Skip to main content
Log in

Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Isolated microspore cultures of two spring triticale (x Triticosecale Wittm.) cultivars were used to examine the effect of various stress treatments (either high—32°C or low—5°C temperature with or without nitrogen/carbohydrate starvation) applied to excised anthers on the effectiveness of microspore embryogenesis induction. To quantify the effects of pretreatment conditions, the activity of antioxidative enzymes (catalase, peroxidase and superoxide dismutase) together with respiration rate and heat emission were measured. It was observed that heat shock treatment applied as the only one stress factor increased the activity of antioxidative enzymes which suggests intensive generation of reactive oxygen species. Such pretreatment effectively triggered microspore reprogramming but drastically decreased microspore viability. After low temperature treatment, the activity of antioxidative enzymes was similar to the control subjected only with the stress originated from the transfer to in vitro culture conditions. This pretreatment decreased the number of microspores entering embryogenesis but sustained cell viability and this effect prevailed in the final estimation of microspore embryogenesis effectiveness. For both, low- and high-temperature treatments, interaction with starvation stress was beneficial increasing microspore viability (at 5°C) or efficiency of embryogenesis induction (at 32°C). The latter treatment significantly reduced cell metabolic activity. Physiological background of these effects seems to be different and some hypothetical explanations have been discussed. Received data indicate that in triticale, anther preculture conditions could generate oxidative stress and change the cell metabolic activity which could next be reflected in the cell viability and the efficiency of microspore embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CAT:

Catalase

DH:

Doubled haploids

DW:

Dry weight

EDTA:

Ethylenediaminetetraacetic acid

ELS:

Embryo-like structures

H2O2 :

Hydrogen peroxide

KP:

Potassium phosphate buffer

NAA:

α-Naphthaleneacetic acid

PAR:

Photosynthetic active radiation

PEX:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:12–121

    Google Scholar 

  • Agache S, Bachelier B, De Buyser J, Henry Y, Snape J (1989) Genetic analysis of anther culture response in wheat using aneuploid, chromosome substitution and translocation lines. Theory Appl Genet 77:7–11

    Article  Google Scholar 

  • Barnabás B, Szakács É, Karsai I, Bedö Z (2001) In vitro andrognesis of wheat: from fundamentals to practical application. Euphytica 119:211–216

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt V (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantisation of microprogram quantitates of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Castillo AM, Vallés MP, Cistué L (2000) Comparison of anther and isolated microspore cultures in barley. Effects of culture density and regeneration medium. Euphytica 113:1–8

    Article  CAS  Google Scholar 

  • Charmet G, Bernard S (1984) Diallel analysis of androgenic plant production in hexaploid triticale (× Triticosecale Wittm.). Theory Appl Genet 69:55–61

    Google Scholar 

  • Chen X-W, Cistué L, Muñoz-Amatraín M, Sanz M, Romagosa I, Castillo A-M, Valléz M-P (2007) Genetic markers for doubled haploid response in barley. Euphytica 158:287–294. doi:10.1007/s10681-006-9310-5

    Article  CAS  Google Scholar 

  • Criddle RS, Breidenbach RW, Rank DR, Hopkin MS, Hansen LD (1990) Simultaneous calorimetric and respirometric measurements on plant tissue. Thermochim Acta 172:213–221

    Article  CAS  Google Scholar 

  • Criddle RS, Fontana AJ, Rank DR, Paige D, Hansen LD, Breidenbach RW (1991) Simultaneous measurements of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Anal Biochem 194:413–417

    Article  PubMed  CAS  Google Scholar 

  • Cui K, Xing G, Liu X, Xing G, Wang Y (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Ekiz H, Konzak CF (1994) Preliminary diallel analysis of anther culture response in wheat (Triticum aestivum L.). Plant Breed 113:47–52

    Article  Google Scholar 

  • Eudes F, Amudsen E (2005) Isolated microspore cultures of Canadian 6× triticale cultivars. Plant Cell Tiss Org Cult 82:233–241. doi:10.1007/s11240-005-0867-9

    Article  CAS  Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12(8):368–375

    Article  PubMed  CAS  Google Scholar 

  • Gaillard A, Vergne P, Beckert M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10:55–58

    Article  Google Scholar 

  • Gorbunova VJ, Kruglova NN, Abramov SN (2001) The induction of androgenesis in vitro in spring soft wheat. Balance of exogenus and endogenous phytohormones. Biol Bull 28(1):25–30

    Article  CAS  Google Scholar 

  • Hoekstra S, van Ziijderveld MH, Heidekamp F, van der Mark F (1993) Microspore culture of Hordeum vulgare L.: the influence of density and osmolality. Plant Cell Rep 12:661–665

    Article  Google Scholar 

  • Hosp J, Maraschin SF, Touraev A, Boutilier K (2007) Functional genomics of microspore embryogenesis. Euphytica 158:275–285. doi:10.1007/s10681-006-9238-9

    Article  Google Scholar 

  • Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Baillieul F, Clément C (2006) Plant defence mechanisms are triggered in the anther during the pre-treatment process. In: The international conference ‘Haploids in Higher Plants III’ Vienna, 12–15 February 2006, Book of Abstracts, pp 29

  • Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutilier K, Baillieul F, Clément C (2009) Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta 229(2):393–402

    Article  PubMed  CAS  Google Scholar 

  • Journet E, Bligny R, Douce R (1986) Biochemical changes during sucrose deprivation in higher plant cells. J Biol Chem 261:3193–3199

    PubMed  CAS  Google Scholar 

  • Kim Y-H, Kim Y, Cho E, Kwak S, Kwon S, Bae J, Lee B, Meen B, Huh G-H (2004) Alternations in intracellular and extracellular activities of antioxidant enzymes during suspension culture of sweet potato. Phytochemistry 65:2471–2476. doi:10.1016/j.phytochem.2004.08.001

    Article  PubMed  CAS  Google Scholar 

  • Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432

    Article  CAS  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477. doi:10.1016/S1534-5807(04)00099-1

    Article  PubMed  CAS  Google Scholar 

  • Lück H (1962) Katalase, Peroxydase, Reduktasen, Saccharase, Xanthinoxydase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim/Bergstraße, pp 895–897

    Google Scholar 

  • Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferrie AMR, Krochko JE (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154. doi:10.1104/pp.106.092932

    Article  PubMed  CAS  Google Scholar 

  • Maraschin SDF, Caspers M, Potokina E, Wülfert F, Graner A, Spaink HP, Wang M (2006) DNA array analysis of stress-induced gene expression in barley androgenesis. Physiol Plant 127(4):535–550

    Article  CAS  Google Scholar 

  • Maskow T, Lerchner J, Peitzsch M, Harms H, Wolf G (2006) Chip calorimetry for the monitoring of whole cell biotransformation. J Biotechnol 122:431–442. doi:10.1016/j.jbiotec.2005.10.008

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410. S1360-1385(02)02312-9

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. doi:10.1016/j.tplants.2004.08.009

    Article  PubMed  CAS  Google Scholar 

  • Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111:1233–1241

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002a) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53(372):1237–1247. doi:10.1093/jexbot/53.372.1237

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002b) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395 S1369-5266(02)00282-0

    Article  PubMed  CAS  Google Scholar 

  • Oleszczuk S, Sowa S, Zimny J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (x Triticosecale Wittmack) cv. Bogo Plant Cell Rep 22:885–893. doi:10.1007/s00299-004-0796-9

    CAS  Google Scholar 

  • Pauk J, Puolimatka M, Tóth KL, Monostori T (2000) In vitro androgenesis of triticale in isolated microspore culture. Plant Cell Tissue Organ Cult 61:221–229

    Article  CAS  Google Scholar 

  • Ryőppy PH (1996) Haploidy in triticale. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 4. Kluwer, Dordrecht, pp 117–131

    Google Scholar 

  • Schumann G (1990) In vitro production of haploids in triticale. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13, Wheat. Springer, Berlin, pp 383–402

    Google Scholar 

  • Stokłosa A, Janeczko A, Skoczowski A, Kieć J (2006) Isothermal calorimetry as a tool for estimating resistance of wild oat (Avena fatua L) to aryloxyphenoxypropionate herbicides. Thermochim Acta 441:203–206. doi:10.1016/j.tca.2005.09.009

    Article  Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2(8):297–302

    Article  Google Scholar 

  • Touraev A, Tashpulatov A, Indrianto A, Barinova J, Katholnigg H, Akimcheva S, Ribarits A, Voronin V, Zhexsembekova M, Heberle-Bors E (2000) Fundamental aspects of microspore embryogenesis. In: Proceedings of the COST Action 824, ‘Biotechnological approaches for utilisation of gametic cells’ Bled, 1–5 July 2000, pp 205–214

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53(372):1227–1236. doi:10.1093/jexbot/53.372.1227

    Article  PubMed  Google Scholar 

  • Zhuang JJ, Xu J (1983) Increasing differentiation frequencies in wheat pollen callus. In: Hu H, Vega MR (eds) Cell and tissue culture techniques for cereal crop improvement. Science Press, Beijing, p 431

    Google Scholar 

  • Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Janowiak F, Wędzony M (2008) Factors important for effective androgenesis induction in isolated microspore culture of triticale (× Triticosecale Wittm.). Plant Cell Tissue Organ Cult 94(3):319–328. doi:10.1007/s11240-008-9360-6

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the project KBN23/E189/SPB/COST/P06/Dz585/2002-2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Żur.

Additional information

Communicated by E. Guiderdoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Żur, I., Dubas, E., Golemiec, E. et al. Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x Triticosecale Wittm.). Plant Cell Rep 28, 1279–1287 (2009). https://doi.org/10.1007/s00299-009-0730-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0730-2

Keywords

Navigation