Skip to main content
Log in

Identification of QTLs for phenolic compounds in oilseed rape (Brassica napus L.) by association mapping using SSR markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Association mapping identifies quantitative trait loci (QTLs) by examining the marker-trait associations that can be attributed to the strength of linkage disequilibrium between markers and functional polymorphisms across a set of diverse germplasm. In this study, association mapping was performed to detect QTL-linked and genome wide SSR markers linked to phenolic compounds of extraction meal in a population of 49 genetically diverse oilseed rape cultivars of dark-seeded, winter-type oilseed rape accessions. Correction for population structure was performed using 559 genome wide SSR markers. Results showed that seed colour is an important contributor to seed meal quality. Totally, 52 SSR markers linked to phenolic compounds were detected, five of them being QTL linked markers. Some of these markers were already mapped on Brassica napus chromosomes that contain known QTL controlling oilseed rape meal quality traits. Our results demonstrate that association mapping is a useful approach to complement and enhance previous QTL information for marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356. doi:10.1007/s11032-006-9066-6

    Article  Google Scholar 

  • Berg ES, Olaisen B (1994) Hybrid PCR sequencing—sequencing of PCR products using a universal primer. Biotechniques 17:896–901

    CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177. doi:10.1534/genetics.105.044586

    Article  PubMed  Google Scholar 

  • Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99. doi:10.1038/35052543

    Article  CAS  PubMed  Google Scholar 

  • Downey RK, Bell JM (1990) New developments in canola research. In: Shahidi F (ed) Canola and rapeseed: production, chemistry, nutrition and processing technology. Van Nostrand Reinhold, New York, pp 37–45

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Felde TZ, Becker HC, Mollers C (2006) Genotype × environment interactions, heritability and trait correlations of sinapate ester content in winter rapeseed (Brassica napus L.). Crop Sci 46:2195–2199. doi:10.2135/cropsci2006.03.0155

    Article  Google Scholar 

  • Felde TZ, Baumert A, Strack D, Becker HC, Mollers C (2007) Genetic variation for sinapate ester content in winter rapeseed (Brassica napus L.) and development of NIRS calibration equations. Plant Breed 126:291–296. doi:10.1111/j.1439-0523.2007.01342.x

    Article  CAS  Google Scholar 

  • Hasan M, Friedt W, Pons-Kuhnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp napus). Theor Appl Genet 116:1035–1049. doi:10.1007/s00122-008-0733-3

    Article  CAS  PubMed  Google Scholar 

  • Hüsken A, Baumert A, Strack D, Becker HC, Mollers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138. doi:10.1007/s11032-005-6825-8

    Article  Google Scholar 

  • Jannink J-L, Bink MC, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342. doi:10.1016/S1360-1385(01)02017-9

    Article  CAS  PubMed  Google Scholar 

  • Kozlowska H, Naczk M, Shahidi F, Zadernowski R (1990) Phenolic acids and tannins in rapeseed and canola. In: Shahidi F (ed) Canola and rapeseed: production chemistry, nutrition and processing technology. Van Nostrand Reinhold, New York, pp 193–210

    Google Scholar 

  • Krygier K, Sosulski FW, Hogge L (1982) Free, esterified, and insoluble-bound phenolic acids in rapeseed flours and hulls. J Agric Food Chem 30:334–336. doi:10.1021/jf00110a029

    Article  CAS  Google Scholar 

  • Matthäus B (1998) Isolation, fractionable and HPLC analysis of neutral phenolic compounds in rapeseeds. Nahrung 42:75–80

    Article  Google Scholar 

  • Naczk M, Nichols T, Pink D, Sosulski F (1994) Condensed tannins in canola hulls. J Agric Food Chem 42:2196–2200

    Article  CAS  Google Scholar 

  • Naczk M, Amarowic R, Sullivan A, Shahidi F (1998) Current research developments on polyphenolics of rapeseed/canola: a review. Food Chem 62:489–502. doi:10.1016/S0308-8146(97)00198-2

    Article  CAS  Google Scholar 

  • Naczk M, Amarowicz R, Pink D, Shahidi F (2000) Insoluble tannins of canola/rapeseed. J Agric Food Chem 48:1758–1762. doi:10.1021/jf9908401

    Article  CAS  PubMed  Google Scholar 

  • Naczk M, Pink J, Zadernowski R, Pink D (2002) Multivariate model for the prediction of total phenolic acids in crude extracts of polyphenols from canola and rapeseed meals: a preliminary study. J Am Oil Chem Soc 79:759–762. doi:10.1007/s11746-002-0555-x

    Article  CAS  Google Scholar 

  • Nowak H, Kujava R, Zadernowski R, Roczniak B, Kozlowska H (1992) Antioxidative and bactericidal properties of phenolic compounds in rapeseeds. Fat Sci Technol 94:149–152. doi:10.1002/lipi.19920940406

    CAS  Google Scholar 

  • Oraguzie NC, Wilcox PL (2007) An overview of association mapping. In: Oraguzie NC, Rikkerink EHA, Gardiner SE (eds) Association mapping in plants. Springer-Verlag, New York, pp 1–10

    Chapter  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Naczk M (1995) Food phenolics: sources, chemistry, effects, applications. Technomic Publishing Company, Inc, Lancaster, pp 231–245

    Google Scholar 

  • Somers DJ, Banks T, Depauw R, Fox S, Clarke J, Pozniak C, McCartney C (2003) Genome wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567. doi:10.1139/G07-031

    Article  Google Scholar 

  • Sun B, Conceicao Leandro M, De Freitas V, Spranger MI (2006) Fractionation of red wine polyphenols by solid-phase extraction and liquid chromatography. J Chromatogr A 1128:27–38. doi:10.1016/j.chroma.2006.06.026

    Article  CAS  PubMed  Google Scholar 

  • Thornsberry J, Goodman M, Doebley J, Kresovich S, Nielsen D (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nate Genet 28:286–289. doi:10.1038/90135

    Article  CAS  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140. doi:10.1007/s10681-009-9940-5

    Article  Google Scholar 

  • Xu XY, Bai GH, Carver BF, Shaner GE, Hunger RM (2005) Mapping of QTLs prolonging the latent period of Puccinia triticina infection in wheat. Theor Appl Genet 110:244–251. doi:10.1007/s00122-004-1819-1

    Article  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20. doi:10.3835/plantgenome2008.02.0089

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Friedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaeizad, A., Wittkop, B., Snowdon, R. et al. Identification of QTLs for phenolic compounds in oilseed rape (Brassica napus L.) by association mapping using SSR markers. Euphytica 177, 335–342 (2011). https://doi.org/10.1007/s10681-010-0231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0231-y

Keywords

Navigation