Skip to main content
Log in

Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Stem canker caused by the fungus Leptosphaeria maculans is a major disease of Brassica napus. Quantitative resistance factors appear to be important components for effective and durable control of this pathogen. Quantitative trait loci (QTL) for stem canker resistance have previously been identified in the Darmor variety. However, before these QTL can be used in marker-assisted selection (MAS) to breed resistant varieties, they must be validated in a wide range of genetic backgrounds. We used an association mapping approach to confirm the markers located within the QTL previously identified in Darmor and establish their usefulness in MAS. For this, we characterized the molecular diversity of an oilseed rape collection of 128 lines showing a large spectrum of responses to infection by L. maculans, using 72 pairs of primers for simple sequence repeat and other markers. We used different association mapping models which either do or do not take into account the population structure and/or family relatedness. In all, 61 marker alleles were found to be associated with resistance to stem canker. Some of these markers were associated with previously identified QTL, which confirms their usefulness in MAS. Markers located in regions not harbouring previously identified QTL were also associated with resistance, suggesting that new QTL or allelic variants are present in the collection. All of these markers associated with stem canker resistance will help identify accessions carrying desirable alleles and facilitate QTL introgression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genomics 2008:574927. doi:10.1155/2008/574927

    PubMed  Google Scholar 

  • Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356

    Article  Google Scholar 

  • Aranzana MJ, Kim S, Zhao KY, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang CL, Toomajian C, Traw B, Zheng HG, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLOS Genet 1:531–539

    Article  CAS  Google Scholar 

  • Aubertot JN, Schott JJ, Penaud A, Brun H, Dore T (2004) Methods for sampling and assessment in relation to the spatial pattern of phoma stem canker (Leptosphaeria maculans) in oilseed rape. Eur J Plant Pathol 110:183–192

    Article  Google Scholar 

  • Ayliffe M, Singh R, Lagudah E (2008) Durable resistance to wheat stem rust needed. Curr Opin Plant Biol 11:187–192

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Boyd LA (2006) Can the durability of resistance be predicted? J Sci Food Agric 86:2523–2526

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Brun H, Levivier S, Somda I, Ruer D, Renard M, Chevre AM (2000) A field method for evaluating the potential durability of new resistance sources: application to the Leptosphaeria maculans Brassica napus pathosystem. Phytopathology 90:961–966

    Article  PubMed  CAS  Google Scholar 

  • Brun H, Chèvre A-M, Fitt BDL, Powers S, Besnard A-L, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2009) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans Brassica napus. New Phytol 185:285–299

    Article  PubMed  Google Scholar 

  • Delourme R, Chèvre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR (2006a) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur J Plant Pathol 114:41–52

    Article  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006b) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  PubMed  CAS  Google Scholar 

  • Delourme R, Piel N, Horvais R, Pouilly N, Domin C, Vallee P, Falentin C, Manzanares-Dauleux MJ, Renard M (2008) Molecular and phenotypic characterization of near isogenic lines at QTL for quantitative resistance to Leptosphaeria maculans in oilseed rape (Brassica napus L.). Theor Appl Genet 117:1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2008) Applications of linkage disequilibrium and association mapping in crop plants. In: Varshney R, Tuberosa R (eds) Genomic assisted crop improvement: vol. I: genomics approaches and platforms. Springer, Germany, pp 97–120

    Google Scholar 

  • Fitt B, Brun H, Barbetti M, Rimmer S (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans and L.biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15

    Article  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  PubMed  CAS  Google Scholar 

  • Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 12:1577–1588

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hasan M, Friedt W, Pons-Kuehnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Li H, Sivasithamparam K, Barbetti MJ (2003) Breakdown of a Brassica rapa subsp sylvestris single dominant blackleg resistance gene in B. napus rapeseed by Leptosphaeria maculans field isolates in Australia. Plant Dis 87:752

    Article  Google Scholar 

  • Lin S, Cianzio S, Shoemaker R (1997) Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed 3:219–229

    Article  CAS  Google Scholar 

  • Lindhout P (2002) The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124:217–226

    Article  CAS  Google Scholar 

  • Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175:879–889

    Article  PubMed  CAS  Google Scholar 

  • Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human population structure on large genetic association studies. Nat Genet 36:512–517

    Article  PubMed  CAS  Google Scholar 

  • Pilet ML, Delourme R, Foisset N, Renard M (1998) Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in Winter rapeseed (Brassica napus L.). Theor Appl Genet 96:23–30

    Article  Google Scholar 

  • Pilet M, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas M, Renard M, Delourme R (2001) Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci 41:197–205

    Article  CAS  Google Scholar 

  • Pinochet X, Mestries E, Penaud A, Delourme R, Chevre AM, Renard M, Brun H, Bousset L, Balesdent MH, Rouxel T, Aubertot JN (2003) Towards a durable management of genetic resistances to Leptosphaeria maculans. Ocl Oleagineux Corps Gras Lipides 10:208–211

    Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Rimmer SR (2006) Resistance genes to Leptosphaeria maculans in Brassica napus. Can J Plant Pathol 28:S288–S297

    Article  CAS  Google Scholar 

  • Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R, Schmit J, Balesdent MH (2003) A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. Eur J Plant Pathol 109:871–881

    Article  CAS  Google Scholar 

  • SAS II (1989) SAS/STAT users guide, version 6.0, 4th edn. SAS Institute Inc, Cary

    Google Scholar 

  • Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8

    Article  CAS  Google Scholar 

  • Stich B, Mohring J, Piepho HP, Heckenberger M, Buckler ES, Melchinger AE (2008a) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754

    Article  PubMed  Google Scholar 

  • Stich B, Piepho HP, Schulz B, Melchinger AE (2008b) Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet 117:947–954

    Article  PubMed  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Wang J, McClean PE, Lee R, Goos RJ, Helms T (2008) Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet 116:777–787

    Article  PubMed  CAS  Google Scholar 

  • West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50:10–27

    Article  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhao KY, Aranzana MJ, Kim S, Lister C, Shindo C, Tang CL, Toomajian C, Zheng HG, Dean C, Marjoram P, Nordborg M (2007a) An Arabidopsis example of association mapping in structured samples. PLOS Genet 3:71–82

    Article  CAS  Google Scholar 

  • Zhao J, Paulo MJ, Jamar D, Lou P, van Eeuwijk F, Bonnema G, Vreugdenhil D, Koornneef M (2007b) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome 50:963–973

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Institut National de la Recherche Agronomique—Department of Génétique et Amélioration des Plantes, CETIOM (Centre Technique Interprofessionnel des Oléagineux Métropolitains) and PROMOSOL. We also acknowledge OLEOSEM for providing the seeds. We thank the team of the INRA Experimental Unit (Le Rheu) for performing the disease evaluation trials. Genotyping was performed on Biogenouest® platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Delourme.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 23 kb)

(PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jestin, C., Lodé, M., Vallée, P. et al. Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breeding 27, 271–287 (2011). https://doi.org/10.1007/s11032-010-9429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9429-x

Keywords

Navigation