimulation of androgenesis in white cabbage (Brassica oleracea var. capitata) anthers by low temperature and anther dissection. Plant Cell Tissue Organ Cult 32(2):241–246. https://doi.org/10.1007/bf00029849

    Article  Google Scholar 

  157. Arnison PG, Keller WA (1990) A survey of the anther culture response of Brassica oleracea L. cultivars grown under field conditions. Plant Breed 104(2):125–133. https://doi.org/10.1111/j.1439-0523.1990.tb00414.x

    Article  Google Scholar 

  158. Li Q, Shi YT, Wang Y, Liu LJ, Zhang XS, Chen XW, Zhang LZ, Su YB, Zhang TZ (2020) Breeding of cabbage lines resistant to both head splitting and fusarium wilt via an isolated microspore culture system and marker-assisted selection. Euphytica 216(2). https://doi.org/10.1007/s10681-020-2570-7

  159. Singh S, Bhatia R, Kumar R, Sharma K, Dash S, Dey SS (2018) Cytoplasmic male sterile and doubled haploid lines with desirable combining ability enhances the concentration of important antioxidant attributes in Brassica oleracea. Euphytica 214(11). https://doi.org/10.1007/s10681-018-2291-3

  160. Bhatia R, Dey SS, Sood S, Sharma K, Parkash C, Kumar R (2017) Efficient microspore embryogenesis in cauliflower (Brassica oleracea var. botrytis L.) for development of plants with different ploidy level and their use in breeding programme. Sci Hortic 216:83–92. https://doi.org/10.1016/j.scienta.2016.12.020

    Article  Google Scholar 

  161. Huang SN, Liu ZY, Li DY, Yao RP, Feng H (2016) A new method for generation and screening of Chinese cabbage mutants using isolated microspore culturing and EMS mutagenesis. Euphytica 207(1):23–33. https://doi.org/10.1007/s10681-015-1473-5

    Article  CAS  Google Scholar 

  162. Na H, Hwang G, Kwak J-H, Yoon MK, Chun C (2011) Microspore derived embryo formation and doubled haploid plant production in broccoli (Brassica oleracea L. var italica) according to nutritional and environmental conditions. Afr J Biotechnol 10(59):12535–12541

    Article  CAS  Google Scholar 

  163. Burnett L, Yarrow S, Huang B (1992) Embryogenesis and plant regeneration from isolated microspores of Brassica rapa L ssp Oleifera. Plant Cell Rep 11(4):215–218

    Article  CAS  PubMed  Google Scholar 

  164. Cao MQ, Li Y, Liu F, Doré C (1994) Embryogenesis and plant regeneration of pakchoi (Brassica rapa L. ssp. chinensis) via in vitro isolated microspore culture. Plant Cell Rep 13(8):447–450

    Article  CAS  PubMed  Google Scholar 

  165. Ferrie AMR, Epp DJ, Keller WA (1995) Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Rep 14(9):580–584

    Article  CAS  PubMed  Google Scholar 

  166. Gu HH, Zhou WJ, Hagberg P (2003) High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp chinensis. Euphytica 134(3):239–245

    Article  Google Scholar 

  167. Jia J, Zhang Y, Feng H (2019) Effects of brassinolide on microspore embryogenesis and plantlet regeneration in pakchoi (Brassica rapa var. multiceps). Sci Hortic 252:354–362. https://doi.org/10.1016/j.scienta.2019.04.004

    Article  CAS  Google Scholar 

  168. Kitashiba H, Taguchi K, Kaneko I, Inaba K, Yokoi S, Takahata Y, Nishio T (2016) Identification of loci associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis. Plant Cell Rep 2016:1–8. https://doi.org/10.1007/s00299-016-2029-4

    Article  CAS  Google Scholar 

  169. Shumilina DV, Shmykova NA, Bondareva LL, Suprunova TP (2015) Effect of genotype and medium culture content on microspore-derived embryo formation in Chinese cabbage (Brassica rapa ssp. chinensis) cv. Lastochka. Biol Bull 42(4):302–309. https://doi.org/10.1134/s1062359015040135

    Article  Google Scholar 

  170. Jo M, Ham I, Park M, Kim T, Lim Y, Lee E (2012) Seed production ability of doubled haploid plants through microspore culture in Chinese cabbage (Brassica rapa L. ssp. pekinensis) introduced from China. Korean J Hortic Sci Technol 30(5):573–578

    Article  Google Scholar 

  171. Shumilina D, Kornyukhin D, Domblides E, Soldatenko A, Artemyeva A (2020) Effects of genotype and culture conditions on microspore embryogenesis and plant regeneration in Brassica Rapa ssp. Rapa L. Plants (Basel) 9(2):278. https://doi.org/10.3390/plants9020278

    Article  CAS  Google Scholar 

  172. Park S, 장석우 최 (2020) Developing double-haploid inbred lines of ‘Wonkyo20051ho’ Kimchi Cabbage (Brassica rapa. L) characterized by formation of tight head at low temperatures (저온에서도결구가 잘 형성되는 배가 반수체 배추 ‘원교20051호’ 개발). Korean J Breed Sci 52(1):41–52. https://doi.org/10.9787/kjbs.2020.52.1.41

  173. Lu Y, Dai S, Gu A, Liu M, Wang Y, Luo S, Zhao Y, Wang S, Xuan S, Chen X, Li X, Bonnema G, Zhao J, Shen S (2016) Microspore induced doubled haploids production from ethyl methanesulfonate (EMS) soaked flower buds is an efficient strategy for mutagenesis in Chinese cabbage. Front Plant Sci 7(1780). https://doi.org/10.3389/fpls.2016.01780

  174. Zhang L, Zhang Y, Gao Y, Jiang XL, Zhang MD, Wu H, Liu ZY, Feng H (2016) Effects of histone deacetylase inhibitors on microspore embryogenesis and plant regeneration in Pakchoi (Brassica rapa ssp. chinensis L.). Sci Hortic 209:61–66. https://doi.org/10.1016/j.scienta.2016.05.001

    Article  CAS  Google Scholar 

  175. Zhang Y, Wang A, Liu Y, Wang Y, Feng H (2012) Improved production of doubled haploids in Brassica rapa through microspore culture. Plant Breed 131(1):164–169

    Article  Google Scholar 

  176. Lee S, Yoon Y (1987) Anther culture of Brassicoraphanus. Cruciferae Newsl 12:68

    Google Scholar 

  177. Shon T-K, Kim S-K, Acquah D, Lee S-C (2004) Haploid plantlet production through somatic embryogenesis in anther-derived callus of Bupleurum falcatum. Plant Prod Sci 7(2):204–211

    Article  Google Scholar 

  178. Shon T-K, Yoshida T (1997) Induction of haploid plantlets by anther culture of Bupleurum falcatum L. Jpn J Crop Sci 66(1):137–138

    Article  Google Scholar 

  179. Bajaj Y, Singh H, Gosal S (1980) Haploid embryogenesis in anther cultures of pigeon-pea (Cajanus cajan). Theor Appl Genet 58(3–4):157–159

    Article  CAS  PubMed  Google Scholar 

  180. Fougat R, Pathak A, Bharodia P (1992) Regeneration of haploid callus from anthers of pigeonpea. Gujarat Agric Univ Res J 17(2):151–152

    Google Scholar 

  181. Kaur P, Bhalla J (1998) Regeneration of haploid plants from microspore culture of pigeonpea (Cajanus cajan L.). Indian J Exp Biol 36(7):736–738

    Google Scholar 

  182. Vishukumar U, Patil M, Nayak S (2000) Anther culture studies in pigeonpea. Karnataka J Agric Sci 13(1):16–19

    Google Scholar 

  183. Bajpai R, Chaturvedi R (2018) Haploid embryogenesis in tea. In: Jain S, Gupta P (eds) Step wise protocols for somatic embryogenesis of important woody plants. forestry sciences, vol 85. Springer, Cham, pp 349–368. https://doi.org/10.1007/978-3-319-79087-9_26

    Chapter  Google Scholar 

  184. Pedroso MC, Pais S (1993) Regeneration from anthers of adult Camellia japonica L. In Vitro Cell Dev Biol Plant 29(4):155–159

    Article  Google Scholar 

  185. Pedroso MC, Pais MS (1997) Anther and microspore culture in Camellia japonica. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Springer, Dordrecht, pp 89–107

    Chapter  Google Scholar 

  186. Pedroso MC, Pais MS (1994) Induction of microspore embryogenesis in Camellia japonica cv. Elegans. Plant Cell Tissue Organ Cult 37(2):129–136

    Article  Google Scholar 

  187. Raina S, Iyer R (1992) Multicell pollen proembryoid and callus formation in tea. J Plant Crops 9:100–104

    Google Scholar 

  188. Shimokado T, Murata T, Miyaji Y (1986) Formation of embryoid by anther culture of tea. Jpn J Breed 36(Suppl 2):282–283

    Google Scholar 

  189. Saha D, Bhattacharya N (1992) Stimulating effect of elevated temperature treatments on production of meristemoids from pollen callus of tea, Camellia sinensis (L.) O. Kuntze. Indian J Exp Biol 30(2):83–86

    Google Scholar 

  190. Seran TH, Hirimburegama K, Hirimburegama W, Shanmugarajah V (1999) Callus formation in anther culture of tea clones, Camellia sinensis (L.) Kuntze. J Natl Sci Found 27(3):165–175

    Google Scholar 

  191. Chen Z, Liao H (1982) Obtaining plantlet through anther culture of tea plants. Zhongguo Chaye 4:6–7

    CAS  Google Scholar 

  192. Rekha HR, Rakhi C (2013) Establishment of dedifferentiated callus of haploid origin from unfertilized ovaries of tea (Camellia sinensis (L.) O. Kuntze) as a potential source of total phenolics and antioxidant activity. In Vitro Cell Dev Biol Plant 49(1):60–69

    Article  CAS  Google Scholar 

  193. Cao H, Biswas MK, Lü Y, Amar MH, Tong Z, Xu Q, Xu J, Guo W, Deng X (2011) Doubled haploid callus lines of Valencia sweet orange recovered from anther culture. Plant Cell Tissue Organ Cult 104(3):415–423

    Article  Google Scholar 

  194. Heidari-Zefreh AA, Shariatpanahi ME, Mousavi A, Kalatejari S (2018) Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma. https://doi.org/10.1007/s00709-018-1268-3

  195. Gémesné Juhász A, Kristóf Z (2016) Highly efficient genome doubling method for haploid paprika (Capsicum annuum L.) plants. Paper presented at the proceedings of XVIth EUCARPIA capsicum and eggplant working group meeting, Budapest

    Google Scholar 

  196. Ari E, Bedir H, Yildirim S, Yildirim T (2016) Androgenic responses of 64 ornamental pepper (Capsicum annuum L.) genotypes to shed-microspore culture in the autumn season. Turk J Biol 40(3):706–717

    Article  CAS  Google Scholar 

  197. Barroso PA, Rego MM, Rego ER, Soares WS (2015) Embryogenesis in the anthers of different ornamental pepper (Capsicum annuum L.) genotypes. Genet Mol Res GMR 14(4):13349–13363. https://doi.org/10.4238/2015.October.26.32

    Article  CAS  PubMed  Google Scholar 

  198. Olszewska D, Kisiala A, Niklas-Nowak A, Nowaczyk P (2014) Study of in vitro anther culture in 23 selected genotypes of genus Capsicum. Turk J Biol 38:118–124. https://doi.org/10.3906/biy-1307-50

    Article  Google Scholar 

  199. Parra-Vega V, Renau-Morata B, Sifres A, Seguí-Simarro JM (2013) Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112(3):353–360. https://doi.org/10.1007/s11240-012-0242-6

    Article  CAS  Google Scholar 

  200. Parra-Vega V, González-García B, Seguí-Simarro JM (2013) Morphological markers to correlate bud and anther development with microsporogenesis and microgametogenesis in pepper (Capsicum annuum L.). Acta Physiol Plant 35(2):627–633. https://doi.org/10.1007/s11738-012-1104-x

    Article  Google Scholar 

  201. Kim M, Park E-J, An D, Lee Y (2013) High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112(2):191–201. https://doi.org/10.1007/s11240-012-0222-x

    Article  CAS  Google Scholar 

  202. Ochoa-Alejo N (2012) Anther culture of chilli pepper (Capsicum spp.). In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols. Methods in molecular biology, vol 877. Humana, New York, NY, pp 227–231. https://doi.org/10.1007/978-1-61779-818-4_17

    Chapter  Google Scholar 

  203. Lantos C, Juhasz AG, Vagi P, Mihaly R, Kristof Z, Pauk J (2012) Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnol Rep 6(2):123–132. https://doi.org/10.1007/s11816-011-0205-0

    Article  Google Scholar 

  204. Supena EDJ, Custers JBM (2011) Refinement of shed-microspore culture protocol to increase normal embryos production in hot pepper (Capsicum annuum L.). Sci Hortic 130(4):769–774. https://doi.org/10.1016/j.scienta.2011.08.037

    Article  Google Scholar 

  205. Nowaczyk P, Olszewska D, Kisiała A (2009) Individual reaction of Capsicum F2 hybrid genotypes in anther cultures. Euphytica 168(2):225–233. https://doi.org/10.1007/s10681-009-9909-4

    Article  Google Scholar 

  206. Lantos C, Juhász A, Somogyi G, Ötvös K, Vági P, Mihály R, Kristóf Z, Somogyi N, Pauk J (2009) Improvement of isolated microspore culture of pepper (Capsicum annuum L.) via co-culture with ovary tissues of pepper or wheat. Plant Cell Tissue Organ Cult 97(3):285–293. https://doi.org/10.1007/s11240-009-9527-9

    Article  Google Scholar 

  207. Gémes Juhász A, Kristóf Z, Vági P, Lantos C, Pauk J (2009) In vitro anther and isolated microspore culture as tools in sweet and spice pepper breeding. Acta Hortic 829:61–64

    Article  Google Scholar 

  208. Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27(3):425–434

    Article  CAS  PubMed  Google Scholar 

  209. Ozkum D, Tipirdamaz R (2007) Effects of silver nitrate, activated charcoal and cold treatment on the in vitro androgenesis of pepper (Capsicum annuum L.). In: Sivritepe HO, Sivritepe N (eds) Proceedings of the IIIrd Balkan symposium on vegetable and potatoes. Acta Horticulturae, vol 729. Humana, New York, NY, pp 133–136

    Google Scholar 

  210. Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25(1):1–10

    Article  CAS  PubMed  Google Scholar 

  211. Supena EDJ, Muswita W, Suharsono S, Custers JBM (2006) Evaluation of crucial factors for implementing shed-microspore culture of Indonesian hot pepper (Capsicum annuum L.) cultivars. Sci Hortic 107(3):226–232

    Article  Google Scholar 

  212. Mitykó J, Juhász AG (2006) Improvement in the haploid technique routinely used for breeding sweet and spice peppers in Hungary. Acta Agron Hung 54(2):203–219. https://doi.org/10.1556/AAgr.54.2006.2.8

    Article  Google Scholar 

  213. Ercan N, Sensoy FA, Sensoy AS (2006) Influence of growing season and donor plant age on anther culture response of some pepper cultivars (Capsicum annuum L.). Sci Hortic 110(1):16–20

    Article  Google Scholar 

  214. Buyukalaca S, Comlekcioglu N, Abak K, Ekbic E, Kilic N (2004) Effects of silver nitrate and donor plant growing conditions on production of pepper (Capsicum annuum L.) haploid embryos via anther culture. Eur J Hortic Sci 69(5):206–209

    Google Scholar 

  215. Dolcet-Sanjuan R, Claveria E, Huerta A (1997) Androgenesis in Capsicum annuum L – effects of carbohydrate and carbon dioxide enrichment. J Am Soc Hortic Sci 122(4):468–475

    Article  CAS  Google Scholar 

  216. Regner F (1996) Anther and microspore culture in Capsicum. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 3. Kluwer Academic, Dordrecht, pp 77–89

    Chapter  Google Scholar 

  217. Dumas de Vaulx R, Chambonnet D, Pochard E (1981) Culture in vitro d’anthères de piment (Capsicum annuum L.): amèlioration des taux d’obtenction de plantes chez différents génotypes par des traitments à +35°C. Agronomie 1(10):859–864

    Article  Google Scholar 

  218. Sibi M, Dumas de Vaulx R, Chambonnet D (1979) Obtention of haploid plants through in vitro androgenesis in sweet pepper (Capsicum annuum L.). Ann Amélior Plant 29(5):583–606

    Google Scholar 

  219. George L, Narayanaswamy S (1973) Haploid Capsicum through experimental androgenesis. Protoplasma 78:467–470

    Article  Google Scholar 

  220. Campos FF, Morgan DTJ (1958) Haploid pepper from a sperm. J Hered 49:135–137

    Article  Google Scholar 

  221. Wang Y-Y, Sun C-S, Wang C-C, Chien N-F (1973) The induction of the pollen plantlets of triticale and Capsicum annuum from anther culture. Sci Sinica 16:147–151

    Google Scholar 

  222. Zamani MJ, Moieni A, Choukan R (2016) Effect of temperature stress on androgenesis induction in bell pepper (Capsicum annuum L.) by anther culture. Int J Adv Biotechnol Res 7(4):1725–1733

    CAS  Google Scholar 

  223. Keles D, Pinar H, Ata A, Taskin H, Yildiz S, Buyukalaca S (2015) Effect of pepper types on obtaining spontaneous doubled haploid plants via anther culture. HortScience 50(11):1671–1676. https://doi.org/10.21273/hortsci.50.11.1671

    Article  Google Scholar 

  224. Nowaczyk P, Kisiala A, Lszewska D (2005) In vitro anther culture of Capsicum frutescens L. red- and yellow-fruited forms. Acta Biol Cracov Ser Bot 47:76–76

    Google Scholar 

  225. Wu HN, Zhang SZ (1986) Effect of acridine yellow on development of anthers of Capsicum frutescens var. longum cultured in vitro. J Agric Sci 2:34–39

    Google Scholar 

  226. Nowaczyk P, Kisiala A, Olszewska D (2006) Induced androgenesis of Capsicum frutescens L. Acta Physiol Plant 28(1):35–39. https://doi.org/10.1007/s11738-006-0066-2

    Article  CAS  Google Scholar 

  227. Tsay HS, Su CY (1985) Anther culture of papaya (Carica papaya L.). Plant Cell Rep 4(1):28–30. https://doi.org/10.1007/bf00285498

    Article  CAS  PubMed  Google Scholar 

  228. Rimberia FK, Sunagawa H, Urasaki N, Ishimine Y, Adaniya S (2005) Embryo induction via anther culture in papaya and sex analysis of the derived plantlets. Sci Hortic 103(2):199–208

    Article  CAS  Google Scholar 

  229. Litz R, Conover R (1979) In vitro improvement of Carica papaya L. proceedings of the tropical region of the American Society for Horticultural. Society 23:157–159

    Google Scholar 

  230. Prasad BR, Khadeer MA, Seeta P, Anwar SY (1991) In vitro induction of androgenic haploids in safflower (Carthamus tinctorius L.). Plant Cell Rep 10(1):48–51

    Google Scholar 

  231. Smýkalová I, Horáček J, Kubošiová M, Šmirous P Jr, Soukup A, Gasmanová N, Griga M (2012) Induction conditions for somatic and microspore-derived structures and detection of haploid status by isozyme analysis in anther culture of caraway (Carum carvi L.). In Vitro Cell Dev Biol Plant 48(1):30–39. https://doi.org/10.1007/s11627-011-9386-z

    Article  CAS  Google Scholar 

  232. Smýkalová I, Šmirous P, Kubošiová M, Gasmanová N, Griga M (2009) Doubled haploid production via anther culture in annual, winter type of caraway (Carum carvi L.). Acta Physiol Plant 31(1):21

    Article  Google Scholar 

  233. Gharyal PK, Rashid A, Maheshwari S (1983) Androgenic response from cultured anthers of a leguminous tree, Cassia siamea Lam. Protoplasma 118(1):91–93

    Article  Google Scholar 

  234. Bajaj Y, Dhanjy M (1983) Pollen embryogenesis in three ornamental trees – Cassia fistula, Jacaranda acutifolia and Poinciana regia. J Tree Sci 2:16–19

    Google Scholar 

  235. Abou-Mandour A, Fischer S, Czygan F-C (1979) Regeneration of intact plants from haploid and diploid callus cells of Catharanthus roseus. Zeitschr Pflanzen 91:83–88

    Article  Google Scholar 

  236. Kim SW, Song NH, Jung KH, Kwak SS, Liu JR (1994) High frequency plant regeneration from anther-derived cell suspension cultures via somatic embryogenesis in Catharanthus roseus. Plant Cell Rep 13(6):319–322

    Article  CAS  PubMed  Google Scholar 

  237. George L (1985) Anther culture of Catharanthus roseus L.―development of pollen embryoids. Curr Sci 54(13):641–642

    Google Scholar 

  238. Custódio L, Carneiro MF, Romano A (2005) Microsporogenesis and anther culture in carob tree (Ceratonia siliqua L.). Sci Hortic 104(1):65–77

    Article  CAS  Google Scholar 

  239. Wang H, Dong B, Jiang J, Fang W, Guan Z, Liao Y, Chen S, Chen F (2014) Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern. Front Plant Sci 5:738

    Article  PubMed  PubMed Central  Google Scholar 

  240. Watanabe K (1977) Successful ovary culture and production of F hybrids and androgenic haploids in Japanese Chrysanthemum species. J Hered 68:317–320

    Article  Google Scholar 

  241. Grewal RK, Lulsdorf M, Croser J, Ochatt S, Vandenberg A, Warkentin TD (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28(8):1289–1299. https://doi.org/10.1007/s00299-009-0731-1

    Article  CAS  PubMed  Google Scholar 

  242. Khan S, Ghosh P (1983) In vitro induction of androgenesis and organogenesis in Cicer arietinum L. Curr Sci 52(18):891–893

    CAS  Google Scholar 

  243. Bajaj Y, Gosal S (1987) Pollen embryogenesis and chromosomal variation in cultured anthers of chickpea. Int Chickpea Newsl 17:12–13

    Google Scholar 

  244. Huda S, Islam R, Bari M, Asaduzzaman M (2001) Anther culture of chickpea. Int Chickpea Pigeonpea Newsl 8:24–26

    Google Scholar 

  245. Abdollahi MR, Rashidi S (2018) Production and conversion of haploid embryos in chickpea (Cicer arietinum L.) anther cultures using high 2,4-D and silver nitrate containing media. Plant Cell Tissue Organ Cult 133(1):39–49. https://doi.org/10.1007/s11240-017-1359-4

    Article  CAS  Google Scholar 

  246. Mallikarjuna N, Jadhav D, Clarke H, Coyne C, Muehlbauer F (2005) Induction of androgenesis as a consequence of wide crossing in chickpea. Int Chickpea Pigeonpea Newsl 12:12–15

    Google Scholar 

  247. Panchangam SS, Mallikarjuna N, Gaur PM, Suravajhala P (2014) Androgenesis in chickpea: anther culture and expressed sequence tags derived annotation. NISCAIR-CSIR 52(2):181–188

    Google Scholar 

  248. Reddy V, Reddy G (1997) In vivo production of haploids in chickpea (Cicer arietinum L.). J Genet Breed 51:29–32

    Google Scholar 

  249. Guedira M, DUBOISTYLSKI T, Vasseur J, Dubois J (1989) Direct somatic embryogenesis from anther cultures of Cichorium (Asteraceae). Can J Bot 67(4):970–976

    Article  Google Scholar 

  250. Theiler-Hedtrich R, Hunter C (1995) Regeneration of dihaploid chicory (Cichorium intybus L. var. foliosum Hegi) via microspore culture. Plant Breed 114(1):18–23

    Article  CAS  Google Scholar 

  251. Van Der Veken J, Eeckhaut T, Baert J, Ruttink T, Maudoux O, Werbrouck S, Van Huylenbroeck J (2019) Cichorium intybus L.x Cicerbita alpina Walbr.: doubled haploid chicory induction and CENH3 characterization. Euphytica 215(7). https://doi.org/10.1007/s10681-019-2435-0

  252. Abdollahi MR, Darbandi M, Hamidvand Y, Majdi M (2015) The influence of phytohormones, wheat ovary co-culture, and temperature stress on anther culture response of watermelon (Citrullus lanatus L.). Rev Bras Bot 38(3):447–456. https://doi.org/10.1007/s40415-015-0152-z

    Article  Google Scholar 

  253. Taşkın H, Yücel NK, Baktemur G, Çömlekçioğlu S, Büyükalaca S (2013) Effects of different genotypes and gamma ray doses on haploidization with irradiated pollen technique in watermelon (Citrullus lanatus L.). Can J Plant Sci 93(6):1164–1168

    Article  Google Scholar 

  254. Chaturvedi H, Sharma A (1985) Androgenesis in Citrus aurantifolia (Christm.) swingle. Planta 165(1):142–144

    Article  CAS  PubMed  Google Scholar 

  255. Hidaka T, Yamada Y, Shichijo T (1982) Plantlet formation by anther culture of Citrus aurantium L. Jpn J Breed 32(3):247–252

    Article  Google Scholar 

  256. Cardoso JC, Abdelgalel AM, Chiancone B, Latado RR, Lain O, Testolin R, Germana MA (2016) Gametic and somatic embryogenesis through in vitro anther culture of different Citrus genotypes. Plant Biosyst 150(2):304–312. https://doi.org/10.1080/11263504.2014.987847

    Article  Google Scholar 

  257. Ramírez C, Chiancone B, Testillano PS, Garcia-Fojeda B, Germana MA, Risueno MC (2003) First embryogenic stages of Citrus microspore-derived embryos. Acta Biol Cracov Ser Bot 45(1):53–58

    Google Scholar 

  258. Germanà MA, Wang YY, Barbagallo MG, Iannolino G, Crescimanno FG (1994) Recovery of haploid and diploid plantlets from anther culture of Citrus clementina Hort ex Tan and Citrus reticulata Blanco. J Hortic Sci 69(3):473–480

    Article  Google Scholar 

  259. Germanà M, Crescimanno F, Motisi A (2000) Factors affecting androgenesis in Citrus clementina Hort. ex Tan. Adv Hortic Sci 14(2):43–51

    Google Scholar 

  260. Germanà M, Crescimanno F, Reforgiato Recupero G, Russo M (1998) Preliminary characterization of several doubled haploids of Citrus clementina cv. Nules. Acta Hortic 535:183–190

    Google Scholar 

  261. Germanà MA, Chiancone B (2001) Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains. Plant Cell Tissue Organ Cult 66(1):59–66

    Article  Google Scholar 

  262. Germanà M, Chiancone B (2003) Improvement of the anther culture protocol in Citrus clementina Hort. ex Tan. Plant Cell Rep 22(3):181–187

    Article  PubMed  CAS  Google Scholar 

  263. Chiancone B, Marli Gniech Karasawa M, Gianguzzi V, Abdelgalel AM, Bárány IV, Testillano PS, Torello Marinoni D, Botta R, Germanà MA (2015) Early embryo achievement through isolated microspore culture in Citrus clementina Hort. ex Tan., cvs. ‘Monreal Rosso’ and ‘Nules’. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00413

  264. Germanà MA, Chiancone B (2003) Improvement of Citrus clementina Hort. ex Tan. microspore-derived embryoid induction and regeneration. Plant Cell Rep 22(3):181–187

    Article  PubMed  CAS  Google Scholar 

  265. Aleza P, Juárez J, Hernández M, Pina JA, Ollitrault P, Navarro L (2009) Recovery and characterization of a Citrus clementina Hort. ex Tan. ‘Clemenules’ haploid plant selected to establish the reference whole Citrus genome sequence. BMC Plant Biol 9(1):110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Germanà MA, Recupero GR (1997) Haploid embryos regeneration from anther culture of ‘Mapo’ tangelo (Citrus deliciosa × C. paradisi). Adv Hortic Sci 11(3):147–152

    Google Scholar 

  267. Germanà M, Crescimanno F, De Pasquale F, Yu Ying W (1990) Androgenesis in 5 cultivars of Citrus limon L. Burm. f. In Vitro Culture, XXIII IHC 300 300:315–324

    Google Scholar 

  268. Ling J, Iwamasa M (1988) Nito N Plantlet regeneration by anther culture of Calamondin (Citrus madurensis Lour.). In: Goren R, Mendel K (eds) Citriculture: proceedings of the sixth international citrus congress: Middle-East. Rehovot, Balaban Publishers, pp 251–256

    Google Scholar 

  269. Yahata M, Nukaya T, Sudo M, Ohta T, Yasuda K, Inagaki H, Mukai H, Harada H, Takagi T, Komatsu H, Kunitake H (2015) Morphological characteristics of a doubled haploid line from ‘Banpeiyu’ pummelo [Citrus maxima (Burm.) Merr.] and its reproductive function. Hortic J 84:30–36

    Article  CAS  Google Scholar 

  270. Karasawa K (1971) On tte occurrence of haploid seedlings in Citrus natsudaidai Hayata, vol 1. Sakushingakuin Junior College for Women Bull, Biological Institute, Utsunomiya, pp 1–2

    Google Scholar 

  271. Jedidi E, Kamiri M, Poullet T, Ollitrault P, Froelicher Y (2015) Efficient haploid production on ‘Wilking’mandarin by induced gynogenesis. Acta Hortic 1065:60

    Google Scholar 

  272. Starrantino A, Caponnetto P (1989) Effect of cytokinins on embryogenic callus formation from undeveloped ovules of orange. Acta Hortic 280:191–194

    Google Scholar 

  273. Hidaka T (1984) Induction of plantlets from anthers of ‘Trovita’ orange. J Jpn Soc Hortic Sci 53(1):1–5

    Article  Google Scholar 

  274. Koltunow AM, Soltys K, Nito N, McClure S (1995) Anther, ovule, seed, and nucellar embryo development in Citrus sinensis cv. Valencia. Can J Bot 73(10):1567–1582

    Article  Google Scholar 

  275. Wang SM, Lan H, Cao HB, Xu Q, Chen CL, Deng XX, Guo WW (2015) Recovery and characterization of homozygous lines from two sweet orange cultivars via anther culture. Plant Cell Tissue Organ Cult 123(3):633–644. https://doi.org/10.1007/s11240-015-0866-4

    Article  Google Scholar 

  276. Froelicher Y, Ollitrault P (1998) Effects of the hormonal balance on Clausena excavata androgenesis. First international citrus biotechnology symposium 535:139–146

    Google Scholar 

  277. Monfort S (1985) Androgenesis of coconut: embryos from anther culture. Z Pflanzen 94(3):251–254

    Google Scholar 

  278. Thanh-Tuyen NT, De Guzman EV (1983) Formation of pollen embryos in cultured anthers of coconut (Cocos nucifera L.). Plant Sci Lett 29(1):81–88. https://doi.org/10.1016/0304-4211(83)90026-3

    Article  Google Scholar 

  279. Bandupriya H, Fernando S, Vidhanaarachchil Y (2016) Micropropagation and androgenesis in coconut: an assessment of Sri Lankan implication. Cocos 22:31–47

    Article  Google Scholar 

  280. Perera PIP, Yakandawala DMD, Hocher V, Verdeil JL, Weerakoon LK (2009) Effect of growth regulators on microspore embryogenesis in coconut anthers. Plant Cell Tissue Organ Cult 96(2):171–180. https://doi.org/10.1007/s11240-008-9473-y

    Article  CAS  Google Scholar 

  281. Perera PIP, Motha KF, Vidhanaarchchi VRM (2020) Morphological and histological analysis of anther-derived embryos of coconut (Cocos nucifera L.). Plant Cell Tissue Org Cult 140(3):685–689. https://doi.org/10.1007/s11240-019-01762-9

    Article  CAS  Google Scholar 

  282. Neuenschwander B, Baumann T (1995) Increased frequency of dividing microspores and improved maintenance of multicellular microspores of Coffea arabica in medium with coconut milk. Plant Cell Tissue Organ Cult 40(1):49–54

    Article  CAS  Google Scholar 

  283. Couturon E (1982) Obtaining naturally-occurring haploids of coffea – Canephora pierre by grafting of embryos. Cafe Cacao Tee 26(3):155–160

    Google Scholar 

  284. Lashermes P, Couturon E, Charrier A (1993) Doubled haploids of Coffea canephora: development, fertility and agronomic characteristics. Euphytica 74(1–2):149–157

    Article  Google Scholar 

  285. Lashermes P, Couturon E, Charrier A (1994) Combining ability of doubled haploids in Coffea canephora P. Plant Breed 112(4):330–337

    Article  Google Scholar 

  286. Raghuramulu Y, Prakash N (1996) Haploidy in coffee. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Springer, Dordrech, pp 349–363

    Chapter  Google Scholar 

  287. Ali MA, Jones J (2000) Microspore culture in Corchorus olitorius: effect of growth regulators, temperature and sucrose on callus formation. Indian J Exp Biol 38(6):593–597

    CAS  PubMed  Google Scholar 

  288. Gniech Karasawa MM, Chiancone B, Gianguzzi V, Abdelgalel AM, Botta R, Sartor C, Germanà MA (2016) Gametic embryogenesis through isolated microspore culture in Corylus avellana L. Plant Cell Tissue Organ Cult 124(3):635–647. https://doi.org/10.1007/s11240-015-0921-1

    Article  Google Scholar 

  289. Sacristan MD (1971) Karyotypic changes in callus cultures from haploid and diploid plants of Crepis capillaris (L.) Wallr. Chromosoma 33(3):273–283

    Article  Google Scholar 

  290. Slusarkiewicz-Jarzina A, Zenkteler M (1979) Cytological and embryological studies on haploids (n = 3) of Crepis capillaris L. Bull Soc Amis Sci Lett Poznan D Sci Biol 1:65–73

    Google Scholar 

  291. Gerassimowa H (1936) Experimentell erhaltene haploide Pflanze von Crepis tectorum L. Planta 25:696–702

    Article  Google Scholar 

  292. Debata B (1983) In vitro culture of anther of Crotalaria pallida Ait. for induction of haploid. Indian J Exp Biol 21:44–46

    Google Scholar 

  293. Matsubara S, Dohya N, Murakami K (1994) Callus formation and regeneration of adventitious embryos from carrot, fennel and mitsuba microspores by anther and isolated microspore cultures. Acta Hortic 392:129–138

    Google Scholar 

  294. Dumas de Vaulx R (1979) Obtaining haploid plants in melon (Cucumis melo L) after pollination by Cucumis ficifolius. Compt Rend Hebdomad Sean L Acad Sci D 289(12):875

    Google Scholar 

  295. Dryanovska OA, Ilieva IN (1983) In vitro anther and ovule culture in muskmelon (Cucumis melo L.). Compt Rendus Acad Bulgare Sciences 36(8):1107–1110

    Google Scholar 

  296. Sauton A, Dumas de Vaulx R (1987) Obtention de plantes haploides chez melon (Cucumis melo L.) par gynogenese indute par du pollen irraidié. Agronomie 7:141–148

    Article  Google Scholar 

  297. Savin F, Decomble V, Le Couviour M, Hallard J (1988) The X-ray detection of haploid embryos arisen in muskmelon (Cucumis melo L.) seeds, and resulting from a parthenogenetic development induced by irradiated pollen. Rep Cucurbit Genet Coop 11:39–42

    Google Scholar 

  298. Cuny F, de Vaulx RD, Longhi B, Siadous R (1992) Analyse des plantes de melon (Cucumis melo L) issues de croisements avec du pollen irradié à différentes doses. Agronomie 12:623–630

    Article  Google Scholar 

  299. Ficcadenti N, Sestili S, Annibali S, Di Marco M, Schiavi M (1999) In vitro gynogenesis to induce haploid plants in melon Cucumis melo L. Genet Breed 53:255–257

    Google Scholar 

  300. Gonzalo MJ, Claveria E, Monforte AJ, Dolcet-Sanjuan R (2011) Parthenogenic haploids in melon: generation and molecular characterization of a doubled haploid line population. J Am Soc Hortic Sci 136(2):145–154

    Article  CAS  Google Scholar 

  301. Yetisir H, Sari N (2003) A new method for haploid muskmelon (Cucumis melo L.) dihaploidization. Sci Hortic 98(3):277–283. https://doi.org/10.1016/S0304-4238(02)00226-1

    Article  Google Scholar 

  302. Lotfi M, Alan AR, Henning MJ, Jahn MM, Earle ED (2003) Production of haploid and doubled haploid plants of melon (Cucumis melo L.) for use in breeding for multiple virus resistance. Plant Cell Rep 21(11):1121–1128

    Article  CAS  PubMed  Google Scholar 

  303. Lim W, Earle ED (2009) Enhanced recovery of doubled haploid lines from parthenogenetic plants of melon (Cucumis melo L.). Plant Cell Tissue Organ Cult 98(3):351–356. https://doi.org/10.1007/s11240-009-9563-5

    Article  Google Scholar 

  304. Sari N, Solmaz I, Yetisir H, Ekiz H, Yucel S (2010) New Fusarium wilt resistant melon (Cucumis melo var. cantalupensis) varieties developed by dihaploidization. International Society for Horticultural Science (ISHS), Leuven, pp 267–272. https://doi.org/10.17660/ActaHortic.2010.871.35

    Book  Google Scholar 

  305. Sauton A, Institut National de la Recherche Agronomique (1988) Doubled haploid production in melon (Cucumis melo L). Cucurbitaceae 88: proceedings of the Eucarpia meeting on curcurbit genetics and breeding. Institut national de la recherche agronomique, Paris

    Google Scholar 

  306. Yashiro K, Hosoya K, Kuzuya M, Tomita K, Ezura H (2002) Efficient production of doubled haploid melon plants by modified colchicine treatment of parthenogenetic haploids. In: Nishimura S, Ezura H, Matsuda T, Tazuke A (eds) Proceedings of the iind international symposium on cucurbits. Acta Horticulturae, vol 588. Springer, New York, NY, pp 335–338. https://doi.org/10.17660/ActaHortic.2002.588.54

    Chapter  Google Scholar 

  307. Le Deunff E, Sauton A (1994) Effect of parthenocarpy on ovule development in cucumber (Cucumis sativus L.) after pollination with normal and irradiated pollen. Sex Plant Reprod 7(4):221–228

    Article  Google Scholar 

  308. Ebrahimzadeh H, Soltanloo H, Shariatpanahi ME, Eskandari A, Ramezanpour SS (2018) Improved chromosome doubling of parthenogenetic haploid plants of cucumber (Cucumis sativus L.) using colchicine, trifluralin, and oryzalin. Plant Cell Tissue Organ Cult 135(3):407–417. https://doi.org/10.1007/s11240-018-1473-y

    Article  CAS  Google Scholar 

  309. Ebrahimzadeh H, Shariatpanahi ME, Ahmadi B, Soltanloo H, Lotfi M, Zarifi E (2018) Efficient parthenogenesis induction and in vitro haploid plant regeneration in cucumber (Cucumis sativus L.) using putrescine, spermidine, and cycocel. J Plant Growth Regul 37(4):1127–1134. https://doi.org/10.1007/s00344-018-9803-1

    Article  CAS  Google Scholar 

  310. Asadi A, Zebarjadi A, Abdollahi MR, Seguí-Simarro JM (2018) Assessment of different anther culture approaches to produce doubled haploids in cucumber (Cucumis sativus L.). Euphytica 214(11):216. https://doi.org/10.1007/s10681-018-2297-x

    Article  CAS  Google Scholar 

  311. Abdollahi MR, Najafi S, Sarikhani H, Moosavi SS (2016) Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium. Turk J Biol 40(3):571–579

    Article  CAS  Google Scholar 

  312. Tantasawat PA, Sorntip A, Pornbungkerd P (2015) Effects of exogenous application of plant growth regulators on growth, yield, and in vitro gynogenesis in cucumber. HortScience 50(3):374–382. https://doi.org/10.21273/hortsci.50.3.374

    Article  CAS  Google Scholar 

  313. Plapung P, Khamsukdee S, Potapohn N, Smitamana P (2014) Screening for cucumber mosaic resistant lines from the ovule culture derived double haploid cucumbers. Am J Agric Biol Sci 9(3):261–269

    Article  Google Scholar 

  314. Hamidvand Y, Abdollahi MR, Chaichi M, Moosavi SS (2013) The effect of plant growth regulators on callogenesis and gametic embryogenesis from anther culture of cucumber (Cucumis sativus L.). Int J Agric Crop Sci 5(10):1089

    Google Scholar 

  315. Zhan Y, J-f C, Malik AA (2009) Embryoid induction and plant regeneration of cucumber (Cucumis sativus L.) through microspore culture. Acta Hortic Sin 36(2):221–226

    CAS  Google Scholar 

  316. Diao W-P, Jia Y-Y, Song H, Zhang X-Q, Lou Q-F, Chen J-F (2009) Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenetants using SSR markers. Sci Hortic 119(3):246–251. https://doi.org/10.1016/j.scienta.2008.08.016

    Article  CAS  Google Scholar 

  317. Suprunova T, Shmykova N (2008) In vitro induction of haploid plants in unpollinated ovules, anther and microspore culture of Cucumis sativus. Cucurbitaceae 2008: proceedings of the IXth Eucarpia meeting on genetics and breeding of Cucurbitaceae 2008:371–374

    Google Scholar 

  318. Song H, Lou QF, Luo XD, Wolukau JN, Diao WP, Qian CT, Chen JF (2007) Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant Cell Tissue Organ Cult 90(3):245–254. https://doi.org/10.1007/s11240-007-9263-y

    Article  CAS  Google Scholar 

  319. Claveria E, Garcia-Mas J, Dolcet-Sanjuan R (2005) Optimization of cucumber doubled haploid line production using in vitro rescue of in vivo induced parthenogenic embryos. J Am Soc Hortic Sci 130(4):555–560

    Article  Google Scholar 

  320. Dolcet-Sanjuan R, Claveria E, Garcia-Mas J (2004) Cucumber (Cucumis sativus L.) dihaploid line production using in vitro rescue of in vivo induced parthenogenic embryos. Acta Hortic 725:837–844

    Google Scholar 

  321. Ashok Kumar HG, Murthy HN (2004) Effect of sugars and amino acids on androgenesis of Cucumis sativus. Plant Cell Tissue Organ Cult 78(3):201–208. https://doi.org/10.1023/b:ticu.0000025637.56693.68

    Article  Google Scholar 

  322. Gémes-Juhász A, Balogh P, Ferenczy A, Kristóf Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21(2):105–111. https://doi.org/10.1007/s00299-002-0482-8

    Article  CAS  Google Scholar 

  323. Çaglar G, Abak K (1999) Progress in the production of haploid embryos, plants and doubled haploids in cucumber (C. sativus L.) by gamma irradiated pollen, in Turkey. Acta Hortic 492:317–322

    Article  Google Scholar 

  324. Truong-Andre I (1988) In vitro haploid plants derived from pollination by irradiated pollen on cucumber. In: Eucarpia meeting on cucurbit genetics and breeding, Montfavet (France), 31 May to 2 Jun. INRA, Montfavet

    Google Scholar 

  325. Juhasz AG, Venczel G, Balogh P (1997) Haploid plant induction in zucchini (Cucurbita pepo L convar giromontiina Duch) and in cucumber (Cucumis sativus L) lines through in vitro gynogenesis. In: Altman A, Ziv M (eds) Horticultural biotechnology in vitro culture and breeding. Acta Horticulturae, vol 447. Springer, New York, NY, pp 623–624

    Google Scholar 

  326. Li JW, Si SW, Cheng JY, Li JX, Liu JQ (2013) Thidiazuron and silver nitrate enhanced gynogenesis of unfertilized ovule cultures of Cucumis sativus. Biol Plant 57(1):164–168. https://doi.org/10.1007/s10535-012-0269-x

    Article  CAS  Google Scholar 

  327. Gemes-Juhasz A, Balogh P, Ferenczy A, Kristóf Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21(2):105–111

    Article  CAS  Google Scholar 

  328. Sorntip A, Poolsawat O, Kativat C, Tantasawat PA (2017) Gynogenesis and doubled haploid production from unpollinated ovary culture of cucumber (Cucumis sativus L.). Can J Plant Sci 98(2):353–361

    Google Scholar 

  329. Amirian R, Hojati Z, Azadi P (2020) Male flower induction significantly affects androgenesis in cucumber (Cucumis sativus L.). J Hortic Sci Biotechnol 95(2):183–191. https://doi.org/10.1080/14620316.2019.1655488

    Article  CAS  Google Scholar 

  330. Sorntip A, Poolsawat O, Kativat C, Tantasawat PA (2018) Gynogenesis and doubled haploid production from unpollinated ovary culture of cucumber (Cucumis sativus L.). Can J Plant Sci 98(2):353–361. https://doi.org/10.1139/cjps-2017-0112

    Article  CAS  Google Scholar 

  331. Golabadi M, Ghanbari S, Keighobadi K, Ercisli S (2017) Embryo and callus induction by different factors in ovary culture of cucumber. J Appl Bot Food Qual 90:68–75. https://doi.org/10.5073/jabfq.2017.090.0101

    Article  CAS  Google Scholar 

  332. Galazka J, Slomnicka R (2015) From pollination to DH lines. Verification and optimization of protocol for production of doubled haploids in cucumber. Acta Sci Pol-Hortorum Culttus 14(3):81–92

    Google Scholar 

  333. Kurtar ES, Ahmet B, Ozbakir OM (2018) Production of callus mediated gynogenic haploids in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Czech J Genet Plant Breed 54(1):9–16

    Article  CAS  Google Scholar 

  334. Kurtar ES (2018) The effects of anti-mitotic agents on dihaploidization and fertility in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) androgenic haploids. Acta Sci Pol-Hortorum Cultus 17(5):3–14. https://doi.org/10.24326/asphc.2018.5.1

    Article  Google Scholar 

  335. Kurtar ES, Balkaya A, Kandemir D (2016) Evaluation of haploidization efficiency in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) through anther culture. Plant Cell Tissue Organ Cult 127(2):497–511. https://doi.org/10.1007/s11240-016-1074-6

    Article  Google Scholar 

  336. Kurtar ES, Balkaya A (2010) Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell Tissue Organ Cult 102(3):267–277. https://doi.org/10.1007/s11240-010-9729-1

    Article  Google Scholar 

  337. Kurtar ES, Balkaya A, Ozbakir M, Ofluoglu T (2009) Induction of haploid embryo and plant regeneration via irradiated pollen technique in pumpkin (Cucurbita moschata Duchesne ex. Poir). Afr J Biotechnol 8(21):5944–5951

    Article  Google Scholar 

  338. Dumas de Vaulx R, Chambonnet D (1986) Obtention of embryos and plants from in vitro culture of unfertilized ovules of Cucurbita pepo. In: Proceedings of the international symposium, EUCARPIA. Walter de Gruyter & Co., Berlin, pp 295–297

    Google Scholar 

  339. Metwally EI, Moustafa SA, El-Sawy BI, Shalaby TA (1998) Haploid plantlets derived by anther culture of Cucurbita pepo. Plant Cell Tissue Organ Cult 52(3):171–176. https://doi.org/10.1023/a:1005908326663

    Article  CAS  Google Scholar 

  340. Metwally E, Moustafa S, El-Sawy B, Haroun S, Shalaby T (1998) Production of haploid plants from in vitro culture of unpollinated ovules of Cucurbita pepo. Plant Cell Tissue Organ Cult 52(3):117–121

    Article  CAS  Google Scholar 

  341. Košmrlj K, Murovec J, Bohanec B (2013) Haploid induction in hull-less seed pumpkin through parthenogenesis induced by X-ray-irradiated pollen. J Am Soc Hortic Sci 138(4):310–316

    Article  Google Scholar 

  342. Rakha M, Metwally E, Moustafa S, Etman A, Dewir Y (2012) Evaluation of regenerated strains from six Cucurbita interspecific hybrids obtained through anther and ovule in vitro cultures. Aust J Crop Sci 6(1):23–30

    CAS  Google Scholar 

  343. Shalaby TA (2006) Embryogenesis and plantlets regeneration from anther culture of squash plants (Cucurbita pepo L.) as affected by different genotypes. J Agric Res Tanta Univ 32(1):173–183

    Google Scholar 

  344. Mohamed M, Refaei E (2004) Enhanced haploids regeneration in anther culture of summer squash (Curcurbita pepo L.). Cucurbit Genet Coop Rep 27:57–60

    Google Scholar 

  345. Kurtar ES, Sarı N, Abak K (2002) Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica 127(3):335–344. https://doi.org/10.1023/a:1020343900419

    Article  CAS  Google Scholar 

  346. Shalaby TA (2007) Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Sci Hortic 115(1):1–6

    Article  Google Scholar 

  347. Pichot C, El Maâtaoui M, Raddi S, Raddi P (2001) Surrogate mother for endangered Cupressus. Nature 412(6842):39–39

    Article  CAS  PubMed  Google Scholar 

  348. Ishizaka H (1998) Production of microspore-derived plants by anther culture of an interspecific F1 hybrid between Cyclamen persicum and C. purpurascens. Plant Cell Tissue Organ Cult 54(1):21–28

    Article  Google Scholar 

  349. Motzo R, Deidda M (1993) Anther and ovule culture in globe artichoke. J Genet Breed 47(3):263–266

    Google Scholar 

  350. Christensen J, Borrino E, Olesen A, Andersen SB (1997) Diploid, tetraploid, and octoploid plants from anther culture of tetraploid orchard grass, Dactylis glomerata L. Plant Breed 116(3):267–270

    Article  Google Scholar 

  351. Padmanabhan C, Gurunathan M, Pathmanabhan G, Oblisami G (1977) Induction of haploid plants from anther culture in Datura ferox L. Madras Agric J 64(8):542–543

    Google Scholar 

  352. Meixner M, Frahm C, Pflug P, Schmidt-Rogge T, Schieder O (1997) Genetic manipulation of haploid Datura innoxia Mill: analysis of the transgene integration patterns and the ploidy level of transgenic plants obtained after direct or Agrobacterium-mediated gene transfer. In: Altman A, Ziv M (eds) Horticultural biotechnology in vitro culture and breeding. Acta Horticulturae, vol 447. Springer, New York, NY, pp 349–354

    Google Scholar 

  353. Sharma VK, Jethwani V, Kothari SL (1993) Embryogenesis in suspension cultures of Datura innoxia Mill. Plant Cell Rep 12(10):581–584

    Article  CAS  PubMed  Google Scholar 

  354. Sangwan RS, Ducrocq C, Sangwan-Norreel B (1993) Agrobacterium-mediated transformation of pollen embryos in Datura innoxia and Nicotiana tabacum: production of transgenic haploid and fertile homozygous dihaploid plants. Plant Sci 95(1):99–115

    Article  CAS  Google Scholar 

  355. Sangwan RS, Mathivet V, Vasseur G (1989) Ultrastructural localization of acid phosphatase during male meiosis and sporogenesis in Datura: evidence for digestion of cytoplasmic structures in the vacuoles. Protoplasma 149:38–46

    Article  Google Scholar 

  356. Sangwan RS, Sangwan-Norreel BS (1987) Ultrastructural cytology of plastids in pollen grains of certain androgenic and nonandrogenic plants. Protoplasma 138(1):11–22. https://doi.org/10.1007/bf01281180

    Article  Google Scholar 

  357. Sangwan RS, Camefort H (1984) Cold treatment-related structural modifications in the embryogenic anthers of Datura. Cytologia 49(3):473–487

    Article  Google Scholar 

  358. Tyagi AK, Rashid A, Maheshwari SC (1981) Promotive effect of polyvinylpolypyrrolidone on pollen embryogenesis in Datura innoxia. Physiol Plant 53(4):405–406. https://doi.org/10.1111/j.1399-3054.1981.tb02722.x

    Article  CAS  Google Scholar 

  359. Tyagi AK, Rashid A, Maheshwari SC (1981) Sodium chloride-resistant cell line from haploid Datura innoxia mill – a resistance trait carried from cell to plantlet and vice versa in vitro. Protoplasma 105(3–4):327–332. https://doi.org/10.1007/bf01279229

    Article  Google Scholar 

  360. Forche E, Kibler R, Neumann KH (1981) The influence of developmental stages of haploid and diploid callus cultures of Datura innoxia on shoot initiation. Z Pflanzenphysiol 101(3):257–262

    Article  Google Scholar 

  361. Forche E, Neumann KH (1977) Influence of various cultural factors on development of haploid plants by anther culture of Datura innoxia and Nicotiana tabacum ssp. Z Pflanzen 79(3):250–255

    Google Scholar 

  362. Sopory SK, Maheshwari SC (1976) Morphogenetic potentialities of haploid and diploid vegetative parts of Datura innoxia. Z Pflanzenphysiol 77(3):274–277

    Article  Google Scholar 

  363. Sunderland N, Collins GB, Dunwell JM (1974) Role of nuclear fusion in pollen embryogenesis of Datura innoxia Mill. Planta 117(3):227–241

    Article  CAS  PubMed  Google Scholar 

  364. Nitsch C, Norreel B (1973) Effect of thermal shock on embryogenic power of pollen of Datura innoxia cultured in anther or isolated from anther. Compt Rend Hebdomad Sean L Acad Sci D 276(3):303–306

    Google Scholar 

  365. Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 1:97–98

    Article  Google Scholar 

  366. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  367. Iqbal MCM, Wijesekara KB (2007) A brief temperature pulse enhances the competency of microspores for androgenesis in Datura metel. Plant Cell Tissue Org Cult 89(2–3):141–149. https://doi.org/10.1007/s11240-007-9222-7

    Article  Google Scholar 

  368. Babbar SB, Gupta SC (1990) Phasic requirement of coconut milk for Datura metel microspore embryogenesis. Phytomorphology 40(1–2):53–57

    Google Scholar 

  369. Babbar SB, Gupta SC (1986) Effect of carbon source on Datura metel microspore embryogenesis and the growth of callus raised from microspore-derived embryos. Biochem Physiol Pflanz 181(5):331–338

    Article  CAS  Google Scholar 

  370. Babbar SB, Gupta SC (1986) Promotory and inhibitory effects of activated charcoal on microspore embryogenesis in Datura metel. Physiol Plant 66(4):602–604. https://doi.org/10.1111/j.1399-3054.1986.tb05586.x

    Article  CAS  Google Scholar 

  371. Babbar SB, Gupta SC (1986) Obligatory and period-specific requirement of iron for microspore embryogenesis in Datura metel anther cultures. Bot Mag Tokyo 99(1054):225–232. https://doi.org/10.1007/bf02488823

    Article  CAS  Google Scholar 

  372. Babbar SB, Gupta SC (1986) Putative role of ethylene in Datura metel microspore embryogenesis. Physiol Plant 68(1):141–144. https://doi.org/10.1111/j.1399-3054.1986.tb06609.x

    Article  CAS  Google Scholar 

  373. Babbar S, Gupta S (1984) Pathways in pollen sporophyte development in anther cultures of Datura metel and Petunia hybrida. Beitr Biol Pflanzen 59:475–488

    Google Scholar 

  374. Sangwan RS, Camefort H (1983) The tonoplast, a specific marker of embryogenic microspores of Datura cultured in vitro. Histochemistry 78(4):473–480

    Article  CAS  PubMed  Google Scholar 

  375. Scogin R (1976) Isoenzyme patterns in androgenic, haploid Datura meteloides (Solanaceae). Experientia 32(5):562–563. https://doi.org/10.1007/bf01990161

    Article  CAS  Google Scholar 

  376. Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the Jimson weed Datura stramonium. Science 55(1433):646–647. https://doi.org/10.1126/science.55.1433.646

    Article  CAS  PubMed  Google Scholar 

  377. Tyukavin G, Shmykova N, Monakhova M (1999) Cytological study of embryogenesis in cultured carrot anthers. Russ J Plant Physiol 46(6):767–773

    CAS  Google Scholar 

  378. Gorécka K (2005) The influence of several factors on the efficiency of androgenesis in carrot. J Appl. Genetics 46(3):265–269

    Google Scholar 

  379. Gorecka K, Kowalska U, Krzyzanowska D, Kiszczak W (2010) Obtaining carrot (Daucus carota L.) plants in isolated microspore cultures. J Appl Genet 51(2):141–147

    Article  CAS  PubMed  Google Scholar 

  380. Gorecka K, Kiszczak W, Krzyzanowska D, Kowalska U, Kapuscinska A (2014) Effect of polyamines on in vitro anther cultures of carrot (Daucus carota L.). Turk J Biol 38(5):593–600

    Article  CAS  Google Scholar 

  381. Kiełkowska A, Adamus A, Baranski R (2018) Haploid and doubled haploid plant production in carrot using induced parthenogenesis and ovule excision in vitro. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols. Springer New York, New York, NY, pp 301–315. https://doi.org/10.1007/978-1-4939-8594-4_21

    Chapter  Google Scholar 

  382. Kiełkowska A, Adamus A, Baranski R (2014) An improved protocol for carrot haploid and doubled haploid plant production using induced parthenogenesis and ovule excision in vitro. In Vitro Cell Dev Biol Plant 50(3):376–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  383. Li J-R, Zhuang F-Y, Ou C-G, Hu H, Zhao Z-W, Mao J-H (2013) Microspore embryogenesis and production of haploid and doubled haploid plants in carrot (Daucus carota L.). Plant Cell Tissue Organ Cult 112(3):275–287

    Article  Google Scholar 

  384. Kiszczak W, Kowalska U, Burian M, Gorecka K (2018) Induced androgenesis as a biotechnology method for obtaining DH plants in Daucus carota L. J Hortic Sci Biotechnol 93(6):625–633. https://doi.org/10.1080/14620316.2018.1431058

    Article  CAS  Google Scholar 

  385. Domblides AS (2017) Anther and ovule in vitro culture in carrot (Daucus carota L.). In: Briard M (ed) International symposium on carrot and other Apiaceae, vol 1153. Acta Horticulturae, vol 1. International Society of Horticultural Science, Leuven, pp 55–60. https://doi.org/10.17660/ActaHortic.2017.1153.9

    Chapter  Google Scholar 

  386. Górecka K, Krzyżanowska D, Kiszczak W, Kowalska U, Górecki R (2009) Carrot doubled haploids. In: Advances in haploid production in higher plants. Springer, New York, NY, pp 231–239

    Chapter  Google Scholar 

  387. Dunemann F, Unkel K, Sprink T (2019) Using CRISPR/Cas9 to produce haploid inducers of carrot through targeted mutations of centromeric histone H3 (CENH3). International Society for Horticultural Science (ISHS), Leuven, pp 211–220. https://doi.org/10.17660/ActaHortic.2019.1264.26

    Book  Google Scholar 

  388. Khandakar RK, Jie Y, Sun-Kyung M, Mi-Kyoung W, Choi HG, Ha-Seung P, Jong-Jin C, Soo-Cheon C, Ji-Youn J, Kyu-Min L (2014) Regeneration of haploid plantlet through anther culture of Chrysanthemum (Dendranthema grandiflorum). Not Bot Horti Agrobot Cluj Napoca 42(2):482–487

    Article  Google Scholar 

  389. Sato S, Katoh N, Yoshida H, Iwai S, Hagimori M (2000) Production of doubled haploid plants of carnation (Dianthus caryophyllus L.) by pseudofertilized ovule culture. Sci Hortic 83(3–4):301–310

    Article  CAS  Google Scholar 

  390. Badea E, Iordan M, Mihalea A (1985) Induction of androgenesis in anther culture of Digitalis lanata. Rev Roum Biol Biol Veg 30:63–71

    Google Scholar 

  391. Diettrich B, Ernst S, Luckner M (2000) Haploid plants regenerated from androgenic cell cultures of Digitalis lanata. Planta Med 66(03):237–240

    Article  CAS  PubMed  Google Scholar 

  392. Pèrez-Bermúdez P, Cornejo MJ, Segura J (1985) Pollen plant formation from anther cultures of Digitalis obscura L. Plant Cell Tissue Organ Cult 5(1):63–68. https://doi.org/10.1007/bf00033570

    Article  Google Scholar 

  393. Corduan G, Spix C (1975) Haploid callus and regeneration of plants from anthers of Digitalis purpurea L. Planta 124(1):1–11

    Article  CAS  PubMed  Google Scholar 

  394. Sinha R, Das K (1986) Anther-derived callus of Dolichos biflorus L, its protoplast culture and their morphogenic potential. Curr Sci 55(9):447–452

    Google Scholar 

  395. Zhao FC, Nilanthi D, Yang YS, Wu H (2006) Anther culture and haploid plant regeneration in purple coneflower (Echinacea purpurea L.). Plant Cell Tissue Organ Cult 86(1):55–62. https://doi.org/10.1007/s11240-006-9096-0

    Article  Google Scholar 

  396. Dunwell JM, Wilkinson MJ, Nelson S, Wening S, Sitorus AC, Mienanti D, Alfiko Y, Croxford AE, Ford CS, Forster BP (2010) Production of haploids and doubled haploids in oil palm. BMC Plant Biol 10(1):218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  397. Singh M (1979) In vitro induction of haploid roots and shoots from female gametophyte of Ephedra foliata Boiss. Beitr Biol Pflanzen 55:169–177

    CAS  Google Scholar 

  398. Tefera H, Zapata-Arias F, Afza R, Kodym A (1999) Response of tef genotypes to anther culture. Agri 14(1):8–9

    Google Scholar 

  399. Gugsa L, Sarial AK, Lorz H, Kumlehn J (2006) Gynogenic plant regeneration from unpollinated flower explants of Eragrostis tef (Zuccagni) Trotter. Plant Cell Rep 25(12):1287–1293. https://doi.org/10.1007/s00299-006-0200-z

    Article  CAS  PubMed  Google Scholar 

  400. Li JQ, Wang YQ, Lin LH, Zhou LJ, Luo N, Deng QX, Xian JR, Hou CX, Qiu Y (2008) Embryogenesis and plant regeneration from anther culture in loquat (Eriobotrya japonica L.). Sci Hortic 115(4):329–336. https://doi.org/10.1016/j.scienta.2007.10.007

    Article  CAS  Google Scholar 

  401. Germanà MA, Chiancone B, Guarda NL, Testillano PS, Risueno MC (2006) Development of multicellular pollen of Eriobotrya japonica Lindl. through anther culture. Plant Sci 171(6):718–725

    Article  CAS  Google Scholar 

  402. Leskovšek L, Jakše M, Bohanec B (2008) Doubled haploid production in rocket (Eruca sativa Mill.) through isolated microspore culture. Plant Cell Tissue Organ Cult 93(2):181–189. https://doi.org/10.1007/s11240-008-9359-z

    Article  Google Scholar 

  403. Sommer HE, Wetzstein HY (1984) Hardwoods. Handbook of plant cell. Culture 3:511–540

    Google Scholar 

  404. Yang Y, Wei W (1984) Insection of Longan haploid plantlets from pollens cultured in certain proper media. Acta Genet Sin (China) 11(4):288–293

    Google Scholar 

  405. Bohanec B (1997) Haploid induction in buckwheat (Fagopyrum esculentum Moench). In: In vitro haploid production in higher plants. Springer, New York, NY, pp 163–170

    Chapter  Google Scholar 

  406. Zheleznov A (1976) Methods of obtaining parthenogenetic haploids in buckwheat. Apomiksis Ego Ispol’zovanie Selektsii 1976:65–68

    Google Scholar 

  407. Bohanec B, Nešković M, Vujičić R (1993) Anther culture and androgenetic plant regeneration in buckwheat (Fagopyrum esculentum Moench). Plant Cell Tissue Organ Cult 35(3):259–266. https://doi.org/10.1007/bf00037279

    Article  Google Scholar 

  408. Germanà MA (2009) Haploids and doubled haploids in fruit trees. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 241–263

    Chapter  Google Scholar 

  409. Germanà MA (2006) Doubled haploid production in fruit crops. Plant Cell Tissue Organ Cult 86(2):131–146

    Article  Google Scholar 

  410. Canhoto JM, Cruz GS (1993) Induction of pollen callus in anther cultures of Feijoa sellowiana Berg. (Myrtaceae). Plant Cell Rep 13(1):45–48

    Article  CAS  PubMed  Google Scholar 

  411. Kasperbauer M, Buckner R (1979) Haploid plants from anthers of Festuca arundinacea cultured with nurse tissue. Agronomy Abstracts (USA)

    Google Scholar 

  412. Zare A-G, Humphreys MW, Rogers WJ, Collin HA (1999) Androgenesis from a Lolium multiflorum × Festuca arundinacea hybrid to generate extreme variation for freezing-tolerance. Plant Breed 118(6):497–501. https://doi.org/10.1046/j.1439-0523.1999.00399.x

    Article  Google Scholar 

  413. Zwierzykowski Z, Zwierzykowska E, Slusarkiewicz-Jarzina A, Ponitka A (1999) Regeneration of anther-derived plants from pentaploid hybrids of Festuca arundinacea × Lolium multiflorum. Euphytica 105(3):191–195. https://doi.org/10.1023/a:1003479915606

    Article  Google Scholar 

  414. Zwierzykowski Z, Lukaszewski AJ, Lesniewska A, Naganowska B (1998) Genomic structure of androgenic progeny of pentaploid hybrids, Festuca arundinacea × Lolium multiflorum. Plant Breed 117(5):457–462. https://doi.org/10.1111/j.1439-0523.1998.tb01973.x

    Article  Google Scholar 

  415. Rose J, Dunwell J, Sunderland N (1987) Anther culture of Lolium temulentum, Festuca pratensis and Lolium× Festuca hybrids. I. Influence of pretreatment, culture medium and culture incubation conditions on callus production and differentiation. Ann Bot 60(2):191–201

    Article  Google Scholar 

  416. Rose J, Dunwell J, Sunderland N (1987) Anther culture of Lolium temulentum, Festuca pratensis and Lolium× Festuca hybrids. II. Anther and pollen development in vivo and in vitro. Ann Bot 60(2):203–214

    Article  Google Scholar 

  417. Leśniewska A, Ponitka A, Zwierzykowska E, Zwierzykowski Z, James A, Thomas H, Humphreys M (2001) Androgenesis from Festuca pratensis × Lolium multiflorum amphidiploid cultivars in order to select and stabilize rare gene combinations for grass breeding. Heredity 86(2):167–176

    Article  PubMed  Google Scholar 

  418. Quarta D, Nati D, Paoloni F (1990) Strawberry anther culture. Acta Hortic 300:335–340

    Google Scholar 

  419. Li S, Wu W, Zhang Z, Wang D (1988) Study on anther culture of strawberry (Fragaria ananassa). Genet Manipulat Crops Newsl 4(1):52–62

    CAS  Google Scholar 

  420. Rose J, Jones R, Simpson D (1993) Anther culture and intergeneric hybridization of Fragaria × ananassa. Adv Strawberry Res 12:59–64

    Google Scholar 

  421. Svensson M, Johansson L (1994) Anther culture of Fragaria × ananassa: environmental factors and medium components affecting microspore divisions and callus production. J Hortic Sci 69(3):417–426

    Article  Google Scholar 

  422. Owen HR, Miller AR (1996) Haploid plant regeneration from anther cultures of three north american cultivars of strawberry (Fragaria × ananassa Duch.). Plant Cell Rep 15(12):905–909. https://doi.org/10.1007/bf00231585

    Article  CAS  PubMed  Google Scholar 

  423. Xue G, Fei K, Hu J (1981) Induction of haploid plantlets of strawberry (Fragaria orientalis) by anther culture in vitro. Acta Hortic Sin 8:9–14

    Google Scholar 

  424. Jelenkovic G, Wilson M, Harding P (1984) An evaluation of intergeneric hybridization of Fragaria spp. × Potentilla spp. as a means of haploid production. Euphytica 33(1):143–152

    Article  Google Scholar 

  425. Doi H, Hoshi N, Yamada E, Yokoi S, Nishihara M, Hikage T, Takahata Y (2013) Efficient haploid and doubled haploid production from unfertilized ovule culture of gentians (Gentiana spp.). Breed Sci 63(4):400–406. https://doi.org/10.1270/jsbbs.63.400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Doi H, Yokoi S, Hikage T, Nishihara M, K-i T, Takahata Y (2011) Gynogenesis in gentians (Gentiana triflora, G. scabra): production of haploids and doubled haploids. Plant Cell Rep 30(6):1099–1106

    Article  CAS  PubMed  Google Scholar 

  427. Doi H, Takahashi R, Hikage T, Takahata Y (2010) Embryogenesis and doubled haploid production from anther culture in gentian (Gentiana triflora). Plant Cell Tissue Organ Cult 102(1):27–33

    Article  Google Scholar 

  428. Preil W, Huhnke W, Engelhardt M, Hoffmann M (1977) Haploids in Gerbera jamesonii from in vitro cultured capitulum explants. Z Pflanzen 79(2):167–171

    Google Scholar 

  429. Sitbon M (1981) Production of haploid Gerbera jamesonii plants by in vitro culture of unfertilized ovules. Agronomie, EDP Sci 1(9):807–812

    Article  Google Scholar 

  430. Meynet J, Sibi M (1984) Haploid plants from in vitro culture of unfertilized ovules in Gerbera jamesonii. Z Pflanzen 93(1):78–85

    Google Scholar 

  431. Miyoshi K, Asakura N (1996) Callus induction, regeneration of haploid plants and chromosome doubling in ovule cultures of pot gerbera (Gerbera jamesonii). Plant Cell Rep 16(1–2):1–5

    Article  CAS  PubMed  Google Scholar 

  432. Tosca A, Arcara L, Frangi P (1999) Effect of genotype and season on gynogenesis efficiency in Gerbera. Plant Cell Tissue Organ Cult 59(1):77. https://doi.org/10.1023/a:1006418619992

    Article  Google Scholar 

  433. Ahmim M, Vieth J (1986) Production de plantes haploïdes de Gerbera jamesonii par culture in vitro d’ovules. Can J Bot 64(10):2355–2357. https://doi.org/10.1139/b86-309

    Article  Google Scholar 

  434. Cappadocia M, Chrétien L, Laublin G (1988) Production of haploids in Gerbera jamesonii via ovule culture: influence of fall versus spring sampling on callus formation and shoot regeneration. Can J Bot 66(6):1107–1110

    Article  Google Scholar 

  435. Honkanen J, Aapola A, Seppänen P, Törmälä T, Oy K, de Wit J, Esendam H, Stravers L, Terra Nigra B (1990) Production of doubled haploid Gerbera clones. In Vitro Cult XXIII IHC 300:341–346

    Google Scholar 

  436. Shan Q, Wang J, Li S, Qu S, Wang G, Yang C, Jiang H (2017) Effect of colchicine on Gerbera jamesonii haploid doubling. Southw Chin J Agric Sci 30(10):2230–2234

    Google Scholar 

  437. Laurain D, Trémouillaux-Guiller J, Chénieux J-C (1993) Embryogenesis from microspores of Ginkgo biloba L., a medicinal woody species. Plant Cell Rep 12(9):501–505

    Article  CAS  PubMed  Google Scholar 

  438. Crane C, Beversdorf W, Bingham E (1982) Chromosome pairing and associations at meiosis in haploid soybean (Glycine max). Can J Genet Cytol 24(3):293–300

    Article  Google Scholar 

  439. Jian Y, Liu D, Luo X, Zhao G (1986) Studies on induction of pollen plants in Glycine max (L.) Merr. J Agric Sci 2:26–30

    Google Scholar 

  440. Hildebrand DF, Phillips GC, Collins GB (1986) Soybean [Glycine max (L.)Merr.]. In: Crops I. Springer, New York, NY, pp 283–308

    Chapter  Google Scholar 

  441. Kadlec M, Suchomelova J, Smirnov V, Nikolajevna S (1991) Anther culture in soybean. Soybean Genet Newsl 18:121–124

    Google Scholar 

  442. Hu C-Y, Yin G-C, Helena M, Zanettini B (1996) Haploid of soybean. In: In Vitro haploid production in higher plants. Springer, New York, NY, pp 377–395

    Chapter  Google Scholar 

  443. Kaltchuk-Santos E, Mariath JE, Mundstock E, Hu C-y, Bodanese-Zanettini MH (1997) Cytological analysis of early microspore divisions and embryo formation in cultured soybean anthers. Plant Cell Tissue Organ Cult 49(2):107–115

    Article  Google Scholar 

  444. Zhuang X, Hu C, Chen Y, Yin G (1991) Embryoids from soybean anther culture. Soybean Genet Newsl 18:265

    Google Scholar 

  445. Hai NH, Lal SK, Singh SK, Talukdar A, Vinod (2016) Anther culture of Glycine max (Merr.): effect of media on callus induction and organogenesis. Indian J Genet Plant Breed 76(3):319–325. https://doi.org/10.5958/0975-6906.2016.00048.1

    Article  CAS  Google Scholar 

  446. Mehetre S (1984) Analysis of chromosome pairing in haploids of cotton (Gossypium spp.). Indian J Agric Res 18:49–53

    Google Scholar 

  447. Bajaj Y, Gill M (1989) Pollen-embryogenesis and chromosomal variation in anther culture of a diploid cotton (Gossypium arboreum L.). SABRAO J 21(1):57–63

    Google Scholar 

  448. Mehetre S, Thombre M (1981) Meiotic studies in the haploids (2n = 2x = 26) of tetraploid cottons (2n = 4x = 52). Proc Indian Natl Sci Acad B Biol Sci 47(4):516–518

    Google Scholar 

  449. Bajaj Y, Gill MS (1997) In vitro induction of haploidy in cotton. In: In vitro haploid production in higher plants. Springer, New York, NY, pp 165–174

    Chapter  Google Scholar 

  450. Stelly DM, Lee JA, Rooney WL (1988) Proposed schemes for mass-extraction of doubled haploids of cotton. Crop Sci 28(6):885–890

    Article  Google Scholar 

  451. Singh K, Sandhu BS, Gosal SS (1998) Anther culture response in cotton. Ann Biol 14:11–14

    Google Scholar 

  452. Contolini CS, Menzel MY (1987) Early development of duplication-deficiency ovules in upland cotton. Crop Sci 27(2):345–348

    Article  Google Scholar 

  453. Meredith WR Jr, Bridge R, Chism J (1970) Relative performance of F1 and F2 hybrids from doubled haploids and their parent varieties in upland cotton, Gossypium hirsutum L. Crop Sci 10(3):295–298

    Article  Google Scholar 

  454. Pallares P (1984) First results from “in vitro” culture of unfertilized cotton ovules (Gossypium hirsutum L.). Coton Fibres Trop 39(4):145–152

    Google Scholar 

  455. Barrow JR (1986) The conditions required to isolate and maintain viable cotton (Gossypium hirsutum L.) microspores. Plant Cell Rep 5(6):405–408

    Article  CAS  PubMed  Google Scholar 

  456. Zhou S, Qian D, Cao X (1989) Haploid breeding and its cytogenetics in cotton (Gossypium hirsutum). In: Mujeeb Kazi A, Sitch LA (eds) Review of Advances in Plant Biotechnology, 1985–1988. CIMMYT, IRRI, Manila, pp 323–324

    Google Scholar 

  457. Chaudhari H (1979) The production and performance of doubled haploids of cotton. B Torrey Bot Club 1979:123–130

    Article  Google Scholar 

  458. Kavi Kishor P, Reddy T, Sarvesh A, Venkatesham G (1997) Haploidy in niger (Guizotia abyssinica Cass). In: In vitro haploid production in higher plants. Springer, New York, NY, pp 37–51

    Chapter  Google Scholar 

  459. Makhmudov T (1978) Utilization of haploids in cotton breeding. Khlopkovodstvo 1978:31–32

    Google Scholar 

  460. Mahill JF, Jenkins JN, McCarty J Jr, Parrott W (1984) Performance and stability of doubled haploid lines of upland cotton derived via semigamy. Crop Sci 24(2):271–277

    Article  Google Scholar 

  461. Adda S, Reddy T, Kishor PK (1994) Androclonal variation in niger (Guizotia abyssinica Cass). Euphytica 79(1–2):59–64

    Article  Google Scholar 

  462. Sarvesh A, Reddy T, Kavi Kishor P (1993) Embryogenesis and organogenesis in cultured anthers of an oil yielding crop niger (Guizotia abyssinica. Cass). Plant Cell Tissue Organ Cult 35(1):75–80

    Article  CAS  Google Scholar 

  463. Bhat JG, Murthy HN (2007) Factors affecting in-vitro gynogenic haploid production in niger (Guizotia abyssinica (L. f.) Cass.). Plant Growth Regul 52(3):241–248

    Article  CAS  Google Scholar 

  464. Zhou C, Orndorff K, Allen RD, DeMaggio AE (1986) Direct observations on generative cells isolated from pollen grains of Haemanthus katherinae baker. Plant Cell Rep 5(4):306–309. https://doi.org/10.1007/bf00269829

    Article  CAS  PubMed  Google Scholar 

  465. Mezzarobba A, Jonard R (1986) Effects of the stage of isolation and pretreatments on in vitro development of cultivated sunflower anthers (Helianthus annuus L.). Compt Rendus Acad Sci III Life Sci 303(5):181–186

    Google Scholar 

  466. Hongyuan Y, Chang Z, Detian C, Hua Y, Yan W, Xiaoming C (1986) In vitro culture of unfertilized ovules in Helianthus annuus L. Haploids of higher plants in vitro/edited by Hu Han and Yang Hongyuan. pp 182–191

    Google Scholar 

  467. Gelebart P, San L (1987) Production of haploid plants in sunflower (Helianthus annuus L.) by in vitro culture of non fertilized ovaries and ovules. Agronomie (France) 7:81–86

    Article  Google Scholar 

  468. Gürel A, Nichterlein K, Friedt W (1991) Shoot regeneration from anther culture of sunflower (Helianthus annuus) and some interspecific hybrids as affected by genotype and culture procedure. Plant Breed 106(1):68–76

    Article  Google Scholar 

  469. Coumans M, Zhong D (1995) Doubled haploid sunflower (Helianthus annuus) plant production by androgenesis: fact or artifact? Part 2. In vitro isolated microspore culture. Plant Cell Tissue Organ Cult 41(3):203–309

    Article  CAS  Google Scholar 

  470. Nurhidayah T, Horn R, Röcher T, Friedt W (1996) High regeneration rates in anther culture of interspecific sunflower hybrids. Plant Cell Rep 16(3–4):167–173

    Article  CAS  PubMed  Google Scholar 

  471. Badigannavar AM, Kuruvinashetti M (1996) Callus induction and shoot bud formation from cultured anthers in sunflower (Helianthus annuus L.). Helia Novi Sad 19:39–46

    Google Scholar 

  472. Todorova M, Ivanov P, Shindrova P, Christov M, Ivanova I (1997) Doubled haploid production of sunflower (Helianthus annuus L.) through irradiated pollen-induced parthenogenesis. Euphytica 97(3):249–254. https://doi.org/10.1023/a:1002966824988

    Article  Google Scholar 

  473. Friedt W, Nurhidayah T, Röcher T, Köhler H, Bergmann R, Horn R (1997) Haploid production and application of molecular methods in sunflower (Helianthus annuus L.). In: In vitro haploid production in higher plants. Springer, New York, NY, pp 17–35

    Chapter  Google Scholar 

  474. Saji K, Sujatha M (1998) Embryogenesis and plant regeneration in anther culture of sunflower (Helianthus annuus L.). Euphytica 103(1):1–7

    Article  Google Scholar 

  475. Todorova M, Ivanov P (1999) Induced parthenogenesis in sunflower: effect of pollen donor. Helia (Yugoslavia) 22(31):49–56

    Google Scholar 

  476. Thengane SR, Joshi MS, Khuspe SS, Mascarenhas AF (1994) Anther culture in Helianthus annuus L., influence of genotype and culture conditions on embryo induction and plant regeneration. Plant Cell Rep 13(3–4):222–226

    CAS  PubMed  Google Scholar 

  477. Zhong D, Michauxferriere N, Coumans M (1995) Assay for doubled haploid sunflower (Helianthus annuus) plant production by androgenesis – fact or artifact. 1 In vitro anther culture. Plant Cell Tissue Organ Cult 41(2):91–97

    Article  Google Scholar 

  478. Nenova N, Christov M, Ivanov P (1992) Anter culture regeneration of F1 hybrids of Helianthus annuus × Helianthus smitii and Helianthus annuus × Heliantus eggerttii. In: Proceedings of the XIII international sunflower conference, Pisa. Springer, New York, NY, pp 1509–1514

    Google Scholar 

  479. Nenova N, Cristov M, Ivanov P (2000) Anther culture regeneration from some wild Helianthus species. Helia 23(32):65–72

    Google Scholar 

  480. Zhou C (1989) Cell divisions in pollen protoplast culture of Hemerocallis fulva L. Plant Sci 62(2):229–235. https://doi.org/10.1016/0168-9452(89)90085-X

    Article  Google Scholar 

  481. Nomizu T, Niimi Y, D-s H (2004) Haploid plant regeneration via embryogenesis from anther cultures of Hepatica nobilis. Plant Cell Tissue Organ Cult 79(3):307–313

    Article  Google Scholar 

  482. Zhenghua C, Wenbin L, Lihua Z, Xuen X, Shijie Z (1988) Production of haploid plantlets in cultures of unpolinated ovules of Hevea brasiliensis Muell.-Arg. In: Somatic cell genetics of woody plants. Springer, New York, NY, pp 39–44

    Chapter  Google Scholar 

  483. Jayasree PK, Asokan M, Sobha S, Ammal LS, Rekha K, Kala R, Jayasree R, Thulaseedharan A (1999) Somatic embryogenesis and plant regeneration from immature anthers of Hevea brasiliensis (Muell.) Arg. Curr Sci 76:1242–1245

    Google Scholar 

  484. Chen Z, Qian C, Qin M, Xu X, Xiao Y (1982) Recent advances in anther culture of Hevea brasiliensis (Muell.-Arg.). Theor Appl Genet 62(2):103–108

    Article  CAS  PubMed  Google Scholar 

  485. Susanto D, Ibrahim AM, Hussin ZESM (2013) Pollen and anther cultures as potential means in production of haploid kenaf (Hibiscus cannabinus L.). Int J Adv Sci Eng Informat Technol 3(1):38–40

    Article  Google Scholar 

  486. Ibrahim AM, Kayat FB, Susanto D, Ariffullah M, Kashiani P (2015) Callus induction from ovules of kenaf (Hibiscus cannabinus L.). Biotechnology 14(2):72–78

    Article  CAS  Google Scholar 

  487. Mahmood Ibrahim A, Binti Kayat F, Ermiena Surya Mat Hussin Z, Susanto D, Ariffulah M (2014) Determination of suitable microspore stage and callus induction from anthers of kenaf (Hibiscus cannabinus L.). Sci World J 2014:Article ID 284342

    Article  Google Scholar 

  488. Ma’arup R, Aziz MA, Osman M (2012) Development of a procedure for production of haploid plants through microspore culture of roselle (Hibiscus sabdariffa L.). Sci Hortic 145:52–61. https://doi.org/10.1016/j.scienta.2012.07.028

    Article  CAS  Google Scholar 

  489. Bicknell RA, Borst NK (1996) Isolation of reduced genotypes of Hieracium pilosella using anther culture. Plant Cell Tissue Organ Cult 45(1):37–41. https://doi.org/10.1007/bf00043426

    Article  Google Scholar 

  490. Gudu S, Procunier J, Ziauddin A, Kasha K (1993) Anther culture derived homozygous lines in Hordeum bulbosum. Plant Breed 110(2):109–115

    Article  Google Scholar 

  491. Kihara M, Fukuda K, Funatsuki H, Kishinami I, Aida Y (1994) Plant regeneration through anther culture of three wild species of Hordeum (H. murinum, H. marinum and H. bulbosum). Plant Breed 112(3):244–247

    Article  Google Scholar 

  492. Jørgensen RB, BOTHMER RV (1988) Haploids of Hordeum vulgare and H. marinum from crosses between the two species. Hereditas 108(2):207–212

    Article  Google Scholar 

  493. Gaj M, Gaj M (1985) Dihaploids of Hordeum murinum L. and H. secalinum Schreb. from interspecific crosses with H. bulbosum L. Barley Genet Newsl 15:33–34

    Google Scholar 

  494. Wang XH, Lazzeri PA, Lörz H (1993) Regeneration of haploid, dihaploid and diploid plants from anther- and embryo-derived cell suspensions of wild barley (Hordeum murinum L.). J Plant Physiol 141(6):726–732. https://doi.org/10.1016/S0176-1617(11)81582-8

    Article  CAS  Google Scholar 

  495. Simpson E, Snape J (1980) Haploid production in Hordeum spontaneum × H. bulbosum crosses. Barley Genet Newsl 10:66–67

    Google Scholar 

  496. Piccirilli M, Arcioni S (1991) Haploid plants regenerated via anther culture in wild barley (Hordeum spontaneum C. Kock). Plant Cell Rep 10:273–276

    Article  CAS  PubMed  Google Scholar 

  497. Kintzios S, Fischbeck G (1994) Anther culture response of Hordeum spontaneum-derived winter barley lines. Plant Cell Tissue Organ Cult 37(2):165–170

    Article  Google Scholar 

  498. Makowska K, Kałużniak M, Oleszczuk S, Zimny J, Czaplicki A, Konieczny R (2017) Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tissue Organ Cult 131(2):247–257. https://doi.org/10.1007/s11240-017-1280-x

    Article  CAS  Google Scholar 

  499. Lu R, Chen Z, Gao R, He T, Wang Y, Xu H, Guo G, Li Y, Liu C, Huang J (2016) Genotypes-independent optimization of nitrogen supply for isolated microspore cultures in barley. Biomed Res Int 2016:8. https://doi.org/10.1155/2016/1801646

    Article  CAS  Google Scholar 

  500. Sriskandarajah S, Sameri M, Lerceteau-Köhler E, Westerbergh A (2015) Increased recovery of green doubled haploid plants from barley anther culture. Crop Sci 55(6):2806–2812. https://doi.org/10.2135/cropsci2015.04.0245

    Article  CAS  Google Scholar 

  501. Lippmann R, Friedel S, Mock H-P, Kumlehn J (2015) The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00498

  502. Esteves P, Clermont I, Marchand S, Belzile F (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: II. Exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep. https://doi.org/10.1007/s00299-014-1563-1

  503. Castillo AM, Nielsen NH, Jensen A, Vallés MP (2014) Effects of n-butanol on barley microspore embryogenesis. Plant Cell Tissue Organ Cult 117(3):411–418. https://doi.org/10.1007/s11240-014-0451-2

    Article  CAS  Google Scholar 

  504. Pulido A, Bakos F, Castillo A, Valles MP, Barnabas B, Olmedilla A (2006) Influence of Fe concentration in the medium on multicellular pollen grains and haploid plants induced by mannitol pretreatment in barley (Hordeum vulgare L.). Protoplasma 228(1–3):101–106. https://doi.org/10.1007/s00709-006-0178-y

    Article  CAS  PubMed  Google Scholar 

  505. Pretova A, Obert B, Bartosova Z (2006) Haploid formation in maize, barley, flax, and potato. Protoplasma 228(1–3):107–114. https://doi.org/10.1007/s00709-006-0170-6

    Article  CAS  Google Scholar 

  506. Oleszczuk S, Sowa S, Zimny J (2006) Androgenic response to preculture stress in microspore cultures of barley. Protoplasma 228(1–3):95–100. https://doi.org/10.1007/s00709-006-0179-x

    Article  CAS  PubMed  Google Scholar 

  507. Kruczkowska H, Pawlowska H, Skucinska B (2005) Effect of 2,4-D concentration on the androgenic response in anther culture of barley. Cereal Res Commun 33(4):727–732

    Article  CAS  Google Scholar 

  508. Wojnarowiez G, Caredda S, Devaux P, Sangwan R, Clément C (2004) Barley anther culture: assessment of carbohydrate effects on embryo yield, green plant production and differential plastid development in relation with albinism. J Plant Physiol 161(6):747–755

    Article  CAS  PubMed  Google Scholar 

  509. Shim YS, Kasha KJ (2003) The influence of pretreatment on cell stage progression and the time of DNA synthesis in barley (Hordeum vulgare L.) uninucleate microspores. Plant Cell Rep 21(11):1065–1071

    Article  CAS  PubMed  Google Scholar 

  510. Li HC, Devaux P (2003) High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci 164(3):379–386. https://doi.org/10.1016/s0168-9452(02)00424-7

    Article  CAS  Google Scholar 

  511. Hayes P, Corey A, DeNoma J (2003) Doubled haploid production in barley using the Hordeum bulbosum (L.) technique. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic, Dordretch, pp 5–14

    Chapter  Google Scholar 

  512. Devaux P (2003) The Hordeum bulbosum (L.) method. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic, Dordretch, pp 15–19

    Chapter  Google Scholar 

  513. Castillo AM, Cistué L, Vallés MP, Sanz JM, Romagosa I, Molina-Cano JL (2001) Efficient production of androgenic doubled-haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Rep 20(2):105–111. https://doi.org/10.1007/s002990000289

    Article  CAS  PubMed  Google Scholar 

  514. Castillo AM, Valles MP, Cistue L (2000) Comparison of anther and isolated microspore cultures in barley. Effects of culture density and regeneration medium. Euphytica 113(1):1–8

    Article  CAS  Google Scholar 

  515. Hu TC, Kasha KJ (1999) A cytological study of pretreatments used to improve isolated microspore cultures of wheat (Triticum aestivum L.) cv. Chris. Genome 42(3):432–441

    Article  Google Scholar 

  516. Davies PA, Morton S (1998) A comparison of barley isolated microspore and anther culture and the influence of cell culture density. Plant Cell Rep 17(3):206–210

    Article  CAS  PubMed  Google Scholar 

  517. Cistué L, Ramos A, Castillo AM (1998) Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell Tissue Organ Cult 55(3):159–166

    Article  Google Scholar 

  518. Salmenkallio-Marttila M, Kurten U, Kauppinen V (1995) Culture conditions for efficient induction of green plants from isolated microspores of barley. Plant Cell Tissue Organ Cult 43(1):79–81

    Article  Google Scholar 

  519. Cistué L, Ramos A, Castillo AM, Romagosa I (1994) Production of large number of doubled haploid plants from barley anthers pretreated with high concentrations of mannitol. Plant Cell Rep 13(12):709–712

    Article  PubMed  Google Scholar 

  520. Hoekstra S, Vanzijderveld MH, Heidekamp F, Vandermark F (1993) Microspore culture of Hordeum vulgare L. – the influence of density and osmolality. Plant Cell Rep 12(12):661–665

    Article  CAS  PubMed  Google Scholar 

  521. Hoekstra S, Vanzijderveld MH, Louwerse JD, Heidekamp F, Vandermark F (1992) Anther and microspore culture of Hordeum vulgare L. cv Igri. Plant Sci 86(1):89–96

    Article  CAS  Google Scholar 

  522. Olsen FL (1991) Isolation and cultivation of embryogenic microspores from barley (Hordeum vulgare L). Hereditas 115(3):255–266

    Article  CAS  PubMed  Google Scholar 

  523. Ziauddin A, Simion E, Kasha KJ (1990) Improved plant regeneration from shed microspore culture in barley (Hordeum vulgare L) cv. Igri. Plant Cell Rep 9(2):69–72

    Article  CAS  PubMed  Google Scholar 

  524. Sunderland N, Xu ZH (1982) Shed pollen culture in Hordeum vulgare. J Exp Bot 33:1086–1095

    Article  Google Scholar 

  525. San Noeum LH (1976) Haploides d’Hordeum vulgare L. par culture in vitro d’ovaries non fécondés. Ann Amélior Plant 26:751–754

    Google Scholar 

  526. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  527. Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci 108(33):E498–E505. https://doi.org/10.1073/pnas.1103190108

    Article  PubMed  PubMed Central  Google Scholar 

  528. Roberts-Oehlschlager SL, Dunwell JM (1990) Barley anther culture: pretreatment on mannitol stimulates production of microspore-derived embryos. Plant Cell Tissue Organ Cult 20(3):235–240. https://doi.org/10.1007/bf00041887

    Article  CAS  Google Scholar 

  529. Orlowska R, Pachota KA, Machczynska J, Niedziela A, Makowska K, Zimny J, Bednarek PT (2020) Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electron J Biotechnol 43:8–15. https://doi.org/10.1016/j.ejbt.2019.11.001

    Article  CAS  Google Scholar 

  530. Echavarri B, Cistue L (2016) Enhancement in androgenesis efficiency in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) by the addition of dimethyl sulfoxide to the mannitol pretreatment medium. Plant Cell Tissue Organ Cult 125(1):11–22. https://doi.org/10.1007/s11240-015-0923-z

    Article  CAS  Google Scholar 

  531. Wernicke W, Lorz H, Thomas E (1979) Plant regeneration from leaf protoplasts of haploid Hyoscyamus muticus L. produced via anther culture. Plant Sci Lett 15(3):239–249. https://doi.org/10.1016/0304-4211(79)90116-0

    Article  Google Scholar 

  532. Chand S, Basu P (1998) Embryogenesis and plant regeneration from callus cultures derived from unpollinated ovaries of Hyoscyamus muticus L. Plant Cell Rep 17(4):302–305

    Article  CAS  PubMed  Google Scholar 

  533. Strauss A, Bucher F, King PJ (1981) Isolation of biochemical mutants using haploid mesophyll protoplasts of Hyoscyamus muticus. Planta 153(1):75–80

    Article  CAS  PubMed  Google Scholar 

  534. Fankhauser H, Bucher F, King PJ (1984) Isolation of biochemical mutants using haploid mesophyll protosplasts of Hyoscyamus muticus. Planta 160(5):415–421

    Article  CAS  PubMed  Google Scholar 

  535. Reynolds TL (1985) Ultrastructure of anomalous pollen development in embryogenic anther cultures of Hyoscyamus niger. Am J Bot 72(1):44–51. https://doi.org/10.2307/2443567

    Article  Google Scholar 

  536. Corduan G (1975) Regeneration of anther-derived plants of Hyoscyamus niger L. Planta 127(1):27–36. https://doi.org/10.1007/bf00388860

    Article  CAS  PubMed  Google Scholar 

  537. Raghavan V (1975) Role of the generative cell in androgenesis in henbane. Science 191:388–389

    Article  Google Scholar 

  538. Raghavan V (1978) Origin and development of pollen embryoids and pollen calluses in cultured anther segments of Hyoscyamus niger (henbane). Am J Bot 65:984–1002

    Article  CAS  Google Scholar 

  539. Dodds JH, Reynolds TL (1980) A scanning electron-microscope study of pollen embryogenesis in Hyoscyamus niger. Z Pflanzenphysiol 97(3):271–276

    Article  Google Scholar 

  540. Reynolds TL (1984) An ultrastructural and stereological analysis of pollen grains of Hyoscyamus niger during normal ontogeny and induced embryogenic development. Am J Bot 71(4):490–504

    Article  Google Scholar 

  541. Raghavan V, Nagmani R (1989) Cytokinin effects on pollen embryogenesis in cultured anthers of Hyoscyamus niger. Can J Bot 67(1):247–257

    Article  CAS  Google Scholar 

  542. Garcia RB, Cisneros A, Schneider B, Tel-Zur N (2009) Gynogenesis in the vine cacti Hylocereus and Selenicereus (Cactaceae). Plant Cell Rep 28(5):719–726

    Article  PubMed  CAS  Google Scholar 

  543. Schulte J, Büter B, Schaffner W, Berger K (1996) Gametic embryogenesis in Hypericum spp. In: Pank F (ed) International symposium on breeding research on medicinal and aromatic plants, Quedlinburg, Germany. BREEDMAP 6, Quedlinburg, pp 307–310

    Google Scholar 

  544. Canhoto JM, Ludovina M, Guimaraes S, Cruz GS (1990) In vitro induction of haploid, diploid and triploid plantlets by anther culture of Iochroma warscewiczii Regel. Plant Cell Tissue Organ Cult 21(2):171–177

    Article  Google Scholar 

  545. Tsay H, Lai P, Chen L (1982) Organ regeneration from anther callus of sweet potato. J Agric Res China 31(2):123–126

    Google Scholar 

  546. Mukherjee A, Unnikrishnan M, Nair N (1991) Callus induction, embryogenesis and regeneration from sweet potato anther. J Root Crops 17:302–304

    Google Scholar 

  547. Madan NS, Arockiasamy S, Narasimham JV, Patil M, Yepuri V, Sarkar P (2019) Anther culture for the production of haploid and doubled haploids in Jatropha curcas L. and its hybrids. Plant Cell Tissue Organ Cult 138(1):181–192. https://doi.org/10.1007/s11240-019-01616-4

    Article  CAS  Google Scholar 

  548. Grouh MSH, Vahdati K, Lotfi M, Hassani D, Biranvand NP (2011) Production of haploids in Persian walnut through parthenogenesis induced by gamma-irradiated pollen. J Am Soc Hortic Sci 136(3):198–204

    Article  CAS  Google Scholar 

  549. Piosik Ł, Zenkteler E, Zenkteler M (2016) Development of haploid embryos and plants of Lactuca sativa induced by distant pollination with Helianthus annuus and H. tuberosus. Euphytica 208(3):439–451. https://doi.org/10.1007/s10681-015-1578-x

    Article  CAS  Google Scholar 

  550. von Aderkas P, Bonga JM (1988) Formation of haploid embryoids of Larix decidua: early embryogenesis. Am J Bot 75(5):690–700. https://doi.org/10.1002/j.1537-2197.1988.tb13491.x

    Article  Google Scholar 

  551. Nagmani R, Bonga J (1985) Embryogenesis in subcultured callus of Larix decidua. Can J For Res 15(6):1088–1091

    Article  Google Scholar 

  552. von Aderkas P, Klimaszewska K, Bonga JM (1990) Diploid and haploid embryogenesis in Larix leptolepis, L. decidua, and their reciprocal hybrids. Can J Forest Res 20(1):9–14. https://doi.org/10.1139/x90-002

    Article  Google Scholar 

  553. Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166(12):1314–1328. https://doi.org/10.1016/j.jplph.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  554. Croser J, Lülsdorf M, Davies P, Clarke H, Bayliss K, Mallikarjuna N, Siddique K (2006) Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25(2):139–157

    Article  Google Scholar 

  555. Tomasi P, Dierig DA, Backhaus RA, Pigg KB (1999) Floral bud and mean petal length as morphological predictors of microspore cytological stage in Lesquerella. HortScience 34(7):1269–1270

    Article  Google Scholar 

  556. Han D-S, Niimi Y, Nakano M (1997) Regeneration of haploid plants from anther cultures of the Asiatic hybrid lily ‘Connecticut King’. Plant Cell Tissue Organ Cult 47(2):153–158

    Article  Google Scholar 

  557. Han DS, Niimi Y, Nakano M (1999) Production of doubled haploid plants through colchicine treatment of anther-derived haploid calli in the Asiatic hybrid lily ‘Connecticut King’. J Jpn Soc Hortic Sci 68(5):979–983

    Article  CAS  Google Scholar 

  558. Zhu-ping G, Kuo-chang C (1983) In vitro induction of haploid plantlets from unpollinated young ovaries of lily and its embryo logical observations. J Integr Plant Biol 25(1):73–88

    Google Scholar 

  559. Han D-S, Niimi Y (2004) Production of haploid and doubled haploid plants from anther-derived callus of Lilium formosanum. IX international symposium on flower bulbs 673:389–393

    Google Scholar 

  560. Arzate-Fernández A-M, Nakazaki T, Yamagata H, Tanisaka T (1997) Production of doubled-haploid plants from Lilium longiflorum Thunb. anther culture. Plant Sci 123(1):179–187. https://doi.org/10.1016/S0168-9452(96)04573-6

    Article  Google Scholar 

  561. Qu Y, Mok MC, Mok DW, Stang JR (1988) Phenotypic and cytological variation among plants derived from anther cultures of Lilium longiflorum. In Vitro Cell Dev Biol 24(5):471–476

    Article  Google Scholar 

  562. Vassileva-Dryanovska OA (1966) The induction of embryos and tetraploid endosperm nuclei with irradiated pollen in Lilium. Hereditas 55(2–3):160–165. https://doi.org/10.1111/j.1601-5223.1966.tb02044.x

    Article  Google Scholar 

  563. Prakash J, Giles K (1986) Production of doubled haploids in oriental lilies. In: Horn W, Jensen CJ, Oldenbach W, Schieder O (eds) Genetic manipulation in plant breeding. Walter de Gruyter and Co, Berlin, pp 335–337

    Google Scholar 

  564. Van den Bulk R, Van Tuyl J (1997) In vitro induction of haploid plants from the gametophytes of lily and tulip. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Springer, Dordrecht, pp 73–88

    Chapter  Google Scholar 

  565. Obert B, Zackova Z, Samaj J, Pret’ova A (2009) Doubled haploid production in Flax (Linum usitatissimum L.). Biotechnol Adv 27(4):371–375. https://doi.org/10.1016/j.biotechadv.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  566. Chen Y, Dribnenki P (2004) Effect of medium osmotic potential on callus induction and shoot regeneration in flax anther culture. Plant Cell Rep 23(5):272–276. https://doi.org/10.1007/s00299-004-0831-x

    Article  CAS  PubMed  Google Scholar 

  567. Nichterlein K, Umbach H, Friedt W (1991) Genotypic and exogenous factors affecting shoot regeneration from anther callus of linseed (Linum usitatissimum L.). Euphytica 58(2):157–164. https://doi.org/10.1007/bf00022816

    Article  Google Scholar 

  568. Nichterlein K, Friedt W (1993) Plant regeneration from isolated microspores of linseed (Linum usitatissimum L.). Plant Cell Rep 12(7):426–430. https://doi.org/10.1007/bf00234706

    Article  CAS  PubMed  Google Scholar 

  569. Fu L, Tang D (1983) Induction of pollen plants of litchi tree (Litchi chinensis Sonn.). Acta Genet Sin 10(5):369–374

    Google Scholar 

  570. Hussain W, Richardson K, Faville M, Woodfield D (2006) Production of haploids and double haploids in annual (Lolium multiflorum) and perennial (L. perenne) ryegrasses. Proceedings of the 13th Australasian plant breeding conference 12

    Google Scholar 

  571. Pašakinskienė I, Anamthawat-Jónsson K, Humphreys MW, Jones RN (1997) Novel diploids following chromosome elimination and somatic recombination in Lolium multiflorum × Festuca arundinacea hybrids. Heredity 78(5):464–469. https://doi.org/10.1038/hdy.1997.74

    Article  Google Scholar 

  572. Humphreys M, Zare A, Pašakinskienė I, Thomas H, Rogers W, Collin H (1998) Interspecific genomic rearrangements in androgenic plants derived from a Lolium multiflorum × Festuca arundinacea (2n = 5x = 35) hybrid. Heredity 80(1):78–82

    Article  Google Scholar 

  573. Guo YD, Mizukami Y, Yamada T (2005) Genetic characterization of androgenic progeny derived from Lolium perenne × Festuca pratensis cultivars. New Phytol 166(2):455–464

    Article  CAS  PubMed  Google Scholar 

  574. Tomes DT, Peterson RL (1981) Isolation of a dwarf plant responsive to exogenous GA3 from anther cultures of birdsfoot trefoil. Can J Bot 59(7):1338–1342. https://doi.org/10.1139/b81-180

    Article  Google Scholar 

  575. Séguin-Swartz G, Grant W (1995) Evidence for androgenesis in the genus Lotus (Fabaceae). Lotus Newsl 26:4–8

    Google Scholar 

  576. Negri V, Veronesi F (1989) Evidence for the existence of 2n gametes in Lotus tenuis Wald. et Kit. (2n = 2x = 12): their relevance in evolution and breeding of Lotus corniculatus L. (2n = 4x = 24). Theor Appl Genet 78(3):400–404

    Article  CAS  PubMed  Google Scholar 

  577. Bayliss K, Wroth J, Cowling W (2004) Pro-embryos of Lupinus spp. produced from isolated microspore culture. Aust J Agric Res 55(5):589–593

    Article  Google Scholar 

  578. Simioniuc D, Burlacu-Arsene M-C, Morariu A, Lipsa F (2010) Induction of the embryogenesis process in anther and microspores cultures at the Lupinus albus species. Lucrări Științifice, Universitatea de Stiinte Agricole Și Medicină Veterinară “Ion Ionescu de la Brad” Iași, Seria. Agronomie 53(1):60–63

    Google Scholar 

  579. Ormerod AJ, Caligari PDS (1994) Anther and microspore culture of Lupinus albus in liquid culture medium. Plant Cell Tissue Organ Cult 36(2):227–236. https://doi.org/10.1007/bf00037724

    Article  Google Scholar 

  580. Kozak K, Galek R, Waheed MT, Sawicka-Sienkiewicz E (2012) Anther culture of Lupinus angustifolius: callus formation and the development of multicellular and embryo-like structures. Plant Growth Regul 66(2):145–153. https://doi.org/10.1007/s10725-011-9638-2

    Article  CAS  Google Scholar 

  581. Sator C, Mix G, Menge U (1982) Investigations on anther culture of Lupinus polyphyllus. Landbauforschung Voelkenrode 32:37–42

    Google Scholar 

  582. Fan Y, Zang S, Zhao J (1982) Induction of haploid plants in Lycium chinense Mill. and Lycium barbarum by anther culture. Hereditas 5:25–26

    Google Scholar 

  583. Hofer M, Touraev A, Heberle-Bors E (1999) Induction of embryogenesis from isolated apple microspores. Plant Cell Rep 18(12):1012–1017

    Article  CAS  Google Scholar 

  584. Höfer M (2004) In vitro androgenesis in apple—improvement of the induction phase. Plant Cell Rep 22(6):365–370. https://doi.org/10.1007/s00299-003-0701-y

    Article  CAS  PubMed  Google Scholar 

  585. Höfer M (2005) Regeneration of androgenic embryos in apple (Malus × domestica Borkh.) via anther and microspore culture. Acta Physiol Plant 27(4B):709–716

    Article  Google Scholar 

  586. Kadota M, Han D-S, Niimi Y (2002) Plant regeneration from anther-derived embryos of apple and pear. HortScience 37(6):962–965

    Article  CAS  Google Scholar 

  587. Höfer M, Hanke V (1989) Induction of androgenesis in vitro in apple and sweet cherry. I International symposium on in vitro culture and horticultural breeding 280:333–336

    Google Scholar 

  588. Monika H (1994) In vitro androgenesis in apple: induction, regeneration and ploidy level. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Developments in plant breeding, vol 1. Springer, Dordrecht, pp 399–402. https://doi.org/10.1007/978-94-011-0467-8_80

    Chapter  Google Scholar 

  589. Zhang YX, Lespinasse Y (1991) Pollination with gamma-irradiated pollen and development of fruits, seeds and parthenogenetic plants in apple. Euphytica 54(1):101–109. https://doi.org/10.1007/bf00145636

    Article  Google Scholar 

  590. Zhang CF, Sato S, Tsukuni T, Sato M, Okada H, Yamamoto T, Wada M, Matsumoto S, Yoshikawa N, Mimida N, Takagishi K, Watanabe M, Cao QF, Komori S (2017) Elucidating cultivar differences in plant regeneration ability in an apple anther culture. Hortic J 86(1):1–10. https://doi.org/10.2503/hortj.MI-094

    Article  Google Scholar 

  591. Hofer M, Flachowsky H (2015) Comprehensive characterization of plant material obtained by in vitro androgenesis in apple. Plant Cell Tissue Organ Cult 122(3):617–628. https://doi.org/10.1007/s11240-015-0794-3

    Article  CAS  Google Scholar 

  592. Wu J (1981) Obtaining haploid plantlets of crab apple from anther culture in vitro. Acta Hortic Sin 8:36

    Google Scholar 

  593. Cheema GS, Mehra PN (1981) Anther culture of a cactus: Mammillaria elongata var. tenuis (DC) Schumann. Natl Cactus Succulent J 36(1):8–11

    Google Scholar 

  594. Liu M-C, Chen W-H (1978) Organogenesis and chromosome number in callus derived from cassava anthers. Can J Bot 56(10):1287–1290

    Article  CAS  Google Scholar 

  595. Abraham A, Krishnan P, Seeni S (1995) Induction of androgenesis, callus formation and root differentiation in anther culture of cassava (Manihot esculenta Crantz). Indian J Exp Biol 33:186–189

    Google Scholar 

  596. Perera PIP, Ordoñez CA, Dedicova B, Ortega PEM (2014) Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development. AoB Plants 6. https://doi.org/10.1093/aobpla/plu022

  597. Perera PI, Ordoñez CA, Lopez-Lavalle LA, Dedicova B (2013) A milestone in the doubled haploid pathway of cassava: a milestone in the doubled haploid pathway of cassava (Manihot esculenta Crantz): cellular and molecular assessment of anther-derived structures. Protoplasma. https://doi.org/10.1007/s00709-013-0543-6

  598. Bingham ET (1969) Haploids from cultivated Alfalfa, Medicago sativa L. Nature 221(5183):865–866. https://doi.org/10.1038/221865a0

    Article  CAS  PubMed  Google Scholar 

  599. Bingham E, Gillies C (1971) Chromosome pairing, fertility, and crossing behavior of haploids of tetraploid alfalfa, Medicago sativa L. Can J Genet Cytol 13(2):195–202

    Article  Google Scholar 

  600. Tanner G, Moore A, Larkin P (1988) Reducing the ploidy of lucerne by anther culture or induced parthenogenesis. In: McWhirter KS, Downes RW, Read BJ (eds) Ninth Australian plant breeding conference, Wagga Wagga. Agricultural Research Organising Committee, Wagga Wagga, NSW, p 136

    Google Scholar 

  601. Tanner G, Piccirilli M, Moore A, Larkin P, Arcioni S (1990) Initiation of non-physiological division and manipulation of developmental pathway in cultured microspores of Medicago sp. Protoplasma 158(3):165–175

    Article  Google Scholar 

  602. Ray I, Bingham E (1989) Breeding diploid alfalfa for regeneration from tissue culture. Crop Sci 29(6):1545–1548

    Article  Google Scholar 

  603. Zagorska N, Dimitrov B (1995) Induced androgenesis in alfalfa (Medicago sativa L.). Plant Cell Rep 14(4):249–252. https://doi.org/10.1007/bf00233643

    Article  CAS  PubMed  Google Scholar 

  604. Skinner DZ, Liang GH (1996) Haploidy in alfalfa. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Springer, Dordrecht, pp 365–375

    Chapter  Google Scholar 

  605. Zagorska N, Dimitrov B, Gadeva P, Robeva P (1997) Regeneration and characterization of plants obtained from anther cultures in Medicago sativa L. In Vitro Cell Dev Biol Plant 33(2):107–110

    Article  Google Scholar 

  606. Yi D, Sun J, Su Y, Tong Z, Zhang T, Wang Z (2019) Doubled haploid production in alfalfa (Medicago sativa L.) through isolated microspore culture. Sci Rep 9(1):9458. https://doi.org/10.1038/s41598-019-45946-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  607. Bingham E, Binek A (1969) Comparative morphology of haploids from cultivated alfalfa, Medicago sativa L. 1. Crop Sci 9(6):749–751

    Article  Google Scholar 

  608. Bingham T (1971) Isolation of haploids of tetraploid alfalfa. Crop Sci 11(3):433–435

    Article  Google Scholar 

  609. Veuskens J, Ye D, Oliveira M, Ciupercescu DD, Installé P, Verhoeven HA, Negrutiu I (1992) Sex determination in the dioecious Melandrium album: androgenic embryogenesis requires the presence of the X chromosome. Genome 35(1):8–16. https://doi.org/10.1139/g92-002

    Article  Google Scholar 

  610. Mól R (1992) In vitro gynogenesis in Melandrium album: from parthenogenetic embryos to mixoploid plants. Plant Sci 81(2):261–269

    Article  Google Scholar 

  611. Paulíková D, Vagera J (1993) In vitro induced androgenesis in Melandrium album. Biol Plant 35(4):645–647

    Article  Google Scholar 

  612. Van Eck J, Kitto S (1990) Callus initiation and regeneration in Mentha. HortScience 25(7):804–806

    Article  Google Scholar 

  613. Murovec J, Bohanec B (2013) Haploid induction in Mimulus aurantiacus Curtis obtained by pollination with gamma irradiated pollen. Sci Hortic 162:218–225

    Article  CAS  Google Scholar 

  614. Nguyen ML, Ta THT, Huyen TNBT, Voronina AV (2019) Anther-derived callus formation in bitter melon (Momordica charantia L.) as influenced by microspore development stage and medium composition. Sel’skokhozyaistvennaya Biol 54(1):140–148. https://doi.org/10.15389/agrobiology.2019.1.140rus

    Article  Google Scholar 

  615. Dennis Thomas T, Bhatnagar AK, Razdan MK, Bhojwani SS (1999) A reproducible protocol for the production of gynogenic haploids of mulberry, Morus alba L. Euphytica 110(3):169–173. https://doi.org/10.1023/a:1003797328246

    Article  Google Scholar 

  616. Jain A, Sarkar A, Datra R (1996) Induction of haploid callus and embryogenesis in in vitro cultured anthers of mulberry (Morus indica). Plant Cell Tissue Organ Cult 44(2):143–147

    Article  Google Scholar 

  617. Lin S, Ji D, Qin J (1987) In vitro production of haploid plants from mulberry (Morus) anther culture. Sci China Ser B Chem Biol Agric Med Earth Sci 30(8):853–863

    Google Scholar 

  618. Sita GL, Ravindran S (1991) Gynogenic plants from ovary cultures of mulberry (Morus indica). In: Horticulture—new technologies and applications. Springer, New York, NY, pp 225–229

    Chapter  Google Scholar 

  619. Perea Dallos M (1997) Pollen and anther culture in Musa spp. II International symposium on banana: I international symposium on banana in the subtropics 490:493–500

    Google Scholar 

  620. Assani A, Bakry F, Kerbellec F, Haicour R, Wenzel G, Foroughi-Wehr B (2003) Production of haploids from anther culture of banana [Musa balbisiana (BB)]. Plant Cell Rep 21(6):511–516

    Article  CAS  PubMed  Google Scholar 

  621. Imelda M, Sastrapradja S, Lubis S (1988) Anther culture of rambután (Nephelium sp). Ann Bogorienses N Ser 1(1):7–9

    Google Scholar 

  622. Collins GB, Sunderland N (1974) Pollen-derived haploids of Nicotiana knightiana, N. raimondii, and N. attenuata. J Exp Bot 25(6):1030–1039. https://doi.org/10.1093/jxb/25.6.1030

    Article  Google Scholar 

  623. Kehr AE (1951) Monoploidy in Nicotiana. J Hered 42(2):107–112

    Article  CAS  PubMed  Google Scholar 

  624. Kostoff D (1929) An androgenic Nicotiana haploid. Z Zellforsch 9:640–642

    Article  Google Scholar 

  625. Clausen RE, Mann MC (1924) Inheritance in Nicotiana tabacum: V. The occurrence of haploid plants in interspecific progenies. Proc Natl Acad Sci U S A 10(4):121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  626. Kostoff D (1942) The problem of haploidy (cytogenetic studies in Nicotiana haploids and their bearing on some other cytogenetic problems). Bib Genet 13:1–148

    Google Scholar 

  627. Bourgin JP, Nitsch JP (1967) Obtention de Nicotiana haploids à partir d’etamines cultivées in vitro. Ann Physiol Veg 9:377–382

    Google Scholar 

  628. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163(3862):85–87

    Article  CAS  PubMed  Google Scholar 

  629. Sunderland N, Wicks FM (1969) Cultivation of haploid plants from tobacco pollen. Nature 224(5225):1227–1229. https://doi.org/10.1038/2241227b0

    Article  Google Scholar 

  630. Sunderland N, Wicks FM (1971) Embryoid formation in pollen grains of Nicotiana tabacum. J Exp Bot 22(70):213–226

    Article  Google Scholar 

  631. Sunderland N, Dunwell JM (1974) Anther and pollen culture. In: Street HE (ed) Plant tissue and cell culture. Blackwell Scientific Publications, Oxford, pp 223–265

    Google Scholar 

  632. Heberle-Bors E (1982) In vitro pollen embryogenesis in Nicotiana tabacum L. and its relation to pollen sterility, sex balance, and floral induction of the pollen donor plants. Planta 156:396–401

    Article  CAS  PubMed  Google Scholar 

  633. Harada H, Kyo M, Imamura J (1988) The induction of embryogenesis in Nicotiana inmature pollen culture. In: Bock G, Marsh J (eds) Applications of plant cell and tissue culture. John Wiley and Sons, Chichester, pp 59–74

    Google Scholar 

  634. Garrido D, Charvat B, Benito-Moreno RM, Alwen A, Vicente O, Heberle-Bors E (1991) Pollen culture for haploid plant formation in tobacco. In: Negrutiu I, Gharti-Chhetri G (eds) A laboratory guide for cellular and molecular plant biology. Birkhaüser-Verlag, Basel, pp 59–69

    Google Scholar 

  635. Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996) Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Rep 15(8):561–565

    Article  CAS  PubMed  Google Scholar 

  636. Atanassov A, Djilianov D (1997) Androgenesis in vitro in tobacco. Biotechnol Biotechnol Eq 11(1–2):3–11

    Article  Google Scholar 

  637. Touraev A, Heberle-Bors E (2003) Anther and microspore culture in tobacco. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Kluwer Academic, Dordrecht, pp 223–228

    Chapter  Google Scholar 

  638. Sood S, Dwivedi S, Reddy TV, Prasanna PS, Sharma N (2013) Improving androgenesis-mediated doubled haploid production efficiency of FCV tobacco (Nicotiana tabacum L.) through in vitro colchicine application. Plant Breed 132(6):764–771. https://doi.org/10.1111/pbr.12114

    Article  CAS  Google Scholar 

  639. De Oliveira E (2016) Optimization of doubled haploid production in burley tobacco (Nicotiana Tabacum L.). University of Kentucky, Lexington, KY

    Google Scholar 

  640. Yamaji N, Kyo M (2006) Two promoters conferring active gene expression in vegetative nuclei of tobacco immature pollen undergoing embryogenic dedifferentiation. Plant Cell Rep 25(8):749–757. https://doi.org/10.1007/s00299-005-0076-3

    Article  CAS  PubMed  Google Scholar 

  641. Garrido D, Eller N, Heberle-Bors E, Vicente O (1993) De novo transcription of specific mRNAs during the induction of tobacco pollen embryogenesis. Sex Plant Reprod 6:40–45

    Article  Google Scholar 

  642. Orcen N, Emiroglu U (2014) Cytological characterization of tobacco plantlets obtained from androgenic haploids through chromosome doubling. Fresenius Environ Bull 23(2):378–381

    CAS  Google Scholar 

  643. Schedel S, Pencs S, Hensel G, Muller A, Rutten T, Kumlehn J (2017) RNA-guided Cas9-induced mutagenesis in tobacco followed by efficient genetic fixation in doubled haploid plants. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01995

  644. Floss DM, Kumlehn J, Conrad U, Saalbach I (2009) Haploid technology allows for the efficient and rapid generation of homozygous antibody-accumulating transgenic tobacco plants. Plant Biotechnol J 7(7):593–601

    Article  CAS  PubMed  Google Scholar 

  645. Martinez LD, de Halac IN (1995) Organogenesis of anther-derived calluses in long-term cultures of Oenothera hookeri de Vries. Plant Cell Tissue Organ Cult 42(1):91–96

    Article  Google Scholar 

  646. Perri E, Parlati M, Mulé R, Fodale A (1993) Attempts to generate haploid plants from in vitro cultures of Olea europaea L. anthers. Acta Hortic 356:47–50

    Google Scholar 

  647. Solis M-T, Pintos B, Prado M-J, Bueno M-A, Raska I, Risueno M-C, Testillano PS (2008) Early markers of in vitro microspore reprogramming to embryogenesis in olive (Olea europaea L.). Plant Sci 174(6):597–605. https://doi.org/10.1016/j.plantsci.2008.03.014

    Article  CAS  Google Scholar 

  648. Bouamama-Gzara B, Zemni H, Zoghlami N, Gandoura S, Mliki A, Arnold M, Ghorbel A (2020) Behavior of Opuntia ficus-indica (L.) Mill. heat-stressed microspores under in vitro culture conditions as evidenced by microscopic analysis. In Vitro Cell Dev Biol Plant 56(1):122–133. https://doi.org/10.1007/s11627-019-10032-4

    Article  CAS  Google Scholar 

  649. Tang K, Sun X, He Y, Zhang Z (1998) Anther culture response of wild Oryza species. Plant Breed 117(5):443–446

    Article  Google Scholar 

  650. Gueye T, Ndir KN (2010) In vitro production of double haploid plants from two rice species (Oryza sativa L. and Oryza glaberrima Steudt.) for the rapid development of new breeding material. Sci Res Essays 5(7):709–713

    Google Scholar 

  651. Wakasa K, Watanabe Y (1979) Haploid plant of Oryza perennis (spontanea type) induced by anther culture. Jpn J Breed 29(2):146–150

    Article  Google Scholar 

  652. Myint A, de Fossard RA (1974) Induction of haploid callus from rice anthers and regeneration of plants. In: Kasha KJ (ed) Haploids in higher plants: advances and potential. University of Guelph, Guelph, ON, p 139

    Google Scholar 

  653. Miah MAA, Earle ED, Khush GS (1985) Inheritance of callus formation ability in anther cultures of rice, Oryza sativa L. Theor Appl Genet 70(2):113–116. https://doi.org/10.1007/bf00275308

    Article  CAS  PubMed  Google Scholar 

  654. Cho MS, Zapata FJ (1988) Callus formation and plant-regeneration in isolated pollen culture of rice (Oryza Sativa L. cv. Taipei 309). Plant Sci 58(2):239–244

    Article  Google Scholar 

  655. Yamagishi M, Yano M, Fukuta Y, Fukui K, Otani M, Shimada T (1996) Distorted segregation of RFLP markers in regenerated plants derived from anther culture of an F1 hybrid of rice. Genes Genet Syst 71:37–41

    Article  CAS  Google Scholar 

  656. Yamagishi M, Otani M, Higashi M, Fukuta Y, Fukui K, Shimada T (1998) Chromosomal regions controlling anther culturability in rice (Oryza sativa L.). Euphytica 103(2):227–234. https://doi.org/10.1023/a:1018328708322

    Article  CAS  Google Scholar 

  657. Grewal D, Manito C, Bartolome V (2011) Doubled haploids generated through anther culture from crosses of elite Indica and Japonica cultivars and/or lines of rice: large-scale production, agronomic performance, and molecular characterization. Crop Sci 51(6):2544–2553. https://doi.org/10.2135/cropsci2011.04.0236

    Article  Google Scholar 

  658. Premvaranon P, Vearasilp S, S-n T, Karladee D, Gorinstein S (2011) In vitro studies to produce double haploid in Indica hybrid rice. Biologia 66(6):1074

    Article  CAS  Google Scholar 

  659. Hooghvorst I, Ramos-Fuentes E, López-Cristofannini C, Ortega M, Vidal R, Serrat X, Nogués S (2018) Antimitotic and hormone effects on green double haploid plant production through anther culture of Mediterranean japonica rice. Plant Cell Tissue Organ Cult 134:205–215

    Article  CAS  Google Scholar 

  660. López-Cristoffanini C, Serrat X, Ramos-Fuentes E, Hooghvorst I, Llaó R, López-Carbonell M, Nogués S (2018) An improved anther culture procedure for obtaining new commercial Mediterranean temperate Japonica rice (Oryza sativa) genotypes. Plant Biotechnol 35(2):161–166. https://doi.org/10.5511/plantbiotechnology.18.0409a

    Article  CAS  Google Scholar 

  661. Ferreres I, Ortega M, López-Cristoffanini C, Nogués S, Serrat X (2019) Colchicine and osmotic stress for improving anther culture efficiency on long grain temperate and tropical japonica rice genotypes. Plant Biotechnol (Tokyo) 36(4):269–273. https://doi.org/10.5511/plantbiotechnology.19.1022a

    Article  CAS  Google Scholar 

  662. Sahoo SA, Jha Z, Verulkar SB, Srivastava AK, Suprasanna P (2019) High-throughput cell analysis based protocol for ploidy determination in anther-derived rice callus. Plant Cell Tissue Organ Cult 137(1):187–192. https://doi.org/10.1007/s11240-019-01561-2

    Article  CAS  Google Scholar 

  663. Usenbekov BN, Kaykeev DT, Yhanbirbaev EA, Berkimbaj H, Tynybekov BM, Satybaldiyeva GK et al (2014) Doubled haploid production through culture of anthers in rice. Indian J Genet Plant Breed 74(1):90–92

    Article  Google Scholar 

  664. Alsabah R, Purwoko BS, Dewi IS, Wahyu Y (2019) Selection index for selecting promising double haploid lines of Black Rice. Sabrao J Breed Genet 51(4):430–441

    Google Scholar 

  665. Mayakaduwa D, Silva TD (2019) Flow citometry detection of haploids, diploids and mixoploids among the anther-derived plants in indica rice (Oryza sativa L.). J Anim Plant Sci 29(5):1344–1351

    CAS  Google Scholar 

  666. Samal P, Pote TD, Krishnan SG, Singh AK, Salgotra RK, Rathour R (2019) Integrating marker-assisted selection and doubled haploidy for rapid introgression of semi-dwarfing and blast resistance genes into a Basmati rice variety ‘Ranbir Basmati’. Euphytica 215(9). https://doi.org/10.1007/s10681-019-2473-7

  667. Kaushal L, Ulaganathan K, Shenoy V, Balachandran SM (2018) Geno- and phenotyping of submergence tolerance and elongated uppermost internode traits in doubled haploids of rice. Euphytica 214(12). https://doi.org/10.1007/s10681-018-2305-1

  668. Naik N, Rout P, Umakanta N, Verma RL, Katara JL, Sahoo KK, Singh ON, Samantaray S (2017) Development of doubled haploids from an elite indica rice hybrid (BS6444G) using anther culture. Plant Cell Tissue Organ Cult 128(3):679–689. https://doi.org/10.1007/s11240-016-1149-4

    Article  CAS  Google Scholar 

  669. Rout P, Naik N, Ngangkham U, Verma RL, Katara JL, Singh ON, Samantaray S (2016) Doubled haploids generated through anther culture from an elite long duration rice hybrid, CRHR32: method optimization and molecular characterization. Plant Biotechnol 33(3):177–186. https://doi.org/10.5511/plantbiotechnology.16.0719a

    Article  CAS  Google Scholar 

  670. Nguyen H, Chen XY, Jiang M, Wang Q, Deng L, Zhang WZ, Shu QY (2016) Development and molecular characterization of a doubled haploid population derived from a hybrid between Japonica rice and wide compatible Indica rice. Breed Sci 66(4):552–559. https://doi.org/10.1270/jsbbs.15141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  671. Cha-Um S, Srianan B, Pichakum A, Kirdmanee C (2009) An efficient procedure for embryogenic callus induction and double haploid plant regeneration through anther culture of Thai aromatic rice (Oryza sativa L. subsp indica). In Vitro Cell Dev Biol Plant 45(2):171–179. https://doi.org/10.1007/s11627-009-9203-0

    Article  Google Scholar 

  672. Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4:530–533. https://doi.org/10.1038/s41477-018-0193-y

    Article  CAS  PubMed  Google Scholar 

  673. Hooghvorst I, Ribas P, Nogués S (2020) Chromosome doubling of androgenic haploid plantlets of rice (Oryza sativa) using antimitotic compounds. Plant Breed. https://doi.org/10.1111/pbr.12824

  674. Woo S-C, Ko S-W, Wong C-K, Wu X (1983) Anther culture of pollen plants derived from cross Oryza sativa L. × O. glaberrima Steud. Bot Bull Acad Sin 24:53–58

    Google Scholar 

  675. Lee B, Ko J, Kim Y (1992) Studies on the thidiazuron treatment of anther culture in Paeonia albiflora. J Korean Soc Hortic Sci 33(5):384–395

    CAS  Google Scholar 

  676. Lee H-Y, Khorolragchaa A, Sun M-S, Kim Y-J, Kim Y-J, Kwon W-S, Yang D-C (2013) Plant regeneration from anther culture of Panax ginseng. Korean J Plant Resour 26(3):383–388

    Article  Google Scholar 

  677. Du L, Shao Q, Li A (1986) Somatic embryogenesis and plant regeneration from anther culture of Panax quinquifolius (Ginseng). Int Plant Biotechnol Netw 6(9):2

    Google Scholar 

  678. Dieu P, Dunwell JM (1988) Anther culture with different genotypes of opium poppy (Papaver somniferum L.): effect of cold treatment. Plant Cell Tissue Organ Cult 12(3):263–271. https://doi.org/10.1007/bf00034367

    Article  Google Scholar 

  679. Gerstel D, Mishanec W (1950) On the inheritance of apomixis in Parthenium argentatum. Bot Gaz 112(1):96–106

    Article  Google Scholar 

  680. Tsay H, Hsu J, Yang T, Yang C (1984) Anther culture of passion fruit (Passiflora edulis). J Agric Res China 33:126–131

    Google Scholar 

  681. Rêgo M, Rêgo E, Bruckner C, Otoni W, Pedroza C (2011) Variation of gynogenic ability in passion fruit (Passiflora edulis Sims.) accessions. Plant Breed 130(1):86–91

    Article  Google Scholar 

  682. El-Nil MA, Hildebrandt A (1973) Origin of androgenetic callus and haploid geranium plants. Can J Bot 51(11):2107–2109

    Article  Google Scholar 

  683. Kato M, Suga T, Tokumasu S (1980) Effect of 2, 4-D and NAA on callus formation and haploid production in anther culture of Pelargonium roseum. Mem Coll Agric Ehime Univ 24(2):199–207

    CAS  Google Scholar 

  684. Pol’kheim F (1972) On the problem of selecting for breeding mutation chimeras and mutants in haploids of Pelargonium zonale Kleiner Liebling and Thuja gigantea gracilis. Eksperimental’nyi Mutagenez Selektsii 1972:199–221

    Google Scholar 

  685. Rao PL, De Deepesh N (1987) Haploid plants from in vitro anther culture of the leguminous tree, Peltophorum pterocarpum (DC) K. Hayne (Copper pod). Plant Cell Tissue Organ Cult 11(3):167–177

    Article  Google Scholar 

  686. Nitsch C, Andersen S, Godard M, Neuffer M, Sheridan W (1982) Production of haploid plants of Zea mays and Pennisetum through androgenesis. In: Earle ED, Demarly Y (eds) Variability in plants regenerated from tissue culture. Praeger Publishers, New York, NY, pp 69–91

    Google Scholar 

  687. Le Thi K, Lespinasse R, Siljak-Yakovlev S, Robert T, Khalfallah N, Sarr A (1994) Karyotypic modifications in androgenetic plantlets of pearl millet, Pennisetum glaucum (L.) R. Brunken: occurrence of B chromosomes. Caryologia 47(1):1–10

    Article  Google Scholar 

  688. Choi B-H, Park K-Y, Park R-K (1997) Haploidy in pearl millet [Pennisetum glaucum (L.) R. Br.]. In: In vitro haploid production in higher plants. Springer, New York, NY, pp 171–179

    Chapter  Google Scholar 

  689. Caredda S, Clément C (1999) Androgenesis and albinism in Poaceae: influence of genotype and carbohydrates. In: Anther and pollen. Springer, New York, NY, pp 211–228

    Chapter  Google Scholar 

  690. Sastry PS, Mallikarjuna N (2014) Induction of androgenesis in pearl millet. Univ J Agric Res 2(06):216–223

    Google Scholar 

  691. Haydu Z, Vasil I (1981) Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum Schum. Theor Appl Genet 59(5):269–273

    Article  CAS  PubMed  Google Scholar 

  692. Robert T, San A, Pernes J (1989) Haploid selections in pearl millet (Pennisetum typhoides (Bunn.) Stapf et Hubb.): temperature effect. Genome 32:946–952

    Article  Google Scholar 

  693. Ha DBD, Pernes J (1982) Androgenesis in pearl millet: I. Analysis of plants obtained from microspore culture. Z Pflanzenphysiol 108(4):317–327

    Article  Google Scholar 

  694. DeVerna J, Collins G (1984) Maternal haploids of Petunia axillaris (Lam.) BSP via culture of placenta attached ovules. Theor Appl Genet 69(2):187–192

    Article  CAS  PubMed  Google Scholar 

  695. Raquin C (1983) Utilization of different sugars as carbon source for in vitro anther culture of Petunia. Z Pflanzenphysiol 111(5):453–457

    Article  CAS  Google Scholar 

  696. Mitchell AZ, Hanson MR, Skvirsky RC, Ausubel FM (1980) Anther culture of Petunia – genotypes with high-frequency of callus, root, or plantlet formation. Z Pflanzenphysiol 100(2):131–146

    Article  Google Scholar 

  697. Jain SM, Bhalla-Sarin N (1997) Haploidy in Petunia. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 29. Current plant science and biotechnology in agriculture. Springer Netherlands, Dordrecht, pp 53–71. https://doi.org/10.1007/978-94-017-1856-1_4

    Chapter  Google Scholar 

  698. Singh I, Cornu A (1976) Research into androgenetic Petunia haploids with gynogenetic cytoplasmic pollen sterility. Ann Amélior Plant 26:565–568

    Google Scholar 

  699. Raquin C, Cornu A, Farcy E, Maizonnier D, Pelletier G, Vedel F (1989) Nucleus substitution between Petunia species using gamma-ray-induced androgenesis. Theor Appl Genet 78(3):337–341

    Article  CAS  PubMed  Google Scholar 

  700. Malhotra K, Maheshwari S (1977) Enhancement by cold treatment of pollen embryoid development in Petunia hybrida. Z Pflanzenphysiol 85(2):177–180

    Article  CAS  Google Scholar 

  701. Babbar SB, Gupta SC (1980) Chilling induced androgenesis in anthers of Petunia hybrida without any culture medium. Z Pflanzenphysiol 100(3):279–283

    Article  Google Scholar 

  702. Raquin C (1982) Genetic control of embryo production and embryo quality in anther culture of Petunia. Theor Appl Genet 63(2):151–154. https://doi.org/10.1007/bf00303698

    Article  CAS  PubMed  Google Scholar 

  703. Raquin C, Amssa M, Henry Y, Debuyser J, Essad S (1982) Origin of polyhaploid plants obtained through in vitro anther culture – cytophotometrical analysis of Petunia and wheat microspore in situ and in vitro. Z Pflanzen 89(4):265–277

    Google Scholar 

  704. Gupta PP (1983) Microspore-derived haploid, diploid and triploid plants in Petunia violacea Lindl. Plant Cell Rep 2(5):255–256. https://doi.org/10.1007/BF00269154

    Article  CAS  PubMed  Google Scholar 

  705. Peters J, Crocomo O, Sharp W, Paddock E, Tegenkamp I, Tegenkamp T (1977) Haploid callus cells from anthers of Phaseolus vulgaris. Phytomorphology 27:79–85

    Google Scholar 

  706. Munoz L, Baudoin J (1994) Influence of the cold pretreatment and the carbon source on callus induction from anthers in Phaseolus. Ann Rep Bean Improv Coop 37:129–130

    Google Scholar 

  707. Pulli S, Guo Y-D (2003) Anther culture and isolated microspore culture in timothy. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer Netherlands, Dordrecht, pp 173–177. https://doi.org/10.1007/978-94-017-1293-4_27

    Chapter  Google Scholar 

  708. Guo YD, Pulli S (2000) An efficient androgenic embryogenesis and plant regeneration method through isolated microspore culture in timothy (Phleum pratense L.). Plant Cell Rep 19(8):761–767. https://doi.org/10.1007/s002990000193

    Article  CAS  PubMed  Google Scholar 

  709. Razdan A, Razdan MK, Rajam MV, Raina SN (2008) Efficient protocol for in vitro production of androgenic haploids of Phlox drummondii. Plant Cell Tissue Organ Cult 95(2):245. https://doi.org/10.1007/s11240-008-9431-8

    Article  Google Scholar 

  710. Bapat V, Wenzel G (1982) In vitro haploid plantlet induction in Physalis ixocarpa Brot. through microspore embryogenesis. Plant Cell Rep 1(4):154–156

    Article  CAS  PubMed  Google Scholar 

  711. Escobar-Guzmán R, Hernández-Godínez F, Martínez de la Vega O, Ochoa-Alejo N (2009) In vitro embryo formation and plant regeneration from anther culture of different cultivars of Mexican husk tomato (Physalis ixocarpa Brot.). Plant Cell Tissue Organ Cult 96(2):181–189. https://doi.org/10.1007/s11240-008-9474-x

    Article  Google Scholar 

  712. Garcia-Arias F, Sánchez-Betancourt E, Núñez V (2018) Fertility recovery of anther-derived haploid plants in Cape gooseberry (Physalis peruviana L.). Agron Colomb 36(3):201–209. https://doi.org/10.15446/agron.colomb.v36n3.73108

    Article  Google Scholar 

  713. Baldursson S, Nørgaard J, Krogstrup P (1993) Factors influencing haploid callus initiation and proliferation in megagametophyte cultures of Sitka spruce (Picea sitchensis). Silvae Genet 42:79–79

    Google Scholar 

  714. Ribalta FM, Croser JS, Ochatt SJ (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169(0):104–110. https://doi.org/10.1016/j.jplph.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  715. Gupta S (1976) Morphogenetic response of haploid callus tissue of Pisum sativum (var. B22). Indian Agric 194(4):11–21

    Google Scholar 

  716. Hidaka T, Yamada Y, Shichijo T (1979) In vitro differentiation of haploid plants by anther culture in Poncirus trifoliata (L.) Raf. Jpn J Breed 29(3):248–254

    Article  Google Scholar 

  717. Hyun S, Kim J, Noh E, Park J (1986) Induction of haploid plants of Populus species. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 413–418

    Chapter  Google Scholar 

  718. Baldursson S, Krogstrup P, Norgaard JV, Andersen SB (1993) Microspore embryogenesis in anther culture of 3 species of Populus and regeneration of dihaploid plants of Populus trichocarpa. Can J Forest Res 23(9):1821–1825

    Article  Google Scholar 

  719. Li Y, Li H, Chen Z, Ji L-X, Ye M-X, Wang J, Wang L, An X-M (2013) Haploid plants from anther cultures of poplar (Populus × beijingensis). Plant Cell Tissue Organ Cult 114(1):39–48. https://doi.org/10.1007/s11240-013-0303-5

    Article  Google Scholar 

  720. Uddin MR, Meyer MM Jr, Jokela JJ (1988) Plantlet production from anthers of Eastern cottonwood (Populus deltoïdes). Can J For Res 18(7):937–941. https://doi.org/10.1139/x88-142

    Article  Google Scholar 

  721. Kiss J, Kondrák M, Törjék O, Kiss E, Gyulai G, Mázik-Tökei K, Heszky L (2001) Morphological and RAPD analysis of poplar trees of anther culture origin. Euphytica 118(2):213–221

    Article  CAS  Google Scholar 

  722. Mofidabadi A, Kiss J, Mazik-Tokei K, Gergacz E, Heszky L (1995) Callus induction and haploid plant regeneration from anther culture of two poplar species. Silvae Genet 44(2–3):141–145

    Google Scholar 

  723. Kim J, Noh E, Park J (1983) Haploid plantlets formation through anther culture of Populus glandulosa. Res Rep Inst For Genet 19:93–98

    Google Scholar 

  724. Kim J, Moon H, Park J (1986) Haploid plantlet induction through anther culture of Populus maximowiczii. Res Rep Inst For Genet 1986:116–121

    Google Scholar 

  725. Stoehr M, Zsuffa L (1990) Genetic evaluation of haploid clonal lines of a single donor plant of Populus maximowiczii. Theor Appl Genet 80(4):470–474

    Article  CAS  PubMed  Google Scholar 

  726. Wang C, Chu C, Sun C (1975) Induction of Populus nigra pollen-plants. Acta Bot Sin 17:56–59

    Google Scholar 

  727. Deutsch F, Kumlehn J, Ziegenhagen B, Fladung M (2004) Stable haploid poplar callus lines from immature pollen culture. Physiol Plant 120(4):613–622

    Article  CAS  PubMed  Google Scholar 

  728. Yang JL, Li K, Li CY, Li JX, Zhao B, Zheng W, Gao YC, Li CH (2018) In vitro anther culture and Agrobacterium-mediated transformation of the AP1 gene from Salix integra Linn. in haploid poplar (Populus simonii × P. nigra). J For Res 29(2):321–330. https://doi.org/10.1007/s11676-017-0453-0

    Article  CAS  Google Scholar 

  729. Wu K, Nagarajan P (1990) Poplars (Populus spp.): in vitro production of haploids. In: Bajaj YPS (ed) Haploids in crop improvement I. Springer, Berlin, pp 237–249. https://doi.org/10.1007/978-3-642-61499-6_10

    Chapter  Google Scholar 

  730. Andersen SB (2003) Doubled haploid production in poplar. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer Netherlands, Dordrecht, pp 293–296. https://doi.org/10.1007/978-94-017-1293-4_43

    Chapter  Google Scholar 

  731. Ho R, Raj Y (1985) Haploid plant production through anther culture in poplars. For Ecol Manag 13(3–4):133–142

    Article  Google Scholar 

  732. Illies ZM (1974) Induction of haploid parthenogenesis in Populus tremula by male gametes inactivated with toluidine blue. In: Kasha KJ (ed) Haploids in higher plants: advances and potential. University of Guelph, Guelph, ON, p 136

    Google Scholar 

  733. Stettler R, Bawa K (1971) Experimental induction of haploid parthenogenesis in Black Cottonwood (Populus trichocarpa T. & G. ex Hook.). Aspen Bibliogr 20:343

    Google Scholar 

  734. Okura E (1933) A haploid plant in Portulacea grandiflora Hook. Jpn J Genet 8:251–260

    Article  Google Scholar 

  735. Jia Y, Zhang Q-X, Pan H-T, Wang S-Q, Liu Q-L, Sun L-X (2014) Callus induction and haploid plant regeneration from baby primrose (Primula forbesii Franch.) anther culture. Sci Hortic 176:273–281. https://doi.org/10.1016/j.scienta.2014.07.018

    Article  CAS  Google Scholar 

  736. Peixe A, Barroso J, Potes A, Pais MS (2004) Induction of haploid morphogenic calluses from in vitro cultured anthers of Prunus armeniaca cv. ‘Harcot’. Plant Cell Tissue Organ Cult 77(1):35–41. https://doi.org/10.1023/B:TICU.0000016498.95516.e6

    Article  CAS  Google Scholar 

  737. Long CM, Mulinix CA, Iezzoni AF (1994) Production of a microspore-derived callus population from sweet cherry. HortScience 29(11):1346–1348

    Article  Google Scholar 

  738. Cimò G, Marchese A, Germanà MA (2017) Microspore embryogenesis induced through in vitro anther culture of almond (Prunus dulcis Mill.). Plant Cell Tissue Organ Cult 128(1):85–95. https://doi.org/10.1007/s11240-016-1086-2

    Article  Google Scholar 

  739. Todorovic R, Mišic P, Petrovic D, Mirkovic M (1990) Anther culture of peach cultivars ‘Cresthaven’ and ‘Vesna’. Acta Hortic 300:331–334

    Google Scholar 

  740. Hammerschlag FA (1983) Factors influencing the frequency of callus formation among cultured peach anthers. HortScience 18:210–211

    Article  Google Scholar 

  741. Pooler MR, Scorza R (1995) Aberrant transmission of RAPD markers in haploids, doubled haploids, and F1 hybrids of peach: observations and speculation on causes. Sci Hortic 64(4):233–241. https://doi.org/10.1016/0304-4238(95)00846-2

    Article  Google Scholar 

  742. Toyama TK (1974) Haploidy in peach. HortScience 9:187–188

    Article  Google Scholar 

  743. Livingston GK (1971) Experimental studies on the induction of haploid parthenogenesis in Douglas fir and the effects of radiation on the germination and growth of Douglas fir pollen. Dissert Abstr Int B 32:4331–4332

    Google Scholar 

  744. Durzan DJ (2011) Female parthenogenetic apomixis and androsporogenesis in Douglas-fir embryonal initials in an artificial sporangium. Sex Plant Reprod 24(4):283–296. https://doi.org/10.1007/s00497-011-0171-2

    Article  PubMed  Google Scholar 

  745. Babbar SB, Gupta SC (1986) Induction of androgenesis and callus formation in in vitro cultured anthers of a myrtaceous fruit tree (Psidium guajava L). Bot Mag Tokyo 99(1053):75–83. https://doi.org/10.1007/bf02488624

    Article  Google Scholar 

  746. Pal A (1983) Isolated microspore culture of the winged bean, Psophocarpus tetragonolobus (L) DC-growth, development and chromosomal status. Indian J Exp Biol 21:597–603

    Google Scholar 

  747. Usha Rao I, Rao R, Narasimham M (1986) Induction of androgenesis in the vitro in grown anthers of winged bean (Psophocarpus tetragonolobus). Phytomorphology 36(1–2):111–116

    Google Scholar 

  748. Chand S, Sahrawat A (2007) Embryogenesis and plant regeneration from unpollinated ovary culture of Psoralea corylifolia. Biol Plant 51(2):223–228

    Article  CAS  Google Scholar 

  749. Asker S (1983) A monoploid of Potentilla argentea. Hereditas 99:303–304

    Article  CAS  PubMed  Google Scholar 

  750. Moriguchi T, Omura M, Matsuta N, Kozaki I (1987) In vitro adventitious shoot formation from anthers of pomegranate. HortScience 22(5):947–948

    Article  Google Scholar 

  751. Zhong CH, Aruga Y, Yan X (2019) Morphogenesis and spontaneous chromosome doubling during the parthenogenetic development of haploid female gametophytes in Pyropia haitanensis (Bangiales, Rhodophyta). J Appl Phycol 31(4):2729–2741. https://doi.org/10.1007/s10811-019-01769-x

    Article  CAS  Google Scholar 

  752. Braniste N, Popescu A (1984) Coman T Producing and multiplication of Pyrus communis haploid plants Symposium on production and preservation of pears 161. pp 147–162

    Google Scholar 

  753. Sniezko R, Visser T (1987) Embryo development and fruit-set in pear induced by untreated and irradiated pollen. Euphytica 36(1):287–294

    Article  Google Scholar 

  754. Bouvier L, Zhang Y-X, Lespinasse Y (1993) Two methods of haploidization in pear, Pyrus communis L.: greenhouse seedling selection and in situ parthenogenesis induced by irradiated pollen. Theor Appl Genet 87(1–2):229–232

    Article  CAS  PubMed  Google Scholar 

  755. Pintos B, Sánchez N, Bueno MA, Navarro RM, Jorrín J, Manzanera JA, Gómez-Garay A (2013) Induction of Quercus ilex L. haploid and doubled-haploid embryos from anther cultures by temperature-stress. Silvae Genet 62(1–6):210–217

    Article  Google Scholar 

  756. Bueno MA, Gómez A, Boscaiu M, Manzanera JA, Vicente O (1997) Stress induced haploid plant production from anther cultures of Quercus suber. Physiol Plant 99:335–341

    Article  CAS  Google Scholar 

  757. Bueno MA, Gómez A, Sepúlveda F, Seguí-Simarro JM, Testillano PS, Manzanera JA, Risueño MC (2003) Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture. J Plant Physiol 160(8):953–960

    Article  CAS  PubMed  Google Scholar 

  758. Pintos B, Manzanera JA, Bueno MA (2007) Antimitotic agents increase the production of doubled-haploid embryos from cork oak anther culture. J Plant Physiol 164(12):1595–1604

    Article  CAS  PubMed  Google Scholar 

  759. Takahata Y, Komatsu H, Kaizuma N (1996) Microspore culture of radish (Raphanus sativus L.): influence of genotype and culture conditions on embryogenesis. Plant Cell Rep 16(3–4):163–166

    CAS  PubMed  Google Scholar 

  760. Chung YS, Lee YG, Silva RR, Park S, Park MY, Lim YP, Choi SC, Kim C (2018) Potential SNPs related to microspore culture in Raphanus sativus based on a single-marker analysis. Can J Plant Sci 98(5):1072–1083. https://doi.org/10.1139/cjps-2017-0333

    Article  CAS  Google Scholar 

  761. Han N, Na H, Kim J (2018) Identification and variation of major aliphatic glucosinolates in doubled haploid lines of radish (Raphanus sativus L.). Hortic Sci Technol 36(2):302–311

    Google Scholar 

  762. Kim K, Kang Y, Lee S-J, Choi S-H, Jeon D-H, Park M-Y, Park S, Lim YP, Kim C (2020) Quantitative trait loci (QTLs) associated with microspore culture in Raphanus sativus L. (Radish). Genes 11(3). https://doi.org/10.3390/genes11030337

  763. Kozar EV, Domblides EA, Soldatenko AV (2020) Factors affecting DH plants in vitro production from microspores of European radish. Vavilovskii Zhurnal Genet Sel 24(1):31–39. https://doi.org/10.18699/vj20.592

    Article  CAS  Google Scholar 

  764. Tuncer B (2017) Callus formation from isolated microspore culture in radish (Raphanus sativus L.). J Anim Plant Sci 27(1):277–282

    CAS  Google Scholar 

  765. Sankina A, Sankin L (1988) Characteristics of meiosis in the remote currant hybrid Ribes nigrum × Ribes Holland Red at the amphihaploid and amphidiploid levels. Cytol Genet 22(6):12–16

    Google Scholar 

  766. Jelenkovic G, Shifriss O, Harrington E (1980) Association and distribution of meiotic chromosomes in a haploid of Ricinus communis L. Cytologia 45(3):571–577. https://doi.org/10.1508/cytologia.45.571

    Article  Google Scholar 

  767. Tabaeezadeh Z, Khosh-Khui M (1981) Anther culture of Rosa. Sci Hortic 15(1):61–66. https://doi.org/10.1016/0304-4238(81)90062-5

    Article  CAS  Google Scholar 

  768. Wissemann V, Möllers C, Hellwig F (1998) Microspore culture in the genus Rosa, further investigations. Angew Bot 72(1–2):7–9

    Google Scholar 

  769. Meynet J, Barrade R, Duclos A, Siadous R (1994) Dihaploid plants of roses (Rosa × hybrida, cv ‘Sonia’) obtained by parthenogenesis induced using irradiated pollen and in vitro culture of immature seeds. Agronomie 2:169–175

    Article  Google Scholar 

  770. Liu M, Chen W, Yang L (1980) Anther culture in sugarcane. I Structure of anther and its pollen grain development stages. Taiwan Sugar 27(3):86–91

    Google Scholar 

  771. Fitch MM, Moore PH (1996) Haploids of sugarcane. In: In vitro haploid production in higher plants. Springer, New York, NY, pp 1–16

    Google Scholar 

  772. Fitch MM, Moore PH (1984) Production of haploid Saccharum spontaneum L.-comparison of media for cold incubation of panicle branches and for float culture of anthers. J Plant Physiol 117(2):169–178

    Article  CAS  PubMed  Google Scholar 

  773. Hinchee MA, Cruz AD, Maretzki A (1984) Developmental and biochemical characteristics of cold-treated anthers of Saccharum spontaneum. J Plant Physiol 115(4):271–284

    Article  CAS  PubMed  Google Scholar 

  774. Bugara A, Rusina L, Reznikova S (1986) Embryoidogenesis in anther culture of Salvia sclarea. Fiziol Biokhim Kult Rast 18:381–386

    Google Scholar 

  775. Radojevic L, Vapa L, Borojevic K, Joksimovic J (1985) Plant regeneration in Saintpaulia ionantha Wendl. anther cultures. Savrem Poljopr 33:485–491

    Google Scholar 

  776. Hughes KW, Bell SL, Caponetti JD (1975) Anther-derived haploids of the African violet. Can J Bot 53(14):1442–1444

    Article  Google Scholar 

  777. Weatherhead MA, Grout BWW, Short KC (1982) Increased haploid production in Saintpaulia ionantha by anther culture. Sci Hortic 17(2):137–144. https://doi.org/10.1016/0304-4238(82)90006-1

    Article  Google Scholar 

  778. Bhaskaran S, Smith RH, Finer JJ (1983) Ribulose bisphosphate carboxylase activity in anther-derived plants of Saintpaulia ionantha Wendl. Shag. Plant Physiol 73(3):639–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  779. Uno Y, Koda-Katayama H, Kobayashi H (2016) Application of anther culture for efficient haploid production in the genus Saintpaulia. Plant Cell Tissue Organ Cult 125(2):241–248. https://doi.org/10.1007/s11240-016-0943-3

    Article  CAS  Google Scholar 

  780. Kernan Z, Ferrie AMR (2006) Microspore embryogenesis and the development of a double haploidy protocol for cow cockle (Saponaria vaccaria). Plant Cell Rep 25(4):274–280. https://doi.org/10.1007/s00299-005-0064-7

    Article  CAS  PubMed  Google Scholar 

  781. Chakravarty B, Sen S (1989) Regeneration through somatic embryogenesis from anther explants of Scilla indica (Roxb.) Baker. Plant Cell Tissue Organ Cult 19(1):71–75

    Article  Google Scholar 

  782. Zieliński K, Krzewska M, Żur I, Juzoń K, Kopeć P, Nowicka A, Moravčiková J, Skrzypek E, Dubas E (2020) The effect of glutathione and mannitol on androgenesis in anther and isolated microspore cultures of rye (Secale cereale L.). Plant Cell Tissue Organ Cult 140(3):577–592. https://doi.org/10.1007/s11240-019-01754-9

    Article  CAS  Google Scholar 

  783. Sharma P, Chaithhary HK, Manoj NV, Singh K, Relan A, Sood VK (2019) Haploid induction in triticale × wheat and wheat × rye derivatives following imperata cylindrica-mediated chromosome elimination approach. Cereal Res Commun 47(4):701–713. https://doi.org/10.1556/0806.47.2019.46

    Article  CAS  Google Scholar 

  784. Ma R, Guo YD, Pulli S (2004) Comparison of anther and microspore culture in the embryogenesis and regeneration of rye (Secale cereale). Plant Cell Tissue Organ Cult 76(2):147–157

    Article  Google Scholar 

  785. Ranaweera K, Pathirana R (1992) Optimization of media and conditions for callus induction from anthers of sesame cultivar MI 3. J Natl Sci Found 20(2):309–316

    CAS  Google Scholar 

  786. Govil CM, Singh VRR (1982) Induction of haploids in anther culture of Sesamum indicum. In: Proceedings of the 5th international congress plant tissue and cell culture, pp 545–546

    Google Scholar 

  787. Yifter M, Sbhatu DB, Mekbib F, Abraha E (2013) In vitro regeneration of four ethiopian varieties of sesame (Sesamum indicum L.) using anther culture. Asian J Plant Sci 12:214–218

    Article  Google Scholar 

  788. Ban Y, Kokubu T, Miyaji Y (1971) Production of haploid plant by anther-culture of Setaria italica. Kagoshima Univ Fac Agr Bull 21:7781

    Google Scholar 

  789. Šafářová D, Kopecký D, Vagera J (2005) The effect of a short heat treatment on the in vitro induced androgenesis in Silene latifolia ssp. alba. Biol Plant 49(2):261–264

    Article  Google Scholar 

  790. Jain R, Brune U, Friedt W (1989) Plant regeneration from in vitro cultures of cotyledon explants and anthers of Sinapis alba and its implications on breeding of crucifers. Euphytica 43(1–2):153–163

    Article  Google Scholar 

  791. Tsay HS, Yeh CC, Hsu JY (1990) Embryogenesis and plant regeneration from anther culture of bamboo (Sinocalamus latiflora (Munro) McClure). Plant Cell Rep 9(7):349–351. https://doi.org/10.1007/bf00232396

    Article  CAS  PubMed  Google Scholar 

  792. Khoshoo T (1957) A polyhaploid plant of the tetraploid race of Sisymbrium irio. J Hered 48(5):239–242

    Article  Google Scholar 

  793. Rokka VM, Ishimaru CA, Lapitan NLV, Pehu E (1998) Production of androgenic dihaploid lines of the disomic tetraploid potato species Solanum acaule ssp. acaule. Plant Cell Rep 18(1–2):89–93

    Article  CAS  Google Scholar 

  794. Lysenko EG, Sidorov VA (1985) The obtaining of S. bulbocastanum androgenic haploids and mesophyll protoplast culture. Tsitologiya I. Genetika 19(6):433–436

    Google Scholar 

  795. Reynolds TL (1987) The roles of auxin and ethylene during pollen embryogenesis in Solanum carolinense L. Am J Bot 74(5):623–624

    Google Scholar 

  796. Reynolds TL (1984) Callus formation and organogenesis in anther cultures of Solanum carolinense L. J Plant Physiol 117(2):157–161

    Article  CAS  PubMed  Google Scholar 

  797. Reynolds TL (1990) Interactions between calcium and auxin during pollen androgenesis in anther cultures of Solanum carolinense L. Plant Sci 72(1):109–114. https://doi.org/10.1016/0168-9452(90)90192-q

    Article  CAS  Google Scholar 

  798. Reynolds TL (1986) Pollen embryogenesis in anther cultures of Solanum carolinense L. Plant Cell Rep 5(4):273–275

    Article  CAS  PubMed  Google Scholar 

  799. Reynolds TL (1987) A possible role for ethylene during iaa-induced pollen embryogenesis in anther cultures of Solanum carolinense L. Am J Bot 74(6):967–969. https://doi.org/10.2307/2443878

    Article  CAS  Google Scholar 

  800. Reynolds TL (1989) Ethylene effects on pollen callus formation and organogenesis in anther cultures of Solanum carolinense L. Plant Sci 61(1):131–136. https://doi.org/10.1016/0168-9452(89)90127-1

    Article  CAS  Google Scholar 

  801. Hermsen JGT (1969) Induction of haploids and aneuhaploids in colchicine-induced tetraploid Solanum chacoense Bitt. Euphytica 18(2):183–189. https://doi.org/10.1007/bf00035690

    Article  Google Scholar 

  802. Cappadocia M, Ahmim M (1988) Comparison of two culture methods for the production of haploids by anther culture in Solanum chacoense. Can J Bot 66(5):1003–1005. https://doi.org/10.1139/b88-144

    Article  Google Scholar 

  803. Birhman RK, Rivard SR, Cappadocia M (1994) Restriction fragment length polymorphism analysis of anther-culture-derived Solanum chacoense. HortScience 29(3):206–208

    Article  Google Scholar 

  804. Rivard SR, Sabaelleil MK, Landry BS, Cappadocia M (1994) RFLP analyses and segregation of molecular markers in plants produced by in vitro anther culture, selfing, and reciprocal crosses of 2 lines of self incompatible Solanum chacoense. Genome 37(5):775–783

    Article  CAS  PubMed  Google Scholar 

  805. Veilleux RE, Shen LY, Paz MM (1995) Analysis of the genetic composition of anther-derived potato by randomly amplified polymorphic DNA and simple sequence repeats. Genome 38(6):1153–1162

    Article  CAS  PubMed  Google Scholar 

  806. Boluarte-Medina T, Veilleux RE (2002) Phenotypic characterization and bulk segregant analysis of anther culture response in two backcross families of diploid potato – RAPD markers for androgenesis in potato. Plant Cell Tissue Org Cult 68(3):277–286. https://doi.org/10.1023/a:1013973323546

    Article  CAS  Google Scholar 

  807. Zenkteler M (1973) In vitro development of embryos and seedlings from pollen grains of Solanum dulcamara. Z Pflanzenphysiol 69(2):189–192. https://doi.org/10.1016/S0044-328X(73)80038-8

    Article  Google Scholar 

  808. Binding H, Mordhorst G (1984) Haploid Solanum dulcamara L.: shoot culture and plant regeneration from isolated protoplasts. Plant Sci Lett 35(1):77–79. https://doi.org/10.1016/0304-4211(84)90161-5

    Article  Google Scholar 

  809. Hernández Amasifuen AD, Díaz Pillasca HB (2019) Inducción in vitro de callo embriogénico a partir del cultivo de anteras en “papa amarilla” Solanum goniocalyx Juz. & Bukasov (Solanaceae). Arnaldoa 26(1):277–286. https://doi.org/10.22497/arnaldoa.261.26111

    Article  Google Scholar 

  810. Pacheco-Sanchez M, Lozoya-Saldana H, Colinas-Leon MT (2003) Growth regulators and cold pretreatment on in vitro androgenesis of Solanum iopetalum L. Agrociencia 37(3):257–265

    Google Scholar 

  811. Niazian M, Shariatpanahi ME, Abdipour M, Oroojloo M (2019) Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma. https://doi.org/10.1007/s00709-019-01379-x

  812. Juliao SA, Carvalho CR, Dias Koehlers T, Ribeiro da Silva C (2015) Multiploidy occurrence in tomato calli from anther culture. Afr J Biotechnol 14(40):2846–2855. https://doi.org/10.5897/AJB2015.14525

    Article  Google Scholar 

  813. Corral-Martínez P, Nuez F, Seguí-Simarro JM (2011) Genetic, quantitative and microscopic evidence for fusion of haploid nuclei and growth of somatic calli in cultured ms10 35 tomato anthers. Euphytica 178(2):215–228. https://doi.org/10.1007/s10681-010-0303-z

    Article  Google Scholar 

  814. Motallebi-Azar A, Panahandeh J (2010) Effects of colchicine and cold duration pretreatments on androgenesis responses of tomato (Lycopersicon esculentum Mill) via anther culture. Russ Agric Sci 36(5):338–341. https://doi.org/10.3103/s106836741005006x

    Article  Google Scholar 

  815. Farooq AM, Tabassum B, Nasir IA, Husnain T (2010) Androgenesis induction, callogenesis, regeneration and cytogenetic studies of tomato haploid. J Agric Res 48(4):457–470

    Google Scholar 

  816. Seguí-Simarro JM, Nuez F (2007) Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J Exp Bot 58(5):1119–1132

    Article  PubMed  CAS  Google Scholar 

  817. Seguí-Simarro JM, Nuez F (2006) Androgenesis induction from tomato anther cultures: callus characterization. Acta Hortic 725:855–861

    Article  Google Scholar 

  818. Motallebi-Azar A, Khosroshahli M, Valizadeh M, Massiha S, Moeini A (2006) Effect of genotype, and cold and heat pretreatment on callus and shoot induction in tomato anther culture. Iran J Agric Sci 37:899–909

    Google Scholar 

  819. Seguí-Simarro JM, Nuez F (2005) Meiotic metaphase I to telophase II is the most responsive stage of microspore development for induction of androgenesis in tomato (Solanum lycopersicum). Acta Physiol Plant 27(4B):675–685

    Article  Google Scholar 

  820. Bal U, Abak K (2005) Induction of symmetrical nucleus division and multicellular structures from the isolated microspores of Lycopersicon esculentum Mill. Biotechnol Biotechnol Eq 19(1):35–42

    Article  CAS  Google Scholar 

  821. Zagorska NA, Shtereva LA, Kruleva MM, Sotirova VG, Baralieva DL, Dimitrov BD (2004) Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants. Plant Cell Rep 22(7):449–456

    Article  CAS  PubMed  Google Scholar 

  822. Shtereva L, Atanassova B (2001) Callus induction and plant regeneration via anther culture in mutant tomato (Lycopersicon esculentum Mill.) lines with anther abnormalities. Israel J Plant Sci 49(3):203–208

    Article  CAS  Google Scholar 

  823. Zagorska NA, Shtereva A, Dimitrov BD, Kruleva MM (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.) – I. Influence of genotype on androgenetic ability. Plant Cell Rep 17(12):968–973

    Article  CAS  PubMed  Google Scholar 

  824. Shtereva LA, Zagorska NA, Dimitrov BD, Kruleva MM, Oanh HK (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill). II. Factors affecting induction of androgenesis. Plant Cell Rep 18(3–4):312–317

    Article  CAS  PubMed  Google Scholar 

  825. Evans DA, Morrison RA (1989) Tomato anther culture. USA Patent

    Google Scholar 

  826. Varghese TM, Gulshan Y (1986) Production of embryoids and calli from isolated microspores of tomato (Lycopersicon esculentum Mill.) in liquid media. Biol Plant 28(2):126–129

    Article  Google Scholar 

  827. Gulshan TMV, Sharma DR (1981) Studies on anther cultures of tomato – Lycopersicon esculentum Mill. Biol Plant 23(6):414–420

    Article  Google Scholar 

  828. Zamir D, Jones RA, Kedar N (1980) Anther culture of male sterile tomato (Lycopersicon esculentum Mill.) mutants. Plant Sci Lett 17:353–361

    Article  Google Scholar 

  829. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107(2):161–170

    Article  CAS  PubMed  Google Scholar 

  830. Gavrilenko T, Thieme R, Rokka VM (2001) Cytogenetic analysis of Lycopersicon esculentum (+) Solanum etuberosum somatic hybrids and their androgenetic regenerants. Theor Appl Genet 103(2–3):231–239

    Article  CAS  Google Scholar 

  831. Calabuig-Serna A, Porcel R, Corral-Martínez P, Seguí-Simarro JM (2020) Anther culture in eggplant (Solanum melongena L.). In: Bayer M (ed) Plant embryogenesis: methods and protocols, vol. 2122. Methods in molecular biology. Springer US, New York, NY, pp 283–293. https://doi.org/10.1007/978-1-0716-0342-0_20

    Chapter  Google Scholar 

  832. Rivas-Sendra A, Campos-Vega M, Calabuig-Serna A, Seguí-Simarro JM (2017) Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica 213(4):89. https://doi.org/10.1007/s10681-017-1879-3

    Article  CAS  Google Scholar 

  833. Rotino GL (2016) Anther culture in eggplant (Solanum melongena L.). In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants, vol 1359. Methods in molecular biology. Springer, New York, NY, pp 453–466. https://doi.org/10.1007/978-1-4939-3061-6_25

    Chapter  Google Scholar 

  834. Rivas-Sendra A, Corral-Martínez P, Camacho-Fernández C, Seguí-Simarro JM (2015) Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell Tissue Organ Cult 122(3):759–765. https://doi.org/10.1007/s11240-015-0791-6

    Article  Google Scholar 

  835. Corral-Martínez P, Seguí-Simarro JM (2014) Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica 195(3):369–382. https://doi.org/10.1007/s10681-013-1001-4

    Article  CAS  Google Scholar 

  836. Salas P, Rivas-Sendra A, Prohens J, Seguí-Simarro JM (2012) Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 184(2):235–250. https://doi.org/10.1007/s10681-011-0569-9

    Article  Google Scholar 

  837. Corral-Martínez P, Seguí-Simarro JM (2012) Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica 187(1):47–61. https://doi.org/10.1007/s10681-012-0715-z

    Article  Google Scholar 

  838. Salas P, Prohens J, Seguí-Simarro JM (2011) Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 182(2):261–274. https://doi.org/10.1007/s10681-011-0490-2

    Article  CAS  Google Scholar 

  839. Başay S, Şeniz V, Ellialtioğlu Ş (2011) Obtaining dihaploid lines by using anther culture in the different eggplant cultivars. J Food Agric Environ 9(2):188–190

    Google Scholar 

  840. Toppino L, Mennella G, Rizza F, D’Alessandro A, Sihachakr D, Rotino GL (2008) ISSR and isozyme characterization of androgenetic dihaploids reveals tetrasomic inheritance in tetraploid somatic hybrids between Solanum melongena and Solanum aethiopicum group Gilo. J Hered 99(3):304–315. https://doi.org/10.1093/jhered/esm122

    Article  CAS  PubMed  Google Scholar 

  841. Alpsoy HC, Seniz V (2007) Researches on the in vitro androgenesis and obtaining haploid plants in some eggplant genotypes. Acta Hortic 729:137–141

    Article  CAS  Google Scholar 

  842. Rotino GL, Sihachakr D, Rizza F, Vale G, Tacconi MG, Alberti P, Mennella G, Sabatini E, Toppino L, D’Alessandro A, Acciarri N (2005) Current status in production and utilization of dihaploids from somatic hybrids between eggplant (Solanum melongena L.) and its wild relatives. Acta Physiol Plant 27(4B):723–733

    Article  CAS  Google Scholar 

  843. Rizza F, Mennella G, Collonnier C, Shiachakr D, Kashyap V, Rajam MV, Prestera M, Rotino GL (2002) Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group Gilo as a source of resistance to Fusarium oxysporum f. sp. melongenae. Plant Cell Rep 20(11):1022–1032

    Article  CAS  Google Scholar 

  844. Miyoshi K (1996) Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L). Plant Cell Rep 15(6):391–395

    Article  CAS  PubMed  Google Scholar 

  845. Matsubara S, Hu KL, Murakami K (1992) Embryoid and callus formation from pollen grains of eggplant and pepper by anther culture. J Jpn Soc Hortic Sci 61(1):69–77

    Article  CAS  Google Scholar 

  846. Rotino GL, Restaino F, Gjomarkaj M, Massimo M, Falavigna A, Schiavi M, Vicini E (1991) Evaluation of genetic variability in embryogenetic and androgenetic lines of eggplant. Acta Hortic 300:357–362

    Google Scholar 

  847. Sanguineti MC, Tuberosa R, Conti S (1990) Field evaluation of androgenetic lines of eggplant. Acta Hortic 280:177–182

    Article  Google Scholar 

  848. Chambonnet D (1988) Production of haploid eggplant plants. Bulletin interne de la Station d’Amélioration des Plantes Maraichères d’Avignon-Montfavet, France, pp 1–10

    Google Scholar 

  849. Tuberosa R, Sanguineti MC, Conti S (1987) Anther culture of eggplant Solanum melongena L. lines and hybrids. Genét Agrár 41(3):267–274

    Google Scholar 

  850. Rotino GL, Falavigna A, Restaino F (1987) Production of anther-derived plantlets of eggplant. Capsicum Newsl 6:89–90

    Google Scholar 

  851. Borgel A, Arnaud M (1986) Progress in eggplant breeding, use of haplomethod. Capsicum Newsl 5:65–66

    Google Scholar 

  852. Misra NR, Varghese TM, Maherchandani N, Jain RK (1983) Studies on induction and differentiation of androgenic callus of Solanum melongena L. In: Sen SK, Giles KL (eds) Plant cell culture in crop improvement. Plenum, New York, NY, pp 465–468

    Chapter  Google Scholar 

  853. Dumas de Vaulx R, Chambonnet D (1982) Culture in vitro d’anthères d’aubergine (Solanum melongena L.): stimulation de la production de plantes au moyen de traitements à 35°C associés à de faibles teneurs en substances de croissance. Agronomie 2(10):983–988

    Article  Google Scholar 

  854. Isouard G, Raquin C, Demarly Y (1979) Obtention de plantes haploides et diploides par culture in vitro d’anthères d’aubergine (Solanum melongena L.). C R Acad Sci Paris 288:987–989

    Google Scholar 

  855. S-r G (1979) Plantlets from isolated pollen cultures of eggplant (Solanum melongena L.). Acta Bot Sin 21:30–36

    Google Scholar 

  856. Breeding RGoH (1978) Induction of haploid plants of Solanum melongena. In: Proceedings of the symposium on plant tissue culture. Science Press, Peking, pp 227–232

    Google Scholar 

  857. Raina SK, Iyer RD (1973) Differentiation of diploid plants from pollen callus in anther cultures of Solanum melongena L. Z Pflanzen 70(4):275–280

    Google Scholar 

  858. Sree Ramulu K (1982) Genetic instability at the S-locus of Lycopersicon peruvianum plants regenerated from in vitro culture of anthers: generation of new S-specificities and S-allele reversions. Heredity 49(3):319–330

    Article  Google Scholar 

  859. Nishiyama I, Uematsu S (1967) Radiobiological studies in plants—XIII. Embryogenesis following X-irradiation of pollen in Lycopersicum pimpinellifolium. Radiat Bot 7(6):481–489

    Google Scholar 

  860. Sharma S, Sarkar D, Pandey SK (2010) Phenotypic characterization and nuclear microsatellite analysis reveal genomic changes and rearrangements underlying androgenesis in tetraploid potatoes (Solanum tuberosum L.). Euphytica 171(3):313–326. https://doi.org/10.1007/s10681-009-9983-7

    Article  CAS  Google Scholar 

  861. Teparkum S, Veilleux RE (1998) Indifference of potato anther culture to colchicine and genetic similarity among anther-derived monoploid regenerants determined by RAPD analysis. Plant Cell Tissue Org Cult 53(1):49–58. https://doi.org/10.1023/a:1006099423651

    Article  CAS  Google Scholar 

  862. Teten Snider K, Veilleux RE (1994) Factors affecting variability in anther culture and in conversion of androgenic embryos of Solanum phureja. Plant Cell Tissue Organ Cult 36(3):345–354. https://doi.org/10.1007/bf00046092

    Article  Google Scholar 

  863. Owen HR, Veilleux RE, Haynes FL, Haynes KG (1988) Photoperiod effects on 2n pollen production, response to anther culture, and net photosynthesis of a diplandrous clone of Solanum phureja. Am Potato J 65(3):131–139. https://doi.org/10.1007/bf02871602

    Article  Google Scholar 

  864. Pehu E, Veilleux RE, Hilu KW (1987) Cluster analysis of anther-derived plants of Solanum phureja (Solanaceae) based on morphological characteristics. Am J Bot 74(1):47–52. https://doi.org/10.2307/2444330

    Article  Google Scholar 

  865. Veilleux RE, Booze-Daniels J, Pehu E (1985) Anther culture of a 2n pollen producing clone of Solanum phureja Juz. & Buk. Can J Genet Cytol 27(5):559–564. https://doi.org/10.1139/g85-082

    Article  Google Scholar 

  866. Sinha S, Roy RP, Jha KK (1979) Callus formation and shoot bud differentiation in anther culture of Solanum surattense. Can J Bot 57(22):2524–2527

    Article  Google Scholar 

  867. Jaiswal VS, Narayan P (1981) Induction of pollen embryoids in Solanum torvum Swartz. Curr Sci 50(22):998–999

    Google Scholar 

  868. Asakaviciute R (2008) Androgenesis in anther culture of Lithuanian spring barley (Hordeum vulgare L.) and potato (Solanum tuberosum L.) cultivars. Turk J Biol 32(3):155–160

    CAS  Google Scholar 

  869. Iovene M, Aversano R, Savarese S, Caruso I, Di Matteo A, Cardi T, Frusciante L, Carputo D (2012) Interspecific somatic hybrids between Solanum bulbocastanum and S. tuberosum and their haploidization for potato breeding. Biol Plant 56(1):1–8

    Article  Google Scholar 

  870. Rokka VM (2009) Potato haploids and breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 199–208

    Chapter  Google Scholar 

  871. Tai GCC, Xiong XY (2003) Haploid production of potatoes by anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic, Dordretch, pp 229–234

    Chapter  Google Scholar 

  872. Rokka VM (2003) Anther culture through direct embryogenesis in a genetically diverse range of potato (Solanum) species and their interspecific and intergeneric hybrids. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic, Dordretch, pp 235–240

    Chapter  Google Scholar 

  873. Gavrilenko T, Larkka J, Pehu E, Rokka VM (2002) Identification of mitotic chromosomes of tuberous and non-tuberous Solanum species (Solanum tuberosum and Solanum brevidens) by GISH in their interspecific hybrids. Genome 45(2):442–449. https://doi.org/10.1139/g01-136

    Article  CAS  PubMed  Google Scholar 

  874. Rihova L, Tupy J (1999) Manipulation of division symmetry and developmental fate in cultures of potato microspores. Plant Cell Tissue Organ Cult 59(2):135–145

    Article  Google Scholar 

  875. Rokka VM, Tauriainen A, Pietila L, Pehu E (1998) Interspecific somatic hybrids between wild potato Solanum acaule Bitt. and anther-derived dihaploid potato (Solanum tuberosum L.). Plant Cell Rep 18(1–2):82–88

    Article  CAS  Google Scholar 

  876. Rokka VM, Pietila L, Pehu E (1996) Enhanced production of dihaploid lines via anther culture of tetraploid potato (Solanum tuberosum L ssp tuberosum) clones. Am Potato J 73(1):1–12. https://doi.org/10.1007/bf02849299

    Article  Google Scholar 

  877. Bugárová Z, Pret’ová A (1996) Isolated microspore cultures in Solanum tuberosum L. cultivars. Biologia 51:411–416

    Google Scholar 

  878. Rokka VM, Valkonen JPT, Pehu E (1995) Production and characterization of haploids derived from somatic hybrids between Solanum brevidens and S. tuberosum through anther culture. Plant Sci 112(1):85–95

    Article  CAS  Google Scholar 

  879. Sopory SK (1977) Development of embryoids in isolated pollen culture of dihaploid Solanum tuberosum. Z Pflanzenphysiol 84:453–457

    Article  Google Scholar 

  880. Pham GM, Braz GT, Conway M, Crisovan E, Hamilton JP, Laimbeer FPE, Manrique-Carpintero N, Newton L, Douches DS, Jiang JM, Veilleux RE, Buell CR (2019) Genome-wide inference of somatic translocation events during potato dihaploid production. Plant Genome 12(2). https://doi.org/10.3835/plantgenome2018.10.0079

  881. Amundson KR, Ordoñez B, Santayana M, Tan EH, Henry IM, Mihovilovich E, Bonierbale M, Comai L (2020) Genomic outcomes of haploid induction crosses in potato (Solanum tuberosum L.). Genetics 214(2):369–380. https://doi.org/10.1534/genetics.119.302843

    Article  CAS  PubMed  Google Scholar 

  882. Debata BK, Patnaik SN (1988) Induction of androgenesis in anther cultures of Solanum viarum Dunal. J Plant Physiol 133(1):124–125

    Article  Google Scholar 

  883. Arrillaga I, Lerma V, Pérez-Bermúdez P, Segura J (1995) Callus and somatic embryogenesis from cultured anthers of service tree (Sorbus domestica L.). HortScience 30(5):1078–1079

    Article  Google Scholar 

  884. Rose JB, Dunwell JM, Sunderland N (1986) Anther culture of Sorghum bicolor (L.) Moench. I. Effect of panicle pretreatment, anther incubation temperature and 2,4-D concentration. Plant Cell Tissue Organ Cult 6(1):15–22

    Article  CAS  Google Scholar 

  885. Rose JB, Dunwell JM, Sunderland N (1986) Anther culture of Sorghum bicolor (L.) Moench. II. Pollen development in vivo and in vitro. Plant Cell Tissue Organ Cult 6(1):23–31

    Article  Google Scholar 

  886. Elkonin L, Gudova T, Ishin A, Tyrnov U (1993) Diploidization in haploid tissue cultures of sorghum. Plant Breed 110(3):201–206

    Article  Google Scholar 

  887. Kumaravadivel N, Rangasamy SRS (1994) Plant regeneration from sorghum anther cultures and field evaluation of progeny. Plant Cell Rep 13(5):286–290

    Article  CAS  PubMed  Google Scholar 

  888. Sairam R, Seetharama N (1996) Androgenic response of cultured anthers and microspores of sorghum. Int Sorghum Millets Newsl 37:69–71

    Google Scholar 

  889. Liang GH, Gu X, Yue G, Shi Z, Kofoid K (1997) Haploidy in sorghum. In: In vitro haploid production in higher plants. Springer, New York, NY, pp 149–161

    Chapter  Google Scholar 

  890. Can ND, Yoshida T (1999) Combining ability of callus induction and plant regeneration in sorghum anther culture. Plant Prod Sci 2(2):125–128

    Article  Google Scholar 

  891. Can ND, Nakamura S, Haryanto TAD, Yoshida T (1998) Effects of physiological status of parent plants and culture medium composition on the anther culture of sorghum. Plant Prod Sci 1(3):211–215

    Article  Google Scholar 

  892. Hussain T, Franks C (2019) Discovery of Sorghum haploid induction system. In: Zhao Z-Y, Dahlberg J (eds) Sorghum: methods and protocols. Springer New York, New York, NY, pp 49–59. https://doi.org/10.1007/978-1-4939-9039-9_4

    Chapter  Google Scholar 

  893. Schertz K (1963) Chromosomal, morphological, and fertility characteristics of haploids and their derivatives in Sorghum vulgare Pers. Crop Sci 3(5):445–447

    Article  Google Scholar 

  894. Eeckhaut T, Werbrouck S, Dendauw J, Van Bockstaele E, Debergh P (2001) Induction of homozygous Spathiphyllum wallisii genotypes through gynogenesis. Plant Cell Tissue Organ Cult 67(2):181–189

    Article  CAS  Google Scholar 

  895. Keles D, Ozcan C, Pinar H, Ata A, Denli N, Yucel NK, Taskin H, Buyukalaca S (2016) First report of obtaining haploid plants using tissue culture techniques in spinach. HortScience 51(6):742–749. https://doi.org/10.21273/hortsci.51.6.742

    Article  CAS  Google Scholar 

  896. Uskutoglu T, Uskutoglu D, Turgut K (2019) Effects on pre-treatment and different tissue culture media for androgenesis in Stevia rebaudiana Bertoni. Sugar Tech 21(6):1016–1023. https://doi.org/10.1007/s12355-019-00722-z

    Article  CAS  Google Scholar 

  897. Wolff DW, Veilleux RE, Jensen CJ (1986) Evaluation of anther-derived Streptocarpus X hybridus and their progeny. Plant Cell Tissue Organ Cult 6(2):167–172. https://doi.org/10.1007/bf00180800

    Article  Google Scholar 

  898. Frederiksen S (1989) Chromosome elimination in a hybrid between Taeniatherum caput-medusae and Hordeum bulbosum. Hereditas 110(1):87–88

    Article  Google Scholar 

  899. Kumar KR, Singh KP, Bhatia R, Raju DVS, Panwar S (2019) Optimising protocol for successful development of haploids in marigold (Tagetes spp.) through in vitro androgenesis. Plant Cell Tissue Organ Cult 138(1):11–28. https://doi.org/10.1007/s11240-019-01598-3

    Article  CAS  Google Scholar 

  900. Mehraj U, Panwar S, Singh KP, Namita PR, Solanke AU, Mallick N, Kumar S (2019) Assessment of clonal fidelity of doubled haploid line of marigold (Tagetes erecta) using microsatellite markers. Indian J Agric Sci 89(7):102–106

    Google Scholar 

  901. Mehraj U, Panwar S, Singh KP, Namita PR, Solanke AU, Mallick N, Kumar S (2019) In vitro regeneration of double haploid line of African marigold (Tagetes erecta) derived from ovule culture using non-axillary explants. Indian J Agric Sci 89(6):969–974

    CAS  Google Scholar 

  902. Kumar KR, Singh KP, Jan PK, Raju DVS, Kumar P, Bhatia R, Panwar S (2018) Influence of growth regulators on callus induction and plant regeneration from anthers of Tagetes spp. Indian J Agric Sci 88(6):970–977

    CAS  Google Scholar 

  903. Mehraj U, Panwar S, Singh KP, Namita PR, Solanke AU, Mallick N (2018) Development of protocol for in vitro rooting and hardening of doubled haploid line of Tagetes erecta L. derived through ovule culture. Indian J Hortic 75(4):651–655. https://doi.org/10.5958/0974-0112.2018.00108.1

    Article  Google Scholar 

  904. Dublin P (1978) Diploidised haploids and production of fertile homozygous genotpyes in cultivated cocoa trees (Theobroma cacao). Cafe Cacao Tee 22:275–284

    Google Scholar 

  905. Sounigo O, Lachenaud P, Bastide P, Cilas C, N Goran J, Lanaud C (2003) Assessment of the value of doubled haploids as progenitors in cocoa (Theobroma cacao L.) breeding. J Appl Genet 44(3):339–354

    PubMed  Google Scholar 

  906. Falque M, Kodia A, Sounigo O, Eskes A, Charrier A (1992) Gamma-irradiation of cacao (Theobroma cacao L.) pollen: effect on pollen grain viability, germination and mitosis and on fruit set. Euphytica 64(3):167–172

    Article  Google Scholar 

  907. Falque M (1994) Pod and seed development and phenotype of the M1 plants after pollination and fertilization with irradiated pollen in cacao (Theobroma cacao L.). Euphytica 75(1–2):19–25

    Article  Google Scholar 

  908. Mokhtarzadeh A, Constantin MJ (1978) Plant regeneration from hypocotyl-and anther-derived callus of berseem clover. Crop Sci 18(4):567–572

    Article  Google Scholar 

  909. Butterfass T (1969) The distribution of plastids in mitosis of guard cell mother cells of haploid Trifolium hybridum L. Planta 84(3):230–234. https://doi.org/10.1007/bf00388108

    Article  CAS  PubMed  Google Scholar 

  910. Ponitka A, Slusarkiewicz-Jarzina A (1987) Induction of gynogenesis in selected plant species from the family Papilionaceae. Genet Polonica 28(3):239–242

    Google Scholar 

  911. Singh AK, Zhang P, Dong CM, Li JB, Trethowan R, Sharp P (2019) Molecular cytogenetic characterization of stem rust and stripe rust resistance in wheat (Thinopyrum bessarabicum) derived doubled haploid lines. Mol Breed 39(9). https://doi.org/10.1007/s11032-019-1034-z

  912. Vassileva-Dryanovska OA (1966) Fertilization with irradiated pollen in Tradescantia. Radiat Bot 6(5):469–479. https://doi.org/10.1016/S0033-7560(66)80079-0

    Article  Google Scholar 

  913. Vassileva-Dryanovska OA (1966) Development of embryo and endosperm produced after irradiation of pollenin Tradescantia. Hereditas 55:129–148

    Article  Google Scholar 

  914. Immonen S, Robinson J (2000) Stress treatments and ficoll for improving green plant regeneration in triticale anther culture. Plant Sci 150(1):77–84. https://doi.org/10.1016/S0168-9452(99)00169-7

    Article  CAS  Google Scholar 

  915. Żur I, Dubas E, Krzewska M, Zieliński K, Fodor J, Janowiak F (2019) Glutathione provides antioxidative defence and promotes microspore-derived embryo development in isolated microspore cultures of triticale (× Triticosecale Wittm.). Plant Cell Rep 38(2):195–209. https://doi.org/10.1007/s00299-018-2362-x

    Article  CAS  PubMed  Google Scholar 

  916. Würschum T, Tucker MR, Maurer HP, Leiser WL (2015) Ethylene inhibitors improve efficiency of microspore embryogenesis in hexaploid triticale. Plant Cell Tissue Organ Cult 122(3):751–757. https://doi.org/10.1007/s11240-015-0808-1

    Article  CAS  Google Scholar 

  917. Oleszczuk S, Rabiza-Swider J, Zimny J, Lukaszewski AJ (2011) Aneuploidy among androgenic progeny of hexaploid triticale (X Triticosecale Wittmack). Plant Cell Rep 30(4):575–586. https://doi.org/10.1007/s00299-010-0971-0

    Article  CAS  PubMed  Google Scholar 

  918. Tuvesson S, Ljungberg A, Johansson N, Karlsson KE, Suijs LW, Josset JP (2000) Large-scale production of wheat and triticale double haploids through the use of a single-anther culture method. Plant Breed 119(6):455–459

    Article  Google Scholar 

  919. Krzewska M, Czyczyło-Mysza I, Dubas E, Gołębiowska-Pikania G, Żur I (2015) Identification of QTLs associated with albino plant formation and some new facts concerning green versus albino ratio determinants in triticale (×Triticosecale Wittm.) anther culture. Euphytica 206(1):263–278. https://doi.org/10.1007/s10681-015-1509-x

    Article  Google Scholar 

  920. Zur I, Dubas E, Golemiec E, Szechynska-Hebda M, Golebiowska G, Wedzony M (2009) Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.). Plant Cell Rep 28(8):1279–1287. https://doi.org/10.1007/s00299-009-0730-2

    Article  CAS  PubMed  Google Scholar 

  921. Żur I, Dubas E, Krzewska M, Janowiak F, Hura K, Pociecha E, Bączek-Kwinta R, Płażek A (2014) Antioxidant activity and ROS tolerance in triticale (×Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell Tissue Organ Cult 119(1):79–94. https://doi.org/10.1007/s11240-014-0515-3

    Article  CAS  Google Scholar 

  922. Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Janowiak F, Wędzony M (2008) Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (×Triticosecale Wittm.). Plant Cell Tissue Organ Cult 94(3):319–328. https://doi.org/10.1007/s11240-008-9360-6

    Article  CAS  Google Scholar 

  923. Żur I, Dubas E, Krzewska M, Sánchez-Díaz RA, Castillo AM, Vallés MP (2014) Changes in gene expression patterns associated with microspore embryogenesis in hexaploid triticale (×Triticosecale Wittm.). Plant Cell Tissue Organ Cult 116(2):261–267. https://doi.org/10.1007/s11240-013-0399-7

    Article  CAS  Google Scholar 

  924. Sinha R, Eudes F (2015) Dimethyl tyrosine conjugated peptide prevents oxidative damage and death of triticale and wheat microspores. Plant Cell Tissue Organ Cult 122:227–237. https://doi.org/10.1007/s11240-015-0763-x

    Article  CAS  Google Scholar 

  925. González JM, López LA, Bernard S, Jouvé N (1993) Prolamin analysis of progenies from androgenetic plants of triticale. Plant Breed 111(1):42–48

    Article  Google Scholar 

  926. Asif M, Eudes F, Randhawa H, Amundsen E, Yanke J, Spaner D (2013) Cefotaxime prevents microbial contamination and improves microspore embryogenesis in wheat and triticale. Plant Cell Rep. https://doi.org/10.1007/s00299-013-1476-4

  927. Arzani A, Darvey NL (2001) The effect of colchicine on triticale anther-derived plants: microspore pretreatment and haploid plant treatment using a hydroponic recovery system. Euphytica 122(2):235–241

    Article  CAS  Google Scholar 

  928. Slusarkiewicz-Jarzina A, Ponitka A (2003) Efficient production of spontaneous and induced doubled haploid triticale plants derived from anther culture. Cereal Res Commun 31(3–4):289–296

    Article  Google Scholar 

  929. Asif M, Eudes F, Randhawa H, Amundsen E, Spaner D (2014) Phytosulfokine alpha enhances microspore embryogenesis in both triticale and wheat. Plant Cell Tissue Organ Cult 116(1):125–130. https://doi.org/10.1007/s11240-013-0379-y

    Article  CAS  Google Scholar 

  930. Asif M, Eudes F, Goyal A, Amundsen E, Randhawa H, Spaner D (2013) Organelle antioxidants improve microspore embryogenesis in wheat and triticale. In Vitro Cell Dev Biol Plant 49(5):489–497. https://doi.org/10.1007/s11627-013-9514-z

    Article  CAS  Google Scholar 

  931. Nowicka A, Juzon K, Krzewska M, Dziurka M, Dubas E, Kopec P, Zielinski K, Zur I (2019) Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. Plant Sci 287. https://doi.org/10.1016/j.plantsci.2019.110189

  932. Yerzhebayeva RS, Abdurakhmanova MA, Bastaubayeva SO, Tadjibayev D (2019) Efect of zeatin on in vitro embryogenesis and plant regeneration from anther culture of hexaploid triticale (Triticosecale Wittmack) (ЭМБРИОГЕНЕЗ И РЕГЕНЕРАЦИЯ РАСТЕНИЙ В КУЛЬТУРЕ ПЫЛЬНИКОВ ГЕКСАПЛОИДНОЙ ТРИТИКАЛЕ (Triticosecale Wittmack) ПОД ВЛИЯНИЕМ ЦИТОКИНИНА ЗЕАТИНА). Sel’skokhozyaistvennaya Biol 54(5):934–945

    Article  Google Scholar 

  933. Tyrka M, Oleszczuk S, Rabiza-Swider J, Wos H, Wedzony M, Zimny J, Ponitka A, Slusarkiewicz-Jarzina A, Metzger RJ, Baenziger PS, Lukaszewski AJ (2018) Populations of doubled haploids for genetic mapping in hexaploid winter triticale. Mol Breed 38(4). https://doi.org/10.1007/s11032-018-0804-3

  934. Zaitseva OI (2017) In vitro androgenesis in triticale. Eur Biotech J 1(1):99–100. https://doi.org/10.24190/issn2564-615x/2017/01.20

    Article  Google Scholar 

  935. Wurschum T, Tucker MR, Maurer HP, Leiser WL (2015) Ethylene inhibitors improve efficiency of microspore embryogenesis in hexaploid triticale. Plant Cell Tissue Org Cult 122(3):751–757. https://doi.org/10.1007/s11240-015-0808-1

    Article  CAS  Google Scholar 

  936. Würschum T, Tucker MR, Reif JC, Maurer HP (2012) Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol 12(1):109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  937. Oleszczuk S, Sowa S, Zimny J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (× Triticosecale Wittmack) cv. Bogo Plant Cell Rep 22(12):885–893. https://doi.org/10.1007/s00299-004-0796-9

    Article  CAS  PubMed  Google Scholar 

  938. Moradi P, Hagh NA, Bozorgipour R, Sharma B (2009) Development of yellow rust resistant doubled haploid lines of wheat through wheat × maize crosses. Int J Plant Prod 3(3):77–88

    Google Scholar 

  939. Wang HM, Enns JL, Nelson KL, Brost JM, Orr TD, Ferrie AMR (2019) Improving the efficiency of wheat microspore culture methodology: evaluation of pretreatments, gradients, and epigenetic chemicals. Plant Cell Tissue Organ Cult 139(3):589–599. https://doi.org/10.1007/s11240-019-01704-5

    Article  CAS  Google Scholar 

  940. Zhang W, Wang K, Lin ZS, Du LP, Ma HL, Xiao LL, Ye XG (2014) Production and identification of haploid dwarf male sterile wheat plants induced by corn inducer. Bot Stud 55(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  941. Reynolds TL (2000) Effects of calcium on embryogenic induction and the accumulation of abscisic acid, and an early cysteine-labeled metallothionein gene in androgenic microspores of Triticum aestivum. Plant Sci 150(2):201–207. https://doi.org/10.1016/S0168-9452(99)00187-9

    Article  CAS  Google Scholar 

  942. Liu W (2004) Transformation of microspores for generating doubled haploid transgenic wheat (Triticum aestivum L.). Washington State University, Washington, DC

    Google Scholar 

  943. Chauhan H, Khurana P (2010) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9(3):408–417. https://doi.org/10.1111/j.1467-7652.2010.00561.x

    Article  CAS  PubMed  Google Scholar 

  944. Letarte J, Simion E, Miner M, Kasha KJ (2006) Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep 24:691–698

    Article  CAS  PubMed  Google Scholar 

  945. Redha A, Attia T, Büter B, Saisingtong S, Stamp P, Schmid JE (1998) Improved production of doubled haploids by colchicine application to wheat (Triticum aestivum L.) anther culture. Plant Cell Rep 17(12):974–979. https://doi.org/10.1007/s002990050520

    Article  CAS  PubMed  Google Scholar 

  946. Shariatpanahi ME, Belogradova K, Hessamvaziri L, Heberle-Bors E, Touraev A (2006) Efficient embryogenesis and regeneration in freshly isolated and cultured wheat (Triticum aestivum L.) microspores without stress pretreatment. Plant Cell Rep 25(12):1294–1299

    Article  CAS  PubMed  Google Scholar 

  947. Soriano M, Cistue L, Castillo AM (2008) Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture. Plant Cell Rep 27(5):805–811. https://doi.org/10.1007/s00299-007-0500-y

    Article  CAS  PubMed  Google Scholar 

  948. Karsai I, Bedo Z, Hayes PM (1994) Effect of induction medium Ph and maltose concentration on in-vitro androgenesis of hexaploid winter triticale and wheat. Plant Cell Tissue Organ Cult 39(1):49–53

    Article  CAS  Google Scholar 

  949. Tuvesson IKD, Öhlund RCV (1993) Plant regeneration through culture of isolated microspores of Triticum aestivum L. Plant Cell Tissue Organ Cult 34(2):163–167

    Article  Google Scholar 

  950. Adamski T, Krystkowiak K, Kuczyńska A, Mikołajczak K, Ogrodowicz P, Ponitka A, Surma M, Ślusarkiewicz-Jarzina A (2014) Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum L.). Electron J Biotechnol 17(1):6–13

    Article  CAS  Google Scholar 

  951. Tayeng T, Chaudhary HK, Kishore N (2012) Enhancing doubled haploid production efficiency in wheat (Triticum aestivum L. em. Thell) by in vivo colchicine manipulations in Imperata cylindrica-mediated chromosome elimination approach. Plant Breed 131(5):574–578

    Article  CAS  Google Scholar 

  952. Weigt D, Kiel A, Siatkowski I, Zyprych-Walczak J, Tomkowiak A, Kwiatek M (2020) Comparison of the androgenic response of spring and winter wheat (Triticum aestivum L.). Plants 9(1):49. https://doi.org/10.3390/plants9010049

    Article  CAS  Google Scholar 

  953. Weigt D, Niemann J, Siatkowski I, Zyprych-Walczak J, Olejnik P, Kurasiak-Popowska D (2019) Effect of zearalenone and hormone regulators on microspore embryogenesis in anther culture of wheat. Plan Theory 8(11):487

    CAS  Google Scholar 

  954. Barakat MN, Al-Doss AA, Ghazy AI, Moustafa KA, Elshafei AA, Ahmed EI (2018) Doubled haploid wheat lines with high molecular weight glutenin alleles derived from microspore cultures. New Zeal J Crop Hortic Sci 46(3):198–211. https://doi.org/10.1080/01140671.2017.1368674

    Article  CAS  Google Scholar 

  955. Lantos C, Pauk J (2016) Anther culture as an effective tool in winter wheat (Triticum aestivum L.) breeding. Genetika 52(8):910–918

    CAS  PubMed  Google Scholar 

  956. Santra M, Wang H, Seifert S, Haley S (2017) Doubled haploid laboratory protocol for wheat using wheat–maize wide hybridization. In: Bhalla PL, Singh MB (eds) Wheat biotechnology: methods and protocols. Springer New York, New York, NY, pp 235–249. https://doi.org/10.1007/978-1-4939-7337-8_14

    Chapter  Google Scholar 

  957. Santra M, Ankrah N, Santra DK, Kidwell KK (2012) An improved wheat microspore culture technique for the production of doubled haploid plants. Crop Sci 52(5):2314–2320

    Article  Google Scholar 

  958. Castillo AM, Sánchez-Díaz RA, Valles MP (2015) Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00402

  959. Lazaridou T, Pankou C, Xynias I, Roupakias D (2016) Effect of D genome in wheat anther culture response after cold and mannitol pretreatment. Acta Biol Cracov Ser Bot 58(1):95–102. https://doi.org/10.1515/abcsb-2016-0006

    Article  CAS  Google Scholar 

  960. Kim K-M, Baenziger PS (2005) A simple wheat haploid and doubled haploid production system using anther culture. In Vitro Cell Dev Biol Plant 41(1):22–27. https://doi.org/10.1079/ivp2004594

    Article  Google Scholar 

  961. Daniel G, Baumann A, Schmucker S (2005) Production of wheat doubled haploids (Triticum aestivum L.) by wheat × maize crosses using colchicine enriched medium for embryo regeneration. Cereal Res Commun 33(2):461–468. https://doi.org/10.1556/crc.33.2005.2-3.107

    Article  Google Scholar 

  962. Gaines EF, Aase HC (1926) A haploid wheat plant. Am J Bot 13(6):373–385. https://doi.org/10.2307/2435439

    Article  Google Scholar 

  963. Tan B, Halloran G (1982) Pollen dimorphism and the frequency of inductive anthers in anther culture of Triticum monococcum. Biochem Physiol Pflanz 177(2):197–202

    Article  Google Scholar 

  964. Katayama Y (1934) Haploid formation by X-rays in Triticum monococcum. Cytologia 5(2):235–237

    Article  Google Scholar 

  965. Lantos C, Bóna L, Nagy É, Békés F, Pauk J (2018) Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell Tissue Organ Cult 133(3):385–393. https://doi.org/10.1007/s11240-018-1391-z

    Article  CAS  Google Scholar 

  966. Lantos C, Jenes B, Bona L, Cserhati M, Pauk J (2016) High frequency of Double Haploid plant reproduction in spelt wheat. Acta Biol Cracov Ser Bot 58(2):107–112. https://doi.org/10.1515/abcsb-2016-0014

    Article  Google Scholar 

  967. Castillo AM, Allue S, Costar A, Alvaro F, Valles MP (2019) Doubled haploid production from Spanish and Central European spelt by anther culture. J Agric Sci Technol 21(5):1313–1324

    Google Scholar 

  968. Cistué L, Soriano M, Castillo AM, Valles MP, Sanz JM, Echavarri B (2006) Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 25(4):257–264

    Article  PubMed  CAS  Google Scholar 

  969. Mahato A, Chaudhary HK (2019) Auxin induced haploid induction in wide crosses of durum wheat. Cereal Res Commun 47(3):552–565. https://doi.org/10.1556/0806.47.2019.31

    Article  CAS  Google Scholar 

  970. Slama-Ayed O, Slim-Amara H (2007) Production of doubled haploids in durum wheat (Triticum durum Desf.) through culture of unpollinated ovaries. Plant Cell Tissue Organ Cult 91(2):125–133

    Article  Google Scholar 

  971. Labbani Z, Richard N, De Buyser J, Picard E (2005) Plantes chlorophylliennes de blé dur obtenues par culture de microspores isolées: importance des prétraitements. C R Biol 328(8):713–723. https://doi.org/10.1016/j.crvi.2005.05.009

    Article  PubMed  Google Scholar 

  972. Fedak G (1983) Haploids in Triticum ventricosum via intergeneric hybridization with Hordeum bulbosum. Can J Genet Cytol 25(2):104–106

    Article  Google Scholar 

  973. Barcelo P, Cabrera A, Hagel C, Lörz H (1994) Production of doubled haploid plants from Tritordeum anther culture. Theor Appl Genet 87(6):741–745

    Article  CAS  PubMed  Google Scholar 

  974. Van den Bulk R, De Vries-Van Hulten H, Custers J, Dons J (1994) Induction of embryogenesis in isolated microspores of tulip. Plant Sci 104(1):101–111

    Article  Google Scholar 

  975. Custers J, Ennik E, Eikelboom W, Dons J, van Lookeren Campagne M (1996) Embryogenesis from isolated microspores of tulip; towards developing F1 hybrid varieties. VII international symposium on flowerbulbs 430:259–266

    Google Scholar 

  976. Redenbaugh MK, Westfall RD, Karnosky DF (1981) Dihaploid callus production from Ulmus americana anthers. Bot Gaz 142(1):19–26. https://doi.org/10.1086/337191

    Article  Google Scholar 

  977. Smagula J, Lyrene P (1984) Blueberry. Handbook of plant cell. Culture 3:383–401

    Google Scholar 

  978. Chong-Perez B, Carrasco B, Silva H, Herrera F, Quiroz K, Garcia-Gonzales R (2018) Regeneration of highland papaya (Vasconcellea pubescens) from anther culture. Appl Plant Sci 6(9). https://doi.org/10.1002/aps3.1182

  979. Hesemann C (1980) Haploid cells in calli from anther culture of Vicia faba [broad bean]. Zeitschr Pflanzen 84:18–27

    Google Scholar 

  980. Gosal S, Bajaj YS (1988) Pollen embryogenesis and chromosomal variation in anther of three food legumes – Cicer arietinumPisum sativum and Vigna mungo. SABRAO J 20:51–58

    Google Scholar 

  981. Arya I, Chandra N (1989) Organogenesis in anther-derived callus culture of cowpea [Vigna unguiculata (l.) Walp]. Curr Sci 58(5):257–259

    Google Scholar 

  982. Wijowska M, Kuta E, Przywara L (1999) In vitro culture of unfertilized ovules of Viola odorata L. Acta Biol Cracov Ser Bot 41:95–101

    Google Scholar 

  983. Salunkhe C, Rao P, Mhatre M (1999) Plantlet regeneration via somatic embryogenesis in anther callus of Vitis latifolia L. Plant Cell Rep 18(7–8):670–673

    Article  CAS  Google Scholar 

  984. Mozsar J, Süle S (1994) A rapid method for somatic embryogenesis and plant regeneration from cultured anthers of Vitis riparia. Vitis 33(4):245–246

    Google Scholar 

  985. Altamura M, Cersosimo A, Majoli C, Crespan M (1992) Histological study of embryogenesis and organogenesis from anthers of Vitis rupestris du Lot cultured in vitro. Protoplasma 171(3–4):134–141

    Article  Google Scholar 

  986. Mauro MC, Nef C, Fallot J (1986) Stimulation of somatic embryogenesis and plant regeneration from anther culture of Vitis vinifera cv. Cabernet-Sauvignon. Plant Cell Rep 5(5):377–380

    Article  Google Scholar 

  987. Emershad RL, Ramming DW, Serpe MD (1989) In ovulo embryo development and plant formation from stenospermic genotypes of Vitis vinifera. Am J Bot 76(3):397–402

    Article  Google Scholar 

  988. Cersosimo A, Crespan M, Paludetti G, Altamura M (1989) Embryogenesis, organogenesis and plant regeneration from anther culture in Vitis. I International symposium on in vitro culture and horticultural breeding 280:307–314

    Google Scholar 

  989. Gresshoff PM, Doy CH (1974) Derivation of a haploid cell line from Vitis vinifera and importance of stage of meiotic development of anthers for haploid culture of this and other genera. Z Pflanzenphysiol 73(2):132–141

    Article  Google Scholar 

  990. Bensaad Z, Hennerty M, Roche T (1996) Effects of cold pretreatment, carbohydrate source and gelling agents on somatic embryogenesis from anthers of Vitis vinifera L. cvs. ‘Regina’ and ‘Reichensteiner’. International symposium on plant production in closed ecosystems 440:504–509

    Google Scholar 

  991. Zhang X, Wu Q, Li X, Zheng S, Wang S, Guo L, Zhang L, Custers JB (2011) Haploid plant production in Zantedeschia aethiopica ‘Hong Gan’ using anther culture. Sci Hortic 129(2):335–342

    Article  Google Scholar 

  992. Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7(414). https://doi.org/10.3389/fpls.2016.00414

  993. Molenaar WS, de Oliveira Couto EG, Piepho H-P, Melchinger AE (2019) Early diagnosis of ploidy status in doubled haploid production of maize by stomata length and flow cytometry measurements. Plant Breed 138(3):266–276. https://doi.org/10.1111/pbr.12694

    Article  Google Scholar 

  994. Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132(12):3227–3243. https://doi.org/10.1007/s00122-019-03433-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  995. Molenaar WS, Schipprack W, Melchinger AE (2018) Nitrous oxide-induced chromosome doubling of maize haploids. Crop Sci 58:650–659

    Article  CAS  Google Scholar 

  996. Hu H, Schrag TA, Peis R, Unterseer S, Schipprack W, Chen S, Lai J, Yan J, Prasanna BM, Nair SK, Chaikam V, Rotarenco V, Shatskaya OA, Zavalishina A, Scholten S, Schön C-C, Melchinger AE (2016) The genetic basis of haploid induction in maize identified with a novel genome-wide association method. Genetics 202(4):1267–1276. https://doi.org/10.1534/genetics.115.184234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  997. Liu Z, Wang Y, Ren J, Mei M, Frei UK, Trampe B, Lübberstedt T (2016) Maize doubled haploids. In: Janick J (ed) Plant breeding reviews, vol 40. John Wiley & Sons, Hoboken, NJ, pp 123–166

    Chapter  Google Scholar 

  998. Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54(4):485–499

    Google Scholar 

  999. Prigge V, Xu X, Li L, Babu R, Chen S, Atlin GN, Melchinger AE (2012) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190(2):781–793. https://doi.org/10.1534/genetics.111.133066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1000. Prigge V, Melchinger AE (2012) Production of haploids and doubled haploids in maize. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, vol 877. Methods in molecular biology. Humana, New York, NY, pp 161–172. https://doi.org/10.1007/978-1-61779-818-4_13

    Chapter  Google Scholar 

  1001. Nageli M, Schmid JE, Stamp P, Buter B (1999) Improved formation of regenerable callus in isolated microspore culture of maize: impact of carbohydrates, plating density and time of transfer. Plant Cell Rep 19(2):177–184

    Article  CAS  PubMed  Google Scholar 

  1002. Kermicle JL (1974) Origin of androgenetic haploids and diploids induced by the indeterminate gametophyte (ig) mutation in maize. In: Kasha KJ (ed) Haploids in higher plants: advances and potential. University of Guelph, Guelph, ON, p 137

    Google Scholar 

  1003. Barnabas B, Obert B, Kovacs G (1999) Colchicine, an efficient genome-doubling agent for maize (Zea mays L.) microspores cultured in anthero. Plant Cell Rep 18(10):858–862

    Article  CAS  Google Scholar 

  1004. Gilles LM, Khaled A, Laffaire J-B, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J-P, Rogowsky PM, Widiez T (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36(6):707–717. https://doi.org/10.15252/embj.201796603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1005. Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(7639):105–109. https://doi.org/10.1038/nature20827

    Article  CAS  PubMed  Google Scholar 

  1006. Belicuas PR, Guimaraes CT, Paiva LV, Duarte JM, Maluf WR, Paiva E (2007) Androgenetic haploids and SSR markers as tools for the development of tropical maize hybrids. Euphytica 156(1–2):95–102. https://doi.org/10.1007/s10681-007-9356-z

    Article  CAS  Google Scholar 

  1007. Brettel R, Thomas E, Wernicke W (1981) Production of haploid maize plants by anther culture. Maydica 26:101–111

    Google Scholar 

  1008. Tang F, Tao Y, Zhao T, Wang G (2006) In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant Cell Tissue Organ Cult 84(2):233–237

    Article  Google Scholar 

  1009. Battistelli G, Von Pinho R, Justus A, Couto E, Balestre M (2013) Production and identification of doubled haploids in tropical maize. Genet Mol Res 12(4):4230–4242

    Article  CAS  PubMed  Google Scholar 

  1010. Wu P, Ren J, Li L, Chen S (2014) Early spontaneous diploidization of maternal maize haploids generated by in vivo haploid induction. Euphytica 200:127–138

    Article  Google Scholar 

  1011. Nair SK, Chaikam V, Gowda M, Hindu V, Melchinger AE, Boddupalli PM (2020) Genetic dissection of maternal influence on in vivo haploid induction in maize. Crop J 8(2):287–298. https://doi.org/10.1016/j.cj.2019.09.0082214-5141

    Article  Google Scholar 

  1012. Zhong Y, Liu CX, Qi XL, Jiao YY, Wang D, Wang YW, Liu ZK, Chen C, Chen BJ, Tian XL, Li JL, Chen M, Dong X, Xu XW, Li L, Li W, Liu WX, Jin WW, Lai JS, Chen SJ (2019) Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5(6):575–580. https://doi.org/10.1038/s41477-019-0443-7

    Article  PubMed  Google Scholar 

  1013. Liu LW, Li W, Liu CX, Chen BJ, Tian XL, Chen C, Li JL, Chen SJ (2018) In vivo haploid induction leads to increased frequency of twin-embryo and abnormal fertilization in maize. BMC Plant Biol 18. https://doi.org/10.1186/s12870-018-1422-2

  1014. Khakwani K, Ahsan M, Sadaqat HA, Ahmad R (2018) Development and genetics of maize doubled haploid lines. Maydica 63(3):1–15

    Google Scholar 

  1015. Obert B, Barnabás B (2004) Colchicine induced embryogenesis in maize. Plant Cell Tissue Organ Cult 77(3):283–285. https://doi.org/10.1023/b:ticu.0000018399.60106.33

    Article  CAS  Google Scholar 

  1016. Ribeiro CB, Pereira FC, Ld NF, Rezende BA, Dias KOG, Braz GT, Ruy MC, Silva MB, Cenzi G, Techio VH (2018) Haploid identification using tropicalized haploid inducer progenies in maize. Crop Breed Appl Biotechnol 18(1):16–23

    Article  CAS  Google Scholar 

  1017. Wang BB, Zhu L, Zhao BB, Zhao YP, Xie YR, Zheng ZG, Li YY, Sun J, Wang HY (2019) Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol Plant 12(4):597–602. https://doi.org/10.1016/j.molp.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  1018. Tian X, Qin Y, Chen B, Liu C, Wang L, Li X, Dong X, Liu L, Chen S (2018) Hetero-fertilization along with failed egg-sperm cell fusion supports single fertilization involved in in vivo haploid induction in maize. J Exp Bot 69:4689–4701. https://doi.org/10.1093/jxb/ery177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  1019. Chase SS (1969) Monoploids and monoploid – derivatives of maize (Zea mays L.). Bot Rev 35:117–167

    Article  Google Scholar 

  1020. Chase SS (1963) Androgenesis – its use for transfer of maize cytoplasm. J Hered 54(4):152–158

    Article  Google Scholar 

  1021. Samsudeen K, Babu KN, Divakaran M, Ravindran P (2000) Plant regeneration from anther derived callus cultures of ginger (Zingiber officinale Rosc.). J Hortic Sci Biotechnol 75(4):447–450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants AGL2017-88135-R and PID2020-115763RB-I00 to JMSS from Spanish MICINN jointly funded by FEDER. R.M. is a recipient of a contract of the CDIGENT program of the Valencian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Seguí-Simarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seguí-Simarro, J.M., Moreno, J.B., Fernández, M.G., Mir, R. (2021). Species with Haploid or Doubled Haploid Protocols. In: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2287. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1315-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1315-3_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1314-6

  • Online ISBN: 978-1-0716-1315-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics