Skip to main content
Log in

Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Phosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Changes in root morphology and architecture represent as an important mechanism of adaptation of plants to low P (LP) stress. To elucidate the genetic control of tolerance to P deficiency in Brassica napus, quantitative trait loci (QTL) for root morphology in response to LP were identified in three independent paper culture experiments, and dissected through QTL meta-analysis. In total, 62 significant QTL for total root length, root surface area, root volume, total dry weight, and plant P uptake under high and low P conditions were detected in the three experiments. Forty-five of these QTL were clustered within four linkage groups and were integrated into eight unique QTL by two rounds of QTL meta-analysis. Three of the unique QTL, uq.A1, uq.C3a and uq.C3b, were specific for LP condition. uq.C3a and uq.C3b were identified specifically for root traits and P uptake under LP stress, and may contribute to the adaptability of B. napus to P deficiency. Two functional markers, BnIPS2-C3 and BnGPT1-C3, which were developed from the genes AtIPS2 and AtGPT1 in Arabidopsis, were located in the confidence intervals of uq.C3a and uq.C3b, respectively. And AtGPT1 that corresponded to the interval of uq.C3b by in silico mapping was a possible candidate gene of uq.C3b. These results confirmed the importance of root traits for the adaptability of B. napus to LP and partially revealed the genetic basis of tolerance to P deficiency. These findings should be valuable for further study of the mechanism of P efficiency and the breeding of P-efficient cultivars by marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhtar MS, Oki Y, Adachi T (2008) Intraspecific variations of phosphorus absorption and remobilization, P forms, and their internal buffering in Brassica cultivars exposed to a P-stressed environment. J Integr Plant Biol 50:703–716

    Article  CAS  PubMed  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Batjes NH (1997) A world dataset of derived soil properties by FAO-UNESCO soil unit for global modelling. Soil Use Manage 13:9–16

    Article  Google Scholar 

  • Beebe SE, Rojas-Pierce M, Yan XL, Blair MW, Pedraza F, Munoz FM, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413-423

    Google Scholar 

  • Bengough AG, Gordon DC, Al-Menaie H, Ellis RP, Allan D, Keith R, Thomas WTB, Forster BP (2004) Gel observation chamber for rapid screening of root traits in cereal seedlings. Plant Soil 262:63–70

    Article  CAS  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • De Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duan HY, Shi L, Ye XS, Wang YH, Xu FS (2009) Identification of phosphorous efficient germplasm in oilseed rape. J Plant Nutr 32:1148–1163

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Li YC (2008) The role of nutrient efficient plants in improving crop yields in the twenty-first century. J Plant Nutr 31:1121–1157

    Article  CAS  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    Article  CAS  PubMed  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  CAS  PubMed  Google Scholar 

  • Heuer S, Lu XC, Chin JH, Tanaka JP, Kanamori H, Matsumoto T, De Leon T, Ulat VJ, Ismail AM, Yano M, Wissuwa M (2009) Comparative sequence analyses of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure. Plant Biotechnol J 7:456–471

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Department of Agriculture experimental station circular 347, Berkeley

  • Holford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–239

    Article  CAS  Google Scholar 

  • Hou XL, Wu P, Jiao FC, Jia QJ, Chen HM, Yu J, Song XW, Yi KK (2005) Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones. Plant Cell Environ 28:353–364

    Article  CAS  Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Bio 65:547–570

    Article  CAS  Google Scholar 

  • Jain A, Vasconcelos MJ, Raghothama KG, Sahi SV (2007) Molecular mechanisms of plant adaptation to phosphate deficiency. In: Janick J (ed) Plant breeding reviews, vol 29. Wiley, NJ, pp 359–419

    Chapter  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Liao H, Rubio G, Yan XL, Cao A, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Shi JQ, Qiu D, Li RY, Zhang CY, Wang J, Hou JN, Zhao JW, Shi L, Park BS, Choi SR, Lim YP, Meng JL (2007) Flowering time quantitative trait Loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    CAS  PubMed  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Neeraja C, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard B, Septiningsih E, Vergara G, Sanchez D, Xu K, Ismail A, Mackill D (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    Article  CAS  PubMed  Google Scholar 

  • Niewiadomski P, Knappe S, Geimer S, Fischer K, Schulz B, Unte US, Rosso MG, Ache P, Flugge UI, Schneider A (2005) The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 17:760–775

    Article  CAS  PubMed  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Morgan C, Shi JQ, Long Y, Liu J, Li RY, Zhuang XF, Wang YH, Tan XL, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li JY, Li DR, Meng JL, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • Reymond M, Svistoonoff S, Loudet O, Nyssaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Meng JL (2009) Unraveling the complex trait of crop yield with QTL mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  PubMed  Google Scholar 

  • Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Genet 109:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Shimizu A, Kato K, Komatsu A, Motomura K, Ikehashi H (2008) Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits. Theor Appl Genet 117:987–996

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Chen RJ, Harrison MJ (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–726

    Article  CAS  PubMed  Google Scholar 

  • Solaiman Z, Marschner P, Wang D, Rengel Z (2007) Growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability. Biol Fert Soils 44:143–153

    Article  CAS  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap®4.0: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Wang SC, Bastern J, Zeng ZB (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA

    Google Scholar 

  • Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897

    Article  CAS  PubMed  Google Scholar 

  • Yan XL, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    Article  CAS  Google Scholar 

  • Yan XL, Wu P, Ling HQ, Xu GH, Xu FS, Zhang QF (2006) Plant nutriomics in China: An overview. Ann Bot 98:473–482

    Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

  • Zhang HW, Huang Y, Ye XS, Shi L, Xu FS (2009) Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant Soil 320:91–102

    Article  CAS  Google Scholar 

  • Zhao JJ, Jamar DC, Lou P, Wang YH, Wu J, Wang XW, Bonnema G, Koornneef M, Vreugdenhil D (2008) Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa. Plant Cell Environ 31:887–900

    Article  CAS  PubMed  Google Scholar 

  • Zhu JM, Kaeppler SM, Lynch JP (2005a) Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency. Plant Soil 270:299–310

    Article  CAS  Google Scholar 

  • Zhu JM, Kaeppler SM, Lynch JP (2005b) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research and Development Program (2005CB120905), and the National 863 High Technology Program (2006AA10A112), China. The authors sincerely thank Prof. Xiaolong Yan and Prof. Hong Liao at the Root Biology Center, South China Agricultural University, for their kind help with the paper culture technique and the data analysis with WinRHIZO. We also thank the two anonymous reviewers for critical comments and valuable suggestions for revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangsen Xu.

Additional information

Communicated by H. Becker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2010_1301_MOESM1_ESM.xls

Supplementary material 1 (XLS 136 kb)Table S1a Framework map of 176 SSR markers constructed using the Brassica napus RIL population Table S1b Linkage map of 553 molecular markers constructed using the Brassica napus RIL population

122_2010_1301_MOESM2_ESM.doc

Supplementary material 2 (DOC 58 kb) Table S2 Pearson’s correlation coefficients between traits in the Brassica napus RIL population in the three experiments under high P (HP) and low P (LP) conditions

122_2010_1301_MOESM3_ESM.doc

Supplementary material 3 (DOC 138 kb) Table S3 All significant QTL detected by the composite interval method (CIM) at high P (HP) and low P (LP) conditions in the three independent experiments

122_2010_1301_MOESM4_ESM.doc

Supplementary material 4 (DOC 41 kb) Table S4 The phenotypic values under low P condition of the RI lines with contrary genotypes at the two loci of BnIPS2-C3 and BnGPT1-C3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Ding, G., Shi, L. et al. Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus . Theor Appl Genet 121, 181–193 (2010). https://doi.org/10.1007/s00122-010-1301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1301-1

Keywords

Navigation