Skip to main content

Genes and Quantitative Trait Loci Mapping for Major Agronomic Traits in Brassica napus L.

  • Chapter
  • First Online:
The Brassica napus Genome

Abstract

The advent of high-throughput genomic technologies and the availability of a reference genome sequence of Brassica napus and its diploid parental species, B. rapa and B. oleracea, open new insights into the genomic localization of agronomic trait-associated quantitative trait loci (QTL), the identification of underlying genes and their sequence variation. Over the last 20 years, many genetic maps of B. napus have been built, progressively integrating various types of markers. Large single-nucleotide polymorphism (SNP) arrays allowed the construction and integration of high density maps and their anchorage to the B. napus sequence. Increasingly, precise genetic analyses of agronomic traits could thus be carried out, either through linkage analysis or through genome-wide association mapping. Comparative genomics allowed the genomic localization of the genes and QTL controlling agronomic traits, as well as an assessment of the impact that the high level of duplications present in this polyploid species has on the genetic architecture of the traits and on the structural and functional diversity of the genes involved. This chapter reviews the evolution of B. napus genetic and genomic resources and their use in gene and QTL mapping for several major traits and then shows how the availability of the B. napus genome sequence allows more accurate investigation of the genomic regions and underlying genes involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amar S, Ecke W, Becker HC, Moellers C (2008) QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes. Theor Appl Genet 116:1051–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ArifUzZaman M, Mamidi S, McClean P, Rahman M (2017) QTL mapping for root vigor and days to flowering in Brassica napus L. Can J Plant Sci 97:99–109

    CAS  Google Scholar 

  • Asghari A, Mohammadi SA, Moghaddam M, Mohammaddust H (2007) Identification of QTLs controlling winter survival in Brassica napus using RAPD markers. Biotech Biotech Equip 21:413–416

    Article  CAS  Google Scholar 

  • Asghari A, Mohammadi SA, Moghaddam M, Toorchi M, Mohammadinasa AD (2008) Analysis of quantitative trait loci associated with freezing tolerance in rapeseed (Brassica napus L.). Biotech Biotech Equip 22:548–552

    Article  CAS  Google Scholar 

  • Asghari A, Asghar Fathi A, Mohammadi SA, Mohammaddust H (2009) QTL analysis for diamondback moth resistance in canola (Brassica napus L.). Int J Plant Prod 3:29–34

    CAS  Google Scholar 

  • Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, De Haro A, Font R, Luehs W, Friedt W (2006) Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chèvre AM, Leflon M, Rouxel T (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol 198:887–898

    Article  CAS  PubMed  Google Scholar 

  • Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker D, Long Y, Meng J, Wang X, Liu S, Trick M (2011) Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotech 29:762–768

    Article  CAS  Google Scholar 

  • Bancroft I, Fraser F, Morgan C, Trick M (2015) Collinearity analysis of Brassica A and C genomes based on an updated inferred unigene order. Data in Brief 3:51–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargsten JW, Nap JP, Sanchez-Perez GF, van Dijk ADJ (2014) Prioritization of candidate genes in QTL regions based on associations between traits and biological processes. BMC Plant Biol 14:330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe TJ (1998) A rapeseed FAEI gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor Appl Genet 96:177–186

    Article  CAS  Google Scholar 

  • Barret P, Delourme R, Brunel D, Jourdren C, Horvais R, Renard M (1999) Low linolenic acid level in rapeseed can be easily assessed through the detection of two single base substitution in fad3 genes. In: Proceedings of 10th international rapeseed congress, Canberra, Australia, pp 26–29

    Google Scholar 

  • Basunanda P, Spiller TH, Hasan M, Gehringer A, Schondelmaier J, Luehs W, Friedt W, Snowdon RJ (2007) Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breed 126:581–587

    Article  Google Scholar 

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281

    Article  CAS  PubMed  Google Scholar 

  • Bouchet AS, Nesi N, Bissuel C, Bregeon M, Lariepe A, Navier H, Ribiere N, Orsel M, Grezes-Besset B, Renard M, Laperche A (2014) Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica 199:183–205

    Article  CAS  Google Scholar 

  • Bouchet AS, Laperche A, Bissuel-Belaygue C, Baron C, Morice J, Rousseau-Gueutin M, Dheu JE, George P, Pinochet X, Foubert T, Maes O, Dugue D, Guinot F, Nesi N (2016) Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed. BMC Genet 17:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradburne R, Majer D, Magrath R, Werner CP, Lewis B, Mithen R (1999) Winter oilseed rape with high levels of resistance to Pyrenopeziza brassicae derived from wild Brassica Species. Plant Pathol 48:550–558

    Article  Google Scholar 

  • Buczacki ST, Toxopeus H, Mattusch P, Johnston TD, Dixon GR, Hobolth LA (1975) Study of physiologic specialization in Plasmodiophora brassicae: proposals for attempted rationalization through an international approach. Trans British Mycol Soc 65:295–303

    Article  Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG, Clarke MHE, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 90:39–48

    Article  CAS  PubMed  Google Scholar 

  • Bus A, Koerber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123:1413–1423

    Article  PubMed  Google Scholar 

  • Bus A, Hecht J, Huettel B, Reinhardt R, Stich B (2012) High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genom 13:281

    Article  CAS  Google Scholar 

  • Bus A, Koerber N, Parkin IAP, Samans B, Snowdon RJ, Li J, Stich B (2014) Species- and genome-wide dissection of the shoot ionome in Brassica napus and its relationship to seedling development. Front Plant Sci 5:485

    Article  PubMed  PubMed Central  Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999) Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics 153:949–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K (2014) Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theor Appl Genet 127:85–96

    Article  CAS  PubMed  Google Scholar 

  • Cai GQ, Yang QY, Chen H, Yang Q, Zhang CY, Fan CC, Zhou YM (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 6:21625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J (2010) Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J Genet Genom 37:231–240

    Article  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang HB, Wang XX, Chiquet J, Belcram H et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 354:950–953

    Article  CAS  Google Scholar 

  • Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M (2017) Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 7:46295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F-2 populations. Theor Appl Genet 115:849–858

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PBE, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174

    Article  CAS  Google Scholar 

  • Chen X, Li X, Zhang B, Xu J, Wu Z, Wang B, Li H, Younas M, Huang L, Luo Y, Wu J, Hu S, Liu K (2013) Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: a case study in allotetraploid Brassica napus. BMC Genom 14:346

    Article  CAS  Google Scholar 

  • Chen S, Ding G, Wang Z, Cai H, Xu F (2015) Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress. J Proteomics 117:106–119

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang B, Zhang Y, Yue X, Li Z, Liu K (2017) High-density ddRAD linkage and yield-related QTL mapping delimits a chromosomal region responsible for oil content in rapeseed (Brassica napus L.). Breed Sci 67:296–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke WE, Parkin IAP, Gajardo HA, Gerhardt DJ, Higgins E, Sidebottom C, Sharpe AG, Snowdon RJ, Federico ML, Iniguez-Luy FL (2013) Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP) in Brassica napus L. PLoS ONE 8:e81992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crute IR, Gray AR, Crisp P, Buczacki ST (1980) Variation in Plasmodiophora brassicae and resistance to clubroot disease in Brassicas and allied crops—a critical review. Plant Breed Abstr 50:91–104

    Google Scholar 

  • Dalton-Morgan J, Hayward A, Alamery S, Tollenaere R, Mason AS, Campbell E, Patel D, Lorenc MT, Yi B, Long Y, Meng J, Raman R, Raman H, Lawley C, Edwards D, Batley J (2014) A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes. Funct Integ Genomics 14:643–655

    Article  CAS  Google Scholar 

  • Delourme R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard M, Balesdent MH (2004) A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology 94:578–583

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Chèvre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR (2006a) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur J Plant Pathol 114:41–52

    Article  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006b) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, Andre I, Duarte J, Gauthier V, Lucante N, Marty A, Pauchon M, Pichon JP, Ribiere N, Trotoux G, Blanchard P, Riviere N, Martinant JP, Pauquet J (2013) High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom 14:120

    Article  CAS  Google Scholar 

  • Diederichsen E, Beckmann J, Schondelmeier J, Dreyer F (2006) Genetics of clubroot resistance in Brassica napus ‘Mendel’. Acta Hortic 706:307–311

    Article  CAS  Google Scholar 

  • Ding G, Yang M, Hu Y, Liao Y, Shi L, Xu F, Meng J (2010) Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann Bot 105:1221–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding G, Shi L, Zhao H, Cai H, Liu K, Xu F (2013) Genetic analysis of seed mineral accumulation affected by phosphorus deprivation in Brassica napus. Euphytica 193:251–264

    Article  CAS  Google Scholar 

  • Ding G, Zhao Z, Wang L, Zhang D, Shi L, Xu F (2014) Identification and multiple comparisons of QTL and epistatic interaction conferring high yield under boron and phosphorus deprivation in Brassica napus. Euphytica 198:337–351

    Article  CAS  Google Scholar 

  • Dion Y, Gugel RK, Rakow GFW, Seguin-Swartz G, Landry BS (1995) RFLP mapping of resistance to the blackleg disease causal agent, Leptosphaeria maculans (Desm) Ces, et de Not in canola (Brassica napus L.). Theor Appl Genet 91:190–1194

    Article  Google Scholar 

  • Durstewitz G, Polley A, Plieske J, Luerssen H, Graner EM, Wieseke R, Ganal MW (2010) SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome 53:948–956

    Article  CAS  PubMed  Google Scholar 

  • Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.) 2: localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    CAS  PubMed  Google Scholar 

  • Ecke W, Clemens R, Honsdorf N, Becker HC (2010) Extent and structure of linkage disequilibrium in canola quality winter rapeseed (Brassica napus L.). Theor Appl Genet 120:921–931

    Article  CAS  PubMed  Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  CAS  PubMed  Google Scholar 

  • Falentin C, Brégeon M, Lucas MO, Deschamps M, Leprince F, Fournier MT, Delourme R, Renard M (2007) Identification of fad2 mutations and development of allele-specific markers for high oleic acid content in rapeseed (Brassica napus L.). In: Proceedings of 12th international rapeseed congress, Wuhan, China p 126

    Google Scholar 

  • Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121:1289–1301

    Article  CAS  PubMed  Google Scholar 

  • Feng F, Liu P, Hong D, Yang G, Feng FQ, Liu PW, Hong DF, Yang GS (2009) A major QTL associated with preharvest sprouting in rapeseed (Brassica napus L.). Euphytica 169:57–68

    Article  Google Scholar 

  • Feng J, Long Y, Shi L, Shi J, Barker G, Meng J (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108

    Article  CAS  PubMed  Google Scholar 

  • Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using doubled haploid lines. Theor Appl Genet 89:615–621

    Article  CAS  PubMed  Google Scholar 

  • Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732

    Article  PubMed  Google Scholar 

  • Fletcher RS, Mullen JL, Heiliger A, McKay JK (2015) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot 66:245–256

    Article  CAS  PubMed  Google Scholar 

  • Fletcher RS, Herrmann D, Mullen JL, Li QF, Schrider DR, Price N, Lin JJ, Grogan K, Kern A, Mckay JK (2016) Identification of polymorphisms associated with drought adaptation QTL in Brassica napus by resequencing G3. Genes Genomes Genet 6:793–803

    Google Scholar 

  • Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theor Appl Genet 93:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Fopa Fomeju B, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R (2014) Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker. BMC Genom 15:498

    Article  Google Scholar 

  • Fopa Fomeju B, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R (2015) Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker. Front Plant Sci 6:772

    Article  PubMed  PubMed Central  Google Scholar 

  • Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 cosegregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858

    Article  CAS  Google Scholar 

  • Fredua-Agyeman R, Rahman H (2016) Mapping of the clubroot disease resistance in spring Brassica napus canola introgressed from European winter canola cv. ‘Mendel’. Euphytica 211:201–213

    Article  CAS  Google Scholar 

  • Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Jin MY, Ma AF, Yan XY, Zhang ZS, Li JN (2007a) Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 50:840–854

    Article  CAS  PubMed  Google Scholar 

  • Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Ma AF, Qu CN, Jiang L, Zhang ZS, Li JN (2007b) Localization of QTLs for husk proportion and lignin content using a high-density genetic linkage map of Brassica napus. Korean J Genet 29:343–353

    CAS  Google Scholar 

  • Fu Y, Wei D, Dong H, He Y, Cui Y, Mei J, Wan H, Li J, Snowdon R, Friedt W, Li X, Qian W (2015) Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep 5:14407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajardo HA, Wittkop B, Soto-Cerda B, Higgins EE, Parkin IAP, Snowdon RJ, Federico ML, Iniguez-Luy FL (2015) Association mapping of seed quality traits in Brassica napus L. using GWAS and candidate QTL approaches. Mol Breed 35:143

    Article  CAS  Google Scholar 

  • Gali KK, Sharpe AG (2011) Molecular linkage maps: strategies, resources and achievements In: Edwards D, Batley J, Parkin IAP, Kole C (eds) Genetics, genomics and breeding of oilseed Brassicas. Science Publishers, CRC Press, USA, pp 85–129

    Google Scholar 

  • Gül MK, Becker H, Ecke W (2003) QTL mapping and analysis of QTL × nitrogen interactions for protein and oil contents in Brassica napus L. In: Proceedings of 11th international rapeseed congress, Copenhagen, Denmark, pp 91–93

    Google Scholar 

  • Gustafsson M, Fält AS (1986) Genetic studies on resistance to clubroot in Brassica napus. Ann Appl Biol 108:409–415

    Article  Google Scholar 

  • Gyawali S, Harrington M, Durkin J, Horner K, Parkin IAP, Hegedus DD, Bekkaoui D, Buchwaldt L (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotech 30:798–802

    Article  CAS  Google Scholar 

  • Hasan MJ, RahmanH (2016) Genetics and molecular mapping of resistance to Plasmodiophora brassicae pathotypes 2, 3, 5, 6, and 8 in rutabaga (Brassica napus var. napobrassica). Genome 59:805–815

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Friedt W, Pons-Kuehnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Hatzig SV, Frisch M, Breuer F, Nesi N, Ducoumau S, Wagner MH, Leckband G, AbbadiA Snowdon RJ (2015) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci 6:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Havlickova L, He Z, Wang L, Langer S, Harper AL, Kaur H, Broadley MR, Gegas V, Bancroft I (2018) Validation of an updated associative transcriptomics platform for the polyploid crop species Brassica napus by dissection of the genetic architecture of erucic acid and tocopherol isoform variation in seeds. Plant J 93:181–192

    Article  CAS  PubMed  Google Scholar 

  • Hayward A, Mason AS, Dalton-Morgan J, Zander M, Edwards D, Batley J (2012) SNP discovery and applications in Brassica napus. J Plant Biotech 39:49–61

    Article  Google Scholar 

  • He YJ, Wu DM, Wei DY, Fu Y, Cui YX, Dong HL, Tan CD, Qian W (2017) GWAS QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Sci Rep 7:15971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hervé MR, Delourme R, Gravot A, Marnet N, Berardocco S, Cortesero AM (2014) Manipulating feeding stimulation to protect crops against insect pests? J Chem Ecol 40:1220–1231

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y et al (2007) Omics based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honsdorf N, Becker HC, Ecke W (2010) Association mapping for phenological, morphological, and quality traits in canola quality winter rapeseed (Brassica napus L). Genome 53:899–907

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, Meng J (2012) A tourist-like MITE insertion in the upstream region of the BnFLCA10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol 12:238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Hua W, Huang S, Yang H, Zhan G, Wang X, Liu G, Wang H (2012a) Discovery of pod shatter-resistant associated SNPs by deep sequencing of a representative library followed by bulk segregant analysis in rapeseed. PLoS ONE 7:e34253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Huang S, Sun M, Wang H, Hua W (2012b) Development and application of single nucleotide polymorphism markers in the polyploid Brassica napus by 454 sequencing of expressed sequence tags. Plant Breed 131:293–299

    Article  CAS  Google Scholar 

  • Hua YP, Zhou T, Ding GD, Yang QY, Shi L, Xu FS (2016) Physiological genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes. J Exp Bot 67:5769–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of miRNAs Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Deng L, Guan M, Li J, Lu K, Wang H, Fu D, Mason AS, Liu S, Hua W (2013) Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC Genom 14:717

    Article  CAS  Google Scholar 

  • Huang YJ, Jestin C, Welham SJ, King GJ, Manzanares-Dauleux MJ, Fitt BDL, Delourme R (2016) Identification of environmentally stable QTL for resistance against Leptosphaeria maculans in oilseed rape (Brassica napus). Theor Appl Genet 129:169–180

    Article  CAS  PubMed  Google Scholar 

  • Hurgobin B, Golicz AA, Bayer PE, Chan CK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B et al (2018) Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotech J. https://doi.org/10.1111/pbi.12867

    Article  Google Scholar 

  • Javed N, Tahir M, Geng J, Li G, McVetty PBE (2014) Identification of Brassica genotypes and molecular markers for increased seed oil content. Can J Plant Sci 94:1103–1108

    Article  CAS  Google Scholar 

  • Jestin C, Lode M, Vallee P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux MJ, Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27:271–287

    Article  Google Scholar 

  • Jestin C, Vallée P, Domin C, Manzanares-Dauleux MJ, Delourme R (2012) Assessment of a new strategy for selective phenotyping applied to complex traits in Brassica napus. Open J Genet 2:190–201

    Article  CAS  Google Scholar 

  • Jestin C, Bardol N, Lodé M, Duffé P, Domin C, Vallée P, Mangin B, Manzanares-Dauleux MJ, Delourme R (2015) Connected populations for detecting quantitative resistance factors to Phoma stem canker in oilseed rape (Brassica napus L.). Mol Breed 35:167

    Article  Google Scholar 

  • Jian HJ, Yang B, Zhang AX, Zhang L, Xu XF, Li JN, Liu LZ (2017) Screening of candidate leaf morphology genes by integration of QTL mapping and RNA sequencing technologies in oilseed rape (Brassica napus L.). PLoS ONE 12:e0169641

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Li J, Fu F, Zhang Z, Zhang X, Liu L, Jin MY, Li JN, Fu FY, Zhang ZS, Zhang XK, Liu LZ (2007) QTL analysis of oil and hull content in Brassica napus L. Sci Agric Sin 40:677–684

    CAS  Google Scholar 

  • Jourdren C, Barret P, Horvais R, Delourme R, Renard M (1996a) Identification of RAPD markers linked to linolenic acid genes in rapeseed. Euphytica 90:351–357

    Article  CAS  Google Scholar 

  • Jourdren C, Barret P, Horvais R, Foisset N, Delourme R, Renard M (1996b) Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Mol Breed 2:61–71

    Article  CAS  Google Scholar 

  • Kaur S, Cogan NOI, Ye G, Baillie RC, Hand ML, Ling AE, McGearey AK, Kaur J, Hopkins CJ, Todorovic M, Mountford H, Edwards D, Batley J, Burton W, Salisbury P, Gororo N, Marcroft S, Kearney G, Smith KF, Forster JW, Spangenberg GC (2009) Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Theor Appl Genet 120:71–83

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Francki MG, Forster JW (2012) Identification, characterization and interpretation of single-nucleotide sequence variation in allopolyploid crop species. Plant Biotech J 10:125–138

    Article  CAS  Google Scholar 

  • Kole C, Thormann CE, Karlsson BH, Palta JP, Gaffney P, Yandell B, Osborn TC (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breed 9:201–210

    Article  CAS  Google Scholar 

  • Körber N, Bus A, Li J, Higgins J, Bancroft I, Higgins EE, Parkin IAP, Salazar-Colqui B, Snowdon RJ, Stich B (2015) Seedling development traits in Brassica napus examined by gene expression analysis and association mapping. BMC Plant Biol 15:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Körber N, Bus A, Li J, Parkin IA, Wittkop B, Snowdon RJ, Stich B (2016) Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus. Front Plant Sci 7:386

    Article  PubMed  PubMed Central  Google Scholar 

  • Landry BS, Hubert N, Etoh T, Harada JJ, Lincoln SE (1991) A genetic map of Brassica napus based on restriction fragment length polymorphism detected with expressed DNA sequences. Genome 34:543–552

    Article  CAS  Google Scholar 

  • Lang LN, Xu AX, Ding J, Zhang Y, Zhao N, Tian ZS, Liu YP, Wang Y, Liu X, Liang FH, Zhang BB, Qin MF, Dalelhan J, Huang Z (2017) Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Front Plant Sci 8:1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Laperche A, Aigu Y, Jubault M, Ollier M, Guichard S, Glory P, Strelkov SE, Gravot A, Manzanares-Dauleux MJ (2017) Clubroot resistance QTL are modulated by nitrogen input in Brassica napus. Theor Appl Genet 130:669–684

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197:595–605

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Ma L, Borhan MH (2015) The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotech J 13:983–992

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Raman H, Lydiate DJ, Robinson SJ, Yu F, Barbulescu DM, Raman R, Luckett DJ, Burton W, Wratten N, Salisbury PA, Rimmer SR, Borhan MH (2016) Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus. BMC Plant Biol 16:183

    Google Scholar 

  • Lee RWH, Malchev IT, Rajcan I, Kott LS (2014) Identification of putative quantitative trait loci associated with a flavonoid related to resistance to cabbage seedpod weevil (Ceutorhynchus obstrictus) in canola derived from an intergeneric cross, Sinapis alba × Brassica napus. Theor Appl Genet 127:419–428

    Article  CAS  Google Scholar 

  • Li Z, Sillanpää MJ (2015) Dynamic quantitative trait locus analysis of plant phenomic data. Trends Plant Sci 20:12

    Article  CAS  Google Scholar 

  • Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N, Yan G, Qiao J, Li J, Li H, Xiao X, Zhang T, Wu X (2014a) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21:355–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Mei S, Mei Z, Liu X, Fu T, Zhou G, Tu J (2014b) Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica 197:341–353

    Article  Google Scholar 

  • Li N, Shi J, Wang X, Liu G, Wang H, Li N, Shi JQ, Wang XF, Liu GH, Wang HZ (2014c) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol 14:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Zhao Z, Hayward A, Cheng H, Fu D (2015) Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus. Euphytica 205:483–489

    Article  CAS  Google Scholar 

  • Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Hao L, Li L, Xiao X, Zhang T, Nishio T, Wu X (2016a) A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci 242:169–177

    Article  CAS  PubMed  Google Scholar 

  • Li L, Luo Y, Chen B, Xu K, Zhang F, Li H, Huang Q, Xiao X, Zhang T, Hu J, Li F, Wu X (2016b) A genome-wide association study reveals new loci for resistance to clubroot disease in Brassica napus. Front Plant Sci 7:1483

    PubMed  PubMed Central  Google Scholar 

  • Lipsa FD, Snowdon R, Friedt W (2012) Quantitative genetic analysis of condensed tannins in oilseed rape meal. Euphytica 184:195–205

    Article  Google Scholar 

  • Liu Z, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas MO, Delourme R, Chevre AM, Jenczewski E (2006a) Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:1583–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Meng J, Lin N, Chen L, Tang Z, Zhang X, Li J, Liu LZ, Meng JL, Lin N, Chen L, Tang ZL, Zhang XK, Li JN (2006b) QTL mapping of seed coat color for yellow seeded Brassica napus. Acta Genet Sin 33:181–187

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yang J, Li R, Shi L, Zhang C, Long Y, Xu F, Meng J (2009) Analysis of genetic factors that control shoot mineral concentrations in rapeseed (Brassica napus) in different boron environments. Plant Soil 320:255–266

    Article  CAS  Google Scholar 

  • Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon RJ, Li J (2013) A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE 8:e83052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu SY, Liu YM, Yang XH, Tong CB, Edwards D, Parkin IAP et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Comm 5:3930

    Article  CAS  Google Scholar 

  • Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H (2015) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. PNAS E5123–E5132

    Google Scholar 

  • Liu J, Wang J, Wang H, Wang WX, Zhou RJ, Mei DS, Cheng HT, Yang J, Raman H, Hu Q (2016a) Multigenic control of pod shattering resistance in Chinese rapeseed germplasm revealed by genome-wide association and linkage analyses. Front Plant Sci 7:1058

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang WX, Mei DS, Wang H, Fu L, Liu DM, Li YC, Hui Q (2016b) Characterizing variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.). Front Plant Sci 7:21

    PubMed  PubMed Central  Google Scholar 

  • Liu PF, Zhao YS, Liu GZ, Wang M, Hu DD, Hu J, Meng JL, Reif JC, Zou J (2017) Hybrid performance of an immortalized F-2 rapeseed population is driven by additive dominance and epistatic effects. Front Plan Sci 8:815

    Article  Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genome wide alignment with Arabidopsis. Genetics 177:2433–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Wang Z, Sun Z, Fernando DWG, McVetty PBE, Li G (2011a) Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar ‘Surpass 400’. Theor Appl Genet 122:1223–1231

    Article  PubMed  Google Scholar 

  • Long Y, Xia W, Li R, Wang J, Shao M, Feng J, King GJ, Meng J (2011b) Epigenetic QTL Mapping in Brassica napus. Genetics 189:1093–U585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou P, Xie Q, Xu X, Edwards C, Brock M, Weinig C, McClung C (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397–409

    Article  CAS  PubMed  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Harper AL, Trick M, Morgan C, Fraser F, O’Neill C, Bancroft I (2014) Associative transcriptomics study dissects the genetic architecture of seed glucosinolate content in Brassica napus. DNA Res 21:613–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YX, Luo CY, Du DZ, Fu Z, Yao YM, Xu CC, Zhang HS (2014) Quantitative trait analysis of flowering time in spring rapeseed (B. napus L.). Euphytica 200:321–335

    Article  Google Scholar 

  • Luo X, Ma C, Yue Y, Hu K, Li Y, Duan Z, Wu M, Tu J, Shen J, Yi B, Fu T (2015) Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genom 16:379

    Article  CAS  Google Scholar 

  • Luo ZL, Wang M, Long Y, Huang YJ, Shi L, Zhang CY, Liu X, Fitt BDL, Xiang JX, Mason AS, Snowdon RJ, Liu PF, Meng JL, Zou J (2017) Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet 130:1569–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzanares-Dauleux MJ, Delourme R, Baron F, Thomas G (2000) Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor Appl Genet 101:885–891

    Article  CAS  Google Scholar 

  • Manzanares-Dauleux MJ, Delourme R, Glory P, Giboulot A, Thomas G (2003) Mapping QTLs and major resistance genes to clubroot (Plasmodiophora brassicae) in Brassica napus. In: Proceedings of 11th international rapesesed congress, Copenhagen, Denmark, pp 105–107

    Google Scholar 

  • Marwede V, Gul MK, Becker HC, Ecke W (2005) Mapping of QTL controlling tocopherol content in winter oilseed rape. Plant Breed 124:20–26

    Article  CAS  Google Scholar 

  • Mei DS, Wang HZ, Hu Q, Li YD, Xu YS, Li YC (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breed 128:458–465

    Article  Google Scholar 

  • Miersch S, Gertz A, Breuer F, Schierholt A, Becker HC (2016) Influence of the semi-dwarf growth type on seed yield and agronomic parameters at low and high nitrogen fertilization in winter oilseed rape. Crop Sci 56:1573–1585

    Article  CAS  Google Scholar 

  • Miro B (2010) Identification of traits for nitrogen use efficiency in oilseed rape (Brassica napus L.). Ph.D. thesis, University of Newcastle, 280 pp

    Google Scholar 

  • Na A, Bink MC, Dieleman JA, Magán JJ, Wubs AM, Palloix A, van Eeuwijk FA (2013) Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper. Theor Appl Genet 126:2597–2625

    Article  Google Scholar 

  • Nelson MN, Rajasekaran R, Smith A, Chen S, Beeck CP, Siddique KHM, Cowling WA (2014) Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L. PLoS ONE 9:e102611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nesi N, Delourme R, Bregeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol 331:763–771

    Article  CAS  PubMed  Google Scholar 

  • Obermeier C, Hossain MA, Snowdon R, Knuefer J, von Tiedemann A, Friedt W (2013) Genetic analysis of phenylpropanoid metabolites associated with resistance against Verticillium longisporum in Brassica napus. Mol Breed 31:347–361

    Article  CAS  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1129

    Google Scholar 

  • Oshima M, Handa H (2012) The identification of quantitative trait loci that control the paternal inheritance of a mitochondrial plasmid in rapeseed (Brassica napus L.). Gen Genet Syst 87:19–27

    Article  CAS  Google Scholar 

  • Parkin IAP (2011) Chasing ghosts: Comparative mapping in the Brassicaceae. In: Schmidt R, Bancroft I (eds), Genetics and genomics of the Brassicaceae, plant genetics and genomics: crop and models 9 (Chapter 5). Springer Science+Business Media, LLC, pp 153–170

    Google Scholar 

  • Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploids Brassica napus (oilseed rape). Genome 38:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE et al (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul S, Datta SK, Datta K (2015) miRNA regulation of nutrient homeostasis in plants. Front Plant Sci 6:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998a) Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm) Ces et de Not, in winter rapeseed (Brassica napus L.). Theor Appl Genet 96:23–30

    Article  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998b) Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theor Appl Genet 97:398–406

    Article  CAS  Google Scholar 

  • Pilet ML, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas MO, Renard M, Delourme R (2001) Stability of QTL for field resistance to blackleg across two genetic backgrounds in rapeseed. Crop Sci 41:197–205

    Article  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Mao L, Sun C, Pu Y, Fu T, Ma C, Shen J, Tu J, Yi B, Wen J (2014) Interpreting the genetic basis of silique traits in Brassica napus using a joint QTL network. Plant Breed 133:52–60

    Article  CAS  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • Qu C, Hasan M, Lu K, Liu LZ, Zhang K, Fu FY, Wang M, Liu SY, Bu HD, Wang R, Xu XF, Chen L, Li JN (2015) Identification of QTL for seed coat colour and oil content in Brassica napus by association mapping using SSR markers. Can J Plant Sci 95:387–395

    Article  CAS  Google Scholar 

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1 Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561

    Article  CAS  PubMed  Google Scholar 

  • Raboanatahiry N, Chao H, Guo L, Gan J, Xiang J, Yan M, Zhang L, Yu L, Li M (2017) Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus. BMC Genom 18:776

    Article  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman H, Bennett RA, Kebede B (2017) Mapping of days to flower and seed yield in spring oilseed Brassica napus carrying genome content introgressed from Brassica oleracea. Mol Breed 37:5

    Article  CAS  Google Scholar 

  • Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127:2525–2543

    Article  CAS  PubMed  Google Scholar 

  • Raman R, Taylor B, Marcroft S, Stiller J, Eckermann P, Coombes N, Rehman A, Lindbeck K, Luckett D, Wratten N, Batley J, Edwards D, Wang X, Raman H (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theor Appl Genet 125:405–418

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E (2013) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor Appl Genet 126:119–132

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J (2014a) SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. Plant Biotech J 12:851–860

    Article  CAS  Google Scholar 

  • Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M, Ruperao P, Parkin IAP, Batley J, Luckett DJ, Wratten N (2014b) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9:e101673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raman R, Diffey S, Carling J, Cowley RB, Kilian A, Luckett DJ, Raman H (2016a) Quantitative genetic analysis of grain yield in an Australian Brassica napus doubled-haploid population. Crop Pasture Sci 67:298–307

    Article  Google Scholar 

  • Raman H, Raman R, Coombes N, Song J, Diffey S, Kilian A, Lindbeck K, Barbulescu DM, Batley J, Edwards D, Salisbury PA, Marcroft S (2016b) Genome-wide association study identifies new loci for resistance to Leptosphaeria maculans in Canola. Front Plant Sci 7:1513

    PubMed  PubMed Central  Google Scholar 

  • Raman H, Raman R, McVittie B, Orchard B, Qiu Y, Delourme R (2017) A major locus for manganese tolerance maps on chromosome A09 in a doubled haploid population of Brassica napus L. Front Plant Sci 8:1952

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezaeizad A, Wittkop B, Snowdon R, Hasan M, Mohammadi V, Zali A, Friedt W (2011) Identification of QTLs for phenolic compounds in oilseed rape (Brassica napus L.) by association mapping using SSR markers. Euphytica 177:335–342

    Article  CAS  Google Scholar 

  • Rimmer SR (2006) Resistance genes to Leptosphaeria maculans in Brassica napus. Can J Plant Pathol 28:S288–S297

    Article  CAS  Google Scholar 

  • Rousseau-Gueutin M, Morice J, Coriton O, Huteau V, Trotoux G, Negre S, Falentin C et al (2017) The impact of open pollination on the structural evolutionary dynamics Allotetraploid Brassica napus L. Genes Genomes Genet 7:705–717

    CAS  Google Scholar 

  • Rygulla W, Snowdon RJ, Friedt W, Happstadius I, Cheung WY, Chen D (2008) Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus). Phytopathol 98:215–221

    Article  CAS  Google Scholar 

  • Schatzki J, Schoo B, Ecke W, Herrfurth C, Feussner I, Becker HC, Moellers C (2013) Mapping of QTL for seed dormancy in a winter oilseed rape doubled haploid population. Theor Appl Genet 126:2405–2415

    Article  PubMed  Google Scholar 

  • Schatzki J, Ecke W, Becker HC, Moellers C (2014) Mapping of QTL for the seed storage proteins cruciferin and napin in a winter oilseed rape doubled haploid population and their inheritance in relation to other seed traits. Theor Appl Genet 127:1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Schierholt A, Rücker B, Becker HC (2001) Inheritance of high oleic acid mutations in winter oilseed rape (Brassica napus L.). Crop Sci 41:1444–1449

    Article  CAS  Google Scholar 

  • Schiessl S, Samans B, Hüttel B, Reinhard R, Snowdon RJ (2014) Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus. Front Plant Sci 5:404

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiessl S, Huettel B, Kuehn D, Reinhardt R, Snowdon R (2017) Post-polyploidisation morphotype diversification associates with gene copy number variation. Sci Rep 7:41845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent non-reciprocal translocations in the amphiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121

    Article  CAS  PubMed  Google Scholar 

  • Shen JX, Fu TD, Yang GS, Tu JX, Ma CZ (2006) Prediction of heterosis using QTLs for yield traits in rapeseed (Brassica napus L.). Euphytica 151:165–171

    Article  Google Scholar 

  • Shen D, Suhrkamp I, Wang Y, Liu S, Menkhaus J, Verreet JA, Fan L, Cai D (2014) Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes. New Phytol 204:577–594

    Article  CAS  PubMed  Google Scholar 

  • Shen YS, Yang Y, Xu ES, Ge XH, Xiang Y, Li ZY (2018) Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theor Appl Genet 131:67–78

    Article  PubMed  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J, Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Zhao JY, Meng JL (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Li R, Zou J, Long Y, Meng J, Shi JQ, Li RY, Zou J, Long Y, Meng JL (2011) A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS ONE 6:e21645–e21645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Yang J, Liu J, Li R, Long Y, Xu F, Meng J (2012) Identification of quantitative trait loci associated with low boron stress that regulate root and shoot growth in Brassica napus seedlings. Mol Breed 30:393–406

    Article  Google Scholar 

  • Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L (2013a) QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLoS ONE 8:e54559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J, Xu F, Hammond JP (2013b) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot 112:381–389

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Zhan J, Yang Y, Ye J, Huang S, Li R, Wang X, Liu G, Wang H (2015) Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Sci Rep 5:14481

    Google Scholar 

  • Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I (2011) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122:1075–1090

    Article  CAS  PubMed  Google Scholar 

  • Snowdon RJ, Iniguez-Luy FL (2012) Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed 131:351–360

    Article  CAS  Google Scholar 

  • Snowdon RJ, Wittkop B, Rezaidad A, Hasan M, Lipsa F, Stein A, Friedt W (2010) Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape. Genome 53:917–928

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon RJ (2013) Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed 132:382–389

    Article  CAS  Google Scholar 

  • Stein A, Coriton O, Rousseau-Gueutin M, Samans B, Schiessl SV, Obermeier C, Parkin IAP, Chèvre AM, Snowdon RJ (2017) Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus. Plant Biotech J 15:1478–1489

    Article  CAS  Google Scholar 

  • Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty PBE, Li G (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, Wang H (2012) Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS ONE 7:e47037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Liu J, Hua W, Sun X, Wang X, Wang H (2016) Identification of stable QTLs for seed oil content by combined linkage and association mapping in Brassica napus. Plant Sci 252:388–399

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Morgan C, Bancroft I (2008) Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome 51:169–176

    Article  CAS  PubMed  Google Scholar 

  • Teh L, Möllers C (2016) Genetic variation and inheritance of phytosterol and oil content in a doubled haploid population derived from the winter oilseed rape Sansibar × Oase cross. Theor Appl Genet 129:181–199

    Article  CAS  PubMed  Google Scholar 

  • Toroser D, Thormann CE, Osborn TC, Mithen R (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolate content in oilseed rape (Brassica napus L.). Theor Appl Genet 91:802–808

    Article  CAS  PubMed  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene Loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotech J 7:334–346

    Article  CAS  Google Scholar 

  • Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2 identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609

    Article  CAS  PubMed  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Robbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.) 1: construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204

    Article  CAS  PubMed  Google Scholar 

  • Verbyla AP, Cavanagh CR, Verbyla KL (2014) Whole-genome analysis of multienvironment or multitrait QTL in MAGIC. G3 (Bethesda) 18:1569–1584

    Google Scholar 

  • Verma SS, Rahman MH, Deyholos MK, Basu U, Kav NNV (2014) Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae. PLoS ONE 9:e86648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan HP, Chen LL, Guo JB, Li Q, Wen J, Yi B, Ma CZ, Tu JX, Fu TD, Shen JX (2017) Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front Plant Sci 8:593

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Lydiate DJ, Parkin IAP, Falentin C, Delourme R, Carion PWC, King GJ (2011a) Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genom 12:101

    Article  CAS  Google Scholar 

  • Wang N, Qian W, Suppanz I, Wei L, Mao B, Long Y, Meng J, Mueller AE, Jung C (2011b) Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaAFRIa. J Exp Bot 62:5641–5658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S et al (2011c) The genome of the mesopolyploid crop species Brassica rapa. Nature Genet 43:1035–U157

    Google Scholar 

  • Wang X, Zhang C, Li L, Fritsche S, Endrigkeit J, Zhang W, Long Y, Jung C, Meng J (2012) Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.). PLoS ONE 7:e50038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen H, Chen Y, Zhang X, Xu H, Zhao J, Wang JB, Chen HC, Chen YB, Zhang XY, Xu HM, Zhao JY (2013a) Molecular dissection of oil content with respect to fatty acid compositions by conditional QTL analysis in oilseed rape. J Zhejiang Univ 39:504–512

    CAS  Google Scholar 

  • Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M (2013b) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS ONE 8:e80569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XD, Yu KJ, Li HG, Peng Q, Chen F, Zhang W, Chen S, Maolong HL, Zhang JF (2015a) High-density SNP map construction and QTL identification for the apetalous character in Brassica napus L. Front Plant Sci 6:1164

    PubMed  PubMed Central  Google Scholar 

  • Wang XD, Wang H, Long Y, Liu LZ, Zhao YJ, Tian JH, Zhao WG, Li BJ, Chen L, Chao HB, Li MT (2015b) Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L. Theor Appl Genet 128:1175–1192

    Article  PubMed  Google Scholar 

  • Wang X, Long Y, Yin Y, Zhang C, Gan L, Liu L, Yu L, Meng J, Li M (2015c) New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus. BMC Plant Biol 15:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XD, Chen L, Wang AN, Wang H, Tian JH, Zhao XP, Chao HB, Zhao YJ, Zhao WG, Xiang J, Gan JP, Li MT (2016a) Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol 16:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Cheng HT, Wang WX, Liu J, Hao MY, Mei DS, Zhou RJ, Fu L, Hu Q (2016b) Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep 6:38493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YK, Chen WJ, Chu P, Wan SB, Yang M, Wang MM, Guan RZ (2016c) Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach. BMC Plant Biol 16:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XH, Chen YL, Thomas CL, Ding GD, Xu P, Shi DX, Grandke F, Jin K, Cai HM, Xu FS, Yi B, Broadley MR, Shi L (2017a) Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply. DNA Res 24:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Dun XL, Shi JQ, Wang XF, Liu GH, Wang HZ (2017b) Genetic dissection of root morphological traits related to nitrogen use efficiency in Brassica napus L. under two contrasting nitrogen conditions. Front Plant Sci 8:1709

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Qiao Y, Zhang J, Shi W, Zhang J (2017c) Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing. Gene 619:61–70

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Wu Z, Li Z, Zhang Q, Hu J, Xiao Y, Cai D, Wu J, King GJ, Li H, Liu K (2017d) Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus. Plant Biotechnol J. https://doi.org/10.1111/pbi.12873

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei D, Mei J, Fu Y, Disi JO, Li J, Qian W (2014) Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed 34:1797–1804

    Article  CAS  Google Scholar 

  • Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J (2016) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotech J 14:1368–1380

    Article  CAS  Google Scholar 

  • Wen YC, Zhang SF, Yi B, Wen J, Wang JP, Zhu JC, He JP, Cao JH (2012) Identification of QTLs involved in pod-shatter resistance in Brassica napus L. Crop Past Sci 63:1082–1089

    Article  Google Scholar 

  • Wen J, Xu JF, Long Y, Wu JG, Xu HM, Meng JL, Shi CH (2016) QTL mapping based on the embryo and maternal genetic systems for non-essential amino acids in rapeseed (Brassica napus L.) meal. J Sci Food Agric 96:465–473

    Article  PubMed  CAS  Google Scholar 

  • Werner S, Diederichsen E, Frauen M, Schondelmaier J, Jung C (2008) Genetic mapping of clubroot resistance genes in oilseed rape. Theor Appl Genet 116:363–372

    Article  CAS  PubMed  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140

    Article  Google Scholar 

  • Wu JG, Shi CH, Zhang HZ (2006) Partitioning genetic effects due to embryo, cytoplasm and maternal parent for oil content in oilseed rape (Brassica napus L.). Genet Mol Biol 29:533–538

    Article  Google Scholar 

  • Wu G, Wu Y, Xiao L, Li X, Lu C (2008) Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet 116:491–499

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y (2013) Identification of QTLs for resistance to sclerotinia stem rot and BnaCIGMT5a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS ONE 8:e67740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhao Q, Liu S, Shahid M, Lan L, Cai G, Zhang C, Fan C, Wang Y, Zhou Y (2016) Genome-wide association study identifies new loci for resistance to Sclerotinia stem rot in Brassica napus. Front Plant Sci 7:1418

    PubMed  PubMed Central  Google Scholar 

  • Würschum T, Liu W, Maurer HP, Abel S, Reif JC (2012) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124:153–161

    Article  PubMed  Google Scholar 

  • Würschum T, Maurer HP, Dreyer F, Reif JC (2013) Effect of inter- and intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.). Theor Appl Genet 126:435–441

    Article  PubMed  CAS  Google Scholar 

  • Würschum T, Abel S, Zhao Y (2014) Potential of genomic selection in rapeseed (Brassica napus L.) breeding. Plant Breed 133:45–51

    Article  CAS  Google Scholar 

  • Xiao Y, Cai D, Yang W, Ye W, Younas M, Wu J, Liu K (2012) Genetic structure and linkage disequilibrium pattern of a rapeseed (Brassica napus L.) association mapping panel revealed by microsatellites. Theor Appl Genet 125:437–447

    Article  CAS  PubMed  Google Scholar 

  • Xu FS, Wang YH, Meng J (2001) Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breed 120:319–324

    Article  CAS  Google Scholar 

  • Xu JF, Long Y, Wu JG, Xu HM, Wen J, Meng JL, Shi CH (2015a) QTL mapping and analysis of the embryo and maternal plant for three limiting amino acids in rapeseed meal. Eur Food Res Technol 240:147–158

    Article  CAS  Google Scholar 

  • Xu JF, Long Y, Wu JG, Xu HM, Zhao ZG, Wen J, Meng JL, Shi CH (2015b) QTL identification on two genetic systems for rapeseed glucosinolate and erucic acid contents over two seasons. Euphytica 205:647–657

    Article  CAS  Google Scholar 

  • Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T (2016) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23:43–52

    CAS  PubMed  Google Scholar 

  • Yan XY, Li JN, Fu FY, Jin MY, Chen L, Liu LZ (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170:355–364

    Article  CAS  Google Scholar 

  • Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Shu C, Chen L, Xu J, Wu J, Liu K (2012) Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet 125:285–296

    Article  PubMed  Google Scholar 

  • Yan XY, Qu CM, Li JN, Chen L, Liu LZ (2015) QTL analysis of leaf photosynthesis rate and related physiological traits in Brassica napus. J Integ Agric 14:1261–1268

    Article  CAS  Google Scholar 

  • Yang YH, Shi JQ, Wang XF, Liu GH, Wang HZ (2016) Genetic architecture and mechanism of seed number per pod in rapeseed: elucidated through linkage and near-isogenic line analysis. Sci Rep 6:24124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Shen YS, Li SD, Ge XH, Li ZY (2017) High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci 8:1512

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye J, Yang YH, Chen B, Shi JQ, Luo MZ, Zhan JP, Wang XF, Liu GH, Wang HZ (2017) An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genom 18:71

    Article  CAS  Google Scholar 

  • Yin X, Yi B, Chen W, Zhang W, Tu J, Fernando WGD, Fu T (2010) Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173:25–35

    Article  CAS  Google Scholar 

  • Yong HY, Wang C, Bancroft I, Li F, Wu X, Kitashiba H, Nishio T (2015) Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Planta 242:313–326

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2005) Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet 110:969–979

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2008) Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp sylvestris. Genome 51:64–72

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Gugel RK, Kutcher HR, Peng G, Rimmer SR (2013) Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp sylvestris. Theor Appl Genet 126:307–315

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li X, Chen W, Yi B, Wen J, Shen J, Ma C, Chen B, Tu J, Fu T (2011a) Identification of two major QTL for yellow seed color in two crosses of resynthesized Brassica napus line No 2127-17. Mol Breed 28:335–342

    Article  CAS  Google Scholar 

  • Zhang L, Yang G, Liu P, Hong D, Li S, He Q (2011b) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31

    Article  PubMed  Google Scholar 

  • Zhang D, Hua Y, Wang X, Zhao H, Shi L, Xu F (2014) A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.). PLoS ONE 9:e112089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Thomas CL, Xiang JX, Long Y, Wang XH, Zou J, Luo ZL, Ding GD, Cai HM, Graham NS, Hammond JP, King GJ, White PJ, Xu FS, Broadley MR, Shi L, Meng JL (2016) QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci Rep 6:33113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Meng J (2003) Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed 122:19–23

    Article  CAS  Google Scholar 

  • Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W (2005) Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci 45:51–59

    Article  CAS  Google Scholar 

  • Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W (2006a) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38

    Article  CAS  PubMed  Google Scholar 

  • Zhao JW, Udall JA, Quijada PA, Grau CR, Meng JL, Osborn TC (2006b) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112:509–516

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Liu J, Shi L, Xu F, Wang Y (2010) Development of boron-efficient near isogenic lines of Brassica napus and their response to low boron stress at seedling stage. Genetika 46:66–72

    CAS  PubMed  Google Scholar 

  • Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2012a) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124:407–421

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Wu L, Nian F, Ding G, Shi T, Zhang D, Shi L, Xu F, Meng J (2012b) Dissecting quantitative trait loci for boron efficiency across multiple environments in Brassica napus. PLoS ONE 7:e45215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XW, Li B, Zhang K, Hu KN, Yi B, Wen J, Ma CZ, Shen JX, Fu TD, Tu JX (2016a) Breeding signature of combining ability improvement revealed by a genomic variation map from recurrent selection population in Brassica napus. Sci Rep 6:29553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao WG, Wang XD, Wang H, Tian JH, Li BJ, Chen L, Chao HB, Long Y, Xiang J, Gan JP, Liang WS, Li MT (2016b) Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in Brassica napus. Front Plant Sci 7:17

    PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNA and their targets in response to cadmium. J ExpBot 63:4597–4613

    CAS  Google Scholar 

  • Zhou QH, Fu DH, Mason AS, Zeng YJ, Zhao CX, Huang YJ (2014) In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus. Mol Breed 33:881–894

    Article  Google Scholar 

  • Zou J, Jiang C, Cao Z, Li R, Long Y, Chen S, Meng J (2010) Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping. Genome 53:908–916

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Zhao Y, Liu P, Shi L, Wang X, Wang M, Meng J, Reif JC (2016) Seed quality traits can be predicted with high accuracy in Brassica napus using genomic data. PLoS ONE 11:e0166624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Stephen Strelkov for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régine Delourme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delourme, R. et al. (2018). Genes and Quantitative Trait Loci Mapping for Major Agronomic Traits in Brassica napus L.. In: Liu, S., Snowdon, R., Chalhoub, B. (eds) The Brassica napus Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-43694-4_3

Download citation

Publish with us

Policies and ethics