Skip to main content
Log in

Gynogenesis Induction in Sugar Beet (Beta vulgaris) Improved by 6-Benzylaminopurine (BAP) and Synergized with Cold Pretreatment

  • Research article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

For sugar beet (Beta vulgaris) breeding, producing homozygous lines through haploid and doubled haploid techniques are preferred over conventional and time-consuming methods. Doubled haploid sugar beet production necessitates inducing ovules to develop into haploid plants, referred to as gynogenesis. The protocol involves an interaction between cold pretreatment of six genotypes of sugar beet inflorescences at 4 °C for 1 week or more and 6-benzylaminopurine (BAP) concentrations (1 or 2 mg L−1) to increase the response rate of haploid embryo induction. Compared with freshly cultured ovules (6.49%), cold pretreatment for 1 week almost doubled the mean of haploid plantlet induction rate (11.3%), whereas pretreatment for more than 1 week was not as effective as the control. Addition of 2 mg L−1 BAP to the culture medium nearly doubled the induction rate of the cultured ovules (10.75%), followed by 1 mg L−1 BAP (7.78%) in comparison with hormone-free medium (5.69%). The highest gynogenesis rate (37.8%) was achieved when ovules were cultured on medium containing 2 mg L−1 BAP following 1-week cold pretreatment. This combination approximately tripled the mean total haploid embryo induction rate of all the genotypes to 16.3% in comparison with the control (5.74%). However, the addition of BAP resulted in vitrification proportionately. As a result, 2 mg L−1 BAP decreased the normal plantlet emergence (NPE) to one-third (7.59%) while 1 mg L−1 BAP had a moderate effect (NPE: 18.98%) in comparison with hormone-free treatment (NPE: 24.35%). The results indicate that the combination of cold pretreatment and BAP is very effective in inducing haploid plants from recalcitrant genotypes of sugar beet, but BAP can have both advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barański, R. 1996. In vitro gynogenesis in red beet (Beta vulgaris L.): Effects of ovule culture conditions. Acta Societatis Botanicorum Poloniae 65: 57–60. doi:10.5586/asbp.1996.010.

    Article  Google Scholar 

  • Bossoutrot, D., and D. Hosemans. 1985. Gynogenesis in Beta vulgaris L.: From in vitro culture of unpollinated ovules to the production of doubled haploid plants in soil. Plant Cell Reports 4: 300–303. doi:10.1007/BF00269883.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J.F., L. Cui, A.A. Malik, and K.G. Mbira. 2011. In vitro haploid and dihaploid production via unfertilized ovule culture. Plant Cell Tissue and Organ Culture (PCTOC) 104: 311–319. doi:10.1007/s11240-010-9874-6.

    Article  Google Scholar 

  • D’Halluin, K., and B. Keimer. 1986. Production of haploid sugarbeets (Beta vulgaris L.) by ovule culture. In Genetic manipulation in plant breeding, ed. W. Horn, C.J. Jensen, W. Odenbach, and O. Schieder, 307–309. Berlin: de Gruyter.

    Google Scholar 

  • Doctrinal, M., R.S. Sangwan, and B.S. Sangwan-Norreel. 1989. In vitro gynogenesis in Beta vulgaris L.: Effects of plant growth regulators, temperature, genotypes and season. Plant Cell, Tissue and Organ Culture 17: 1–2. doi:10.1007/BF00042276.

    Google Scholar 

  • Eshaghi, Z.C., M.R. Abdollahi, S.S. Moosavi, A. Deljou, and J.M. Seguí-Simarro. 2015. Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell Tissue and Organ Culture (PCTOC) 122: 321–329. doi:10.1007/s11240-015-0768-5.

    Article  CAS  Google Scholar 

  • Eujayl, I., C. Strausbaugh, and C. Lu. 2016. Registration of sugarbeet doubled haploid line KDH13 with resistance to beet curly top. Journal of Plant Registrations 10 (1): 93–96. doi:10.3198/jpr2015.09.0055crgs.

    Article  Google Scholar 

  • Galatowitsch, M.W., and G.A. Smith. 1990. Regeneration from unfertilized ovule callus of sugarbeet (Beta vulgaris L.). Canadian Journal of Plant Science 70: 83–89. doi:10.4141/cjps90-010.

    Article  Google Scholar 

  • Gürel, E. 1997. Callus and root development from leaf explants of sugar beet (Beta vulgaris L.): Variability at variety, plant and organ level. Turkish Journal of Botany 21: 131–136.

    Google Scholar 

  • Gürel, E., and S. Gürel. 1998. Plant regeneration from unfertilized ovaries of sugar beet (Beta vulgaris L.) cultured in vitro. Turkish Journal of Botany 22: 233–238.

    Google Scholar 

  • Gürel, S., and E. Gürel. 2013. In vitro regeneration of sugar beet (Beta vulgaris L.). In Bulbous plants: Biotechnology, ed. K.G. Ramawat, and J.M. Merillon, 113–151. Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Gürel, S., E. Gürel, and Z. Kaya. 2000. Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Plant Cell Reports 19: 1155–1159. doi:10.1007/s002990000248.

    Article  Google Scholar 

  • Gürel, S., E. Gürel, and Z. Kaya. 2001. Callus development and indirect shoot regeneration from seedling explants of sugar beet (Beta vulgaris L.) cultured in vitro. Turkish Journal of Botany 25: 25–33.

    Google Scholar 

  • Gürel, E., and M.J. Wren. 1995a. In vitro development from leaf explants of sugar beet (Beta vulgaris L). Rhizogenesis and the effect of sequential exposure to auxin and cytokinin. Annals of Botany 75: 31–38. doi:10.1016/S0305-7364(05)80006-X.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gürel, E., and M.J. Wren. 1995b. Measuring polyphenol oxidase activity in small leaf discs of sugar beet (Beta vulgaris L.). Turkish Journal of Botany 19: 497–502.

    Google Scholar 

  • Gürel, S., E. Gürel, Z. Kaya, M. Erdal, and E. Güler. 2003a. Effects of antimitotic agents on haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Biotechnology and Biotechnological Equipment 17: 97–101. doi:10.1080/13102818.2003.10817065.

    Article  Google Scholar 

  • Gürel, E., E. Topal, and S. Gürel. 2003b. The effect of pretreating seedlings with BAP on direct shoot regeneration from petiole explants of sugar beet (Beta vulgaris L.). Biotechnology and Biotechnological Equipment 17: 89–96. doi:10.1080/13102818.2003.10817064.

    Article  Google Scholar 

  • Gürel, E., S. Gürel, and P.G. Lemaux. 2008. Biotechnology applications for sugar beet. Critical Reviews in Plant Sciences 27: 108–140. doi:10.1080/07352680802202000.

    Article  Google Scholar 

  • Hansen, A.L., A. Gertz, M. Joersbo, and S.B. Andersen. 1995. Short-duration colchicine treatment for in vitro chromosome doubling during ovule culture of Beta vulgaris L. Plant Breeding 114: 515–519. doi:10.1111/j.1439-0523.1995.tb00847.x.

    Article  CAS  Google Scholar 

  • Hansen, A.L., A. Gertz, M. Joersbo, and S.B. Andersen. 1998. Antimicrotubule herbicides for in vitro chromosome doubling in Beta vulgaris L. ovule culture. Euphytica 101: 231–237. doi:10.1023/A:1018380103304.

    Article  CAS  Google Scholar 

  • Hansen, A.L., A. Gertz, M. Joersbo, and S.B. Andersen. 2000. Chromosome doubling in vitro with amiprophos-methyl in Beta vulgaris ovule culture. Acta Agriculturae Scandinavica, Section B-Plant Soil Science 50: 89–95. doi:10.1080/09064710050505035.

    CAS  Google Scholar 

  • Hansen, A.L., C. Plever, H.C. Pedersen, B. Keimer, and S.B. Andersen. 1994. Efficient in vitro chromosome doubling during Beta vulgaris ovule culture. Plant Breeding 112: 89–95. doi:10.1111/j.1439-0523.1994.tb00655.x.

    Article  Google Scholar 

  • Larsen, K. 1977. Self-incompatibility in Beta vulgaris L. Hereditas 85: 227–248. doi:10.1111/j.1601-5223.1977.tb00971.x.

    Article  Google Scholar 

  • Levan, A. 1945. A haploid sugar beet after colchicine treatment. Hereditas 31: 399–410. doi:10.1111/j.1601-5223.1945.tb02760.x.

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewska, E., R. Virden, and E. Sliwinska. 2012. Hormonal control of endoreduplication in sugar beet (Beta vulgaris L.) seedlings growing in vitro. Plant Biology 14: 216–222. doi:10.1111/j.1438-8677.2011.00477.x.

    CAS  PubMed  Google Scholar 

  • Lux, H., L. Herrman, and C. Wetzel. 1990. Production of haploid sugar beet (Beta vulgaris L.) by culturing unpollinated ovules. Plant Breeding 104: 177–183. doi:10.1111/j.1439-0523.1990.tb00420.x.

    Article  Google Scholar 

  • Montalbán, I.A., O. García-Mendiguren, T. Goicoa, M.D. Ugarte, and P. Moncaleán. 2015. Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiata. New Forests 46: 309–317. doi:10.1007/s11056-014-9457-1.

    Article  Google Scholar 

  • Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Pedersen, H.C., and B. Keimer. 1996. Haploidy in sugar beet (Beta vulgaris L). In In vitro haploid production in higher plants, important selected plants, ed. S.M. Jain, S.K. Sopory, and R.E. Veilleux, 17–36. Dordrecht: Kluwer Academic Publishers. doi:10.1007/978-94-017-1858-5_2.

    Chapter  Google Scholar 

  • Szovenyi, P., N. Devos, D.J. Weston, X. Yang, Z. Hock, J.A. Shaw, K.K. Shimizu, S.F. McDaniel, and A. Wagner. 2014. Efficient purging of deleterious mutations in plants with haploid selfing. Genome Biology and Evolution 6: 1238–1252. doi:10.1093/gbe/evu099.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas, T.D. 2008. The role of activated charcoal in plant tissue culture. Biotechnology Advances 26: 618–631. doi:10.1016/j.biotechadv.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  • Tomaszewska-Sowa, M. 2012. Effect of growth regulators and other components of culture medium on morphogenesis of sugar beet (Beta vulgaris L.) in unfertilised ovule in vitro cultures. Acta Agrobotanica 65: 91–100. doi:10.5586/aa.2012.025.

    Article  Google Scholar 

  • Van Geyt, J., G.J. Speckmann Jr., K. D’halluin, and M. Jacobs. 1987. In vitro induction of haploid plants from unpollinated ovules and ovaries of the sugarbeet (Beta vulgaris L.). Theoretical and Applied Genetics 73: 920–925. doi:10.1007/BF00289399.

    Article  PubMed  Google Scholar 

  • Weich, E.W., and M.W. Levall. 2003. Doubled haploid production of sugar beet (Beta vulgaris L.). In Doubled haploid production in crop plants, ed. M. Maluszynski, K.J. Kasha, B.P. Forster, and I. Szarejko, 255–263. Berlin: Springer. doi:10.1007/978-94-017-1293-4_38.

    Chapter  Google Scholar 

  • Yang, H.Y., and C. Zhou. 1982. In vitro induction of haploid plants from unpollinated ovaries and ovules. Theoretical and Applied Genetics 63: 97–104. doi:10.1007/BF00303687.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from TUBITAK (The Scientific and Technological Research Council of Turkey, Project No: TOVAG-113O095) is deeply appreciated. Also, the authors AP and FA are grateful for the scholarships they were provided with via the same project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songül Gürel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazuki, A., Aflaki, F., Gürel, E. et al. Gynogenesis Induction in Sugar Beet (Beta vulgaris) Improved by 6-Benzylaminopurine (BAP) and Synergized with Cold Pretreatment. Sugar Tech 20, 69–77 (2018). https://doi.org/10.1007/s12355-017-0522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-017-0522-x

Keywords

Navigation