Skip to main content
Log in

Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The introgression of winter germplasm into spring canola (Brassica napus L.) represents a novel approach to improve seed yield of hybrid spring canola. In this study, quantitative trait loci (QTL) for seed yield and other traits were genetically mapped to determine the effects of genomic regions introgressed from winter germplasm into spring canola. Plant materials used comprised of two populations of doubled haploid (DH) lines having winter germplasm introgression from two related French winter cultivars and their testcrosses with a spring line used in commercial hybrids. These populations were evaluated for 2 years at two locations (Wisconsin, USA and Saskatchewan, Canada). Genetic linkage maps based on RFLP loci were constructed for each DH population. Six QTL were detected in the testcross populations for which the winter alleles increased seed yield. One of these QTL explained 11 and 19% of the phenotypic variation in the two Canadian environments. The winter allele for another QTL that increased seed yield was linked in coupling to a QTL allele for high glucosinolate content, suggesting that the transition of rapeseed into canola could have resulted in the loss of favorable seed yield alleles. Most QTL for which the introgressed allele decreased seed yield of hybrids mapped to genomic regions having homoeologous non-reciprocal transpositions. This suggests that allelic configurations created by these rearrangements might make an important contribution to genetic variation for complex traits in oilseed B. napus and could account for a portion of the heterotic effects in hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (2002) QTL cartographer, version 1.16. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Brandle JE, McVetty PBE (1990) Geographical diversity, parental selection and heterosis in oilseed rape. Can J Plant Sci 70:935–940

    Article  Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999a) Increasing yield of spring oilseed rape hybrids (Brassica napus L) through introgression of winter germplasm. Crop Sci 39:1491–1496

    Article  Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999b) Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics 153:949–964

    CAS  Google Scholar 

  • Cheung WY, Champagne G, Hubert N, Landry BS (1997) Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet 94:569–582

    Article  CAS  Google Scholar 

  • Cloutier S, Cappadocia M, Landry BS (1995) Study of microspore-culture responsiveness in oilseed rape (Brassica napus L) by comparative mapping of a F2 population and two microspore-derived populations. Theor Appl Genet 91:841–847

    Article  CAS  Google Scholar 

  • Conner KC (2002) Genetic mechanisms of floral trait correlations in a natural population. Nature 420:407–410

    Article  PubMed  CAS  Google Scholar 

  • Diers BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germ plasma based on restriction fragment length polymorphisms. Theor Appl Genet 88:662–668

    Article  Google Scholar 

  • Diers BW, McVetty PBE, Osborn TC (1996) Relationship between heterosis and genetic distance based restriction fragment length polymorphism markers in oilseed rape (Brassica napus L). Crop Sci 36:79–83

    Article  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285–294

    PubMed  CAS  Google Scholar 

  • Edwards AL (1976) An introduction to linear regression and correlation. WH Freeman and Company, San Francisco

    Google Scholar 

  • Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using F1-derived doubled haploid lines. Theor Appl Genet 89:615–621

    Article  CAS  Google Scholar 

  • Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995a) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 90:727–732

    Article  Google Scholar 

  • Ferreira ME, Rimmer SR, Williams PH, Osborn TC (1995b) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85:213–217

    Article  CAS  Google Scholar 

  • Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theor Appl Genet 93:1017–1025

    Article  CAS  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    Article  PubMed  CAS  Google Scholar 

  • Grant MR, McDowell JM, Sharpe AG, Torres Zabala M, Lydiate DJ, Dangl JL (1998) Independent deletions of a pathogen–resistance gene in Brassica and Arabidopsis. Proc Natl Acad Sci USA 95:15843–15848

    Article  PubMed  CAS  Google Scholar 

  • Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding. 2nd edn. Iowa State University Press, Ames

    Google Scholar 

  • Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–456

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler SM (1997) Power analysis for quantitative trait locus mapping populations derived by multiple backcrosses. Theor Appl Genet 95:618–621

    Article  Google Scholar 

  • Kelly AL, Sharpe AG, Nixon JH, Evans EJ, Lydiate DJ (1997) Indistinguishable patterns of recombination resulting from male and female meiosis in Brassica napus (oilseed rape). Genome 40:49–56

    Article  PubMed  CAS  Google Scholar 

  • Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedures In: Beckman J, Osborn TC (eds) Plant genomes: methods for genetic and physical mapping. Kluwer, The Netherlands, pp 1–13

    Google Scholar 

  • Knapp SJ, Stroup WW, Ross WW (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Kole C, Kole P, Vogelzang R, Osborn TC (1997) Genetic linkage map of a Brassica rapa recombinant population. J Hered 88:553–557

    CAS  Google Scholar 

  • Kole C, Quijada P, Michaels SD, Amasino RM, Osborn TC (2001) Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet 102:425–430

    Article  CAS  Google Scholar 

  • Kondra ZP, Stefansson BR (1965) Inheritance of erucic acid and eicosenoic acid content of rapeseed oil (Brassica napus). Can J Genet Cytol 7:505–510

    CAS  Google Scholar 

  • Kondra ZP, Stefansson BR (1970) Inheritance of the major glucosinolates of rapeseed (Brassica napus) meal. Can J Plant Sci 50:643–747

    CAS  Google Scholar 

  • Jonsson R (1977) Erucic-acid heredity in rapeseed (Brassica napus L and Brassica campestris L). Hereditas 86:159–170

    Article  CAS  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    PubMed  CAS  Google Scholar 

  • Landry BS, Hubert N, Etoh T, Harada J, Lincoln SE (1991) A genetic map for Brassica napus based on restriction fragment polymorphism detected with expressed DNA sequences. Genome 34:543–552

    CAS  Google Scholar 

  • Lefort-Buson M, Guillot-Lemoine B, Datté Y (1987) Heterosis and genetic distance in rapeseed (Brassica napus L): Crosses between European and Asian selfed lines. Genome 29:413–418

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models SAS Inst, Cary, NC

  • Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164:359–372

    PubMed  CAS  Google Scholar 

  • Mariani C, De Beuckeler M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Science 347:737–741

    CAS  Google Scholar 

  • Mariani C, Gossele V, De Beuckeler M, De Block M, Golberg RB, De Greef W, Leemans J (1992) A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal VK, Good AG, Parkin IAP (2005) Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171:1977–1988

    Article  PubMed  CAS  Google Scholar 

  • Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537

    Article  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B napus, and Arabidopsis thaliana. Genetics 146:1123–1129

    PubMed  CAS  Google Scholar 

  • Osborn TC, Butruille DV, Sharpe AG, Pickering KJ, Parkin IAP, Parker JS, Lydiate DJ (2003) Detection and effects of a homoeologous reciprocal transposition in Brassica napus. Genetics 165:1569–1577

    PubMed  CAS  Google Scholar 

  • Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    PubMed  CAS  Google Scholar 

  • Parkin IAP, Lydiate DJ, Trick M (2002) Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome 45:1–11

    Article  Google Scholar 

  • Quijada PA, Maureira IJ, Osborn TC (2004a) Confirmation of QTL controlling seed yield in spring canola (Brassica napus) hybrids. Mol Breed 13:193–200

    Article  CAS  Google Scholar 

  • Quijada PA, Udall JA, Polewicz H, Osborn TC (2004b) Phenotypic effects of introgressing French winter germplasm into hybrid spring canola (Brassica napus L.). Crop Sci 44:1982–1989

    Article  Google Scholar 

  • Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • SAS Institute (2000) SAS/STAT® User’s guide, version 8 SAS Inst, Cary, NC

  • Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468

    PubMed  CAS  Google Scholar 

  • Sharpe AG, Lydiate DJ (2003) Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding. Genome 46:461–468

    Article  PubMed  CAS  Google Scholar 

  • Sharpe AG, Parkin IAP, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38:1112–1121

    PubMed  CAS  Google Scholar 

  • Sillito D, Parkin IAP, Mayerhofer R, Good AG (2000) Arabidopsis thaliana: a source of candidate disease–resistance genes for Brassica napus. Genome 43:452–460

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Teutonico RA, Osborn TC (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of Brassica napus, Brassica oleracea, and Arabidopsis thaliana. Theor Appl Genet 89:885–894

    Article  CAS  Google Scholar 

  • Thormann CE, Romero J, Mantet J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93: 282–286

    Article  CAS  Google Scholar 

  • Toroser D, Thormann CE, Osborn TC, Mithen R (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic–glucosinolate content in oilseed rape (Brassica napus L.). Theor Appl Genet 91:802–808

    Article  CAS  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homoeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  PubMed  CAS  Google Scholar 

  • Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Identification of alleles from unadapted germplasm affecting seed yield and other quantitative traits in hybrid spring oilseed Brassica napus L. Theor Appl Genet (in press)

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Ungerer MC, Halldorsdottir SS, Modliszewski JL, Mackay TFC, Purugganan MD (2002) Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 160:1133–1151

    PubMed  CAS  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.) I: construction of an RFLP linkage map and localization of QTL for seed glucosinolate content. Theor Appl Genet 90:194–204

    Article  CAS  Google Scholar 

  • Warren RF, Merrit PM, Holub E, Innes RW (1999) Identification of three putative signal transduction genes involved in R gene–specified disease resistance in Arabidopsis. Genetics 152:401–412

    PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Debbie Doell for haploid plant production, Tom Schuler, Hieronim Polewicz and Stewart Brandt for their assistance with hybrid seed production and field trials in Canada and Robert Vogelzang for technical assistance. Funding was provided by North Central Biotechnical Initiatives and USDA–NRI grant # 98–353006–6286 to TCO. PAQ was supported in part by a scholarship from Consejo de Desarrollo Científico y Humanístico, Universidad Central de Venezuela, Government of Venezuela, and JAU was supported in part by UW Pioneer Plant Breeding Fellowship 1999–2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Osborn.

Additional information

Communicated by S. J. Knapp

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quijada, P.A., Udall, J.A., Lambert, B. et al. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113, 549–561 (2006). https://doi.org/10.1007/s00122-006-0323-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0323-1

Keywords

Navigation