Skip to main content
Log in

Genetic analysis of phenylpropanoid metabolites associated with resistance against Verticillium longisporum in Brassica napus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Verticillium longisporum is a major threat to production of oilseed rape (Brassica napus) in Europe. The aim of the study was to develop new markers and obtain insights into putative mechanisms and pathways involved in the resistance reaction. A genetic approach was used to identify quantitative trait loci (QTL) for V. longisporum resistance and metabolic traits potentially influencing resistance in a B. napus mapping population. Resistance to V. longisporum was mapped in a doubled haploid (DH) population from a cross between the partially resistant winter oilseed rape variety Express 617 and a resistant resynthesized B. napus line, R53. One major resistance QTL contributed by R53 was identified on chromosome C5, while a further, minor QTL contributed by Express 617 was detected on chromosome C1. Markers flanking the QTL also significantly correlated with V. longisporum resistance in four further DH populations derived from crosses between elite oilseed rape cultivars and other resynthesized B. napus lines originating from genetically and geographically diverse brassica A and C genome donors. The tightly-linked markers developed enable the combination of favorable alleles for novel resistance loci from resynthesized B. napus materials with existing resistance loci from commercial breeding lines. HPLC analysis of hypocotyls from infected DH lines revealed that concentrations of a number of phenylpropanoids were correlated with V. longisporum resistance. QTL for some of these phenylpropanoids were also found to co-localize with the QTL for V. longisporum resistance. Genes from the phenylpropanoid pathway are suggested as candidates for V. longisporum resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhtar S, Bhat MA, Wani SA, Bhat KA, Chalkoo S, Mir MR, Wani SA (2010) Marker assisted selection in rice. J Phytol 2:66–81

    Google Scholar 

  • Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    Article  PubMed  Google Scholar 

  • Basunanda P, Spiller TH, Hasan M, Gehringer A, Schondelmaier J, Lühs W, Friedt W, Snowdon RJ (2007) Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breed 126:581–587

    Article  Google Scholar 

  • Basunanda P, Radoev M, Ecke W, Friedt H, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281

    Article  PubMed  CAS  Google Scholar 

  • Berg ES, Olaisen B (1994) Hybrid PCR sequencing—sequencing of PCR products using a universal primer. Biotechniques 17:896–901

    PubMed  CAS  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill G (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Dixon RA, Reddy MSS (2003) Biosynthesis of monolignols. Genomic and reverse genetic approaches. Phytochem Rev 2:289–306

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dunker S, Keunecke H, Steinbach P, von Tiedemann A (2008) Impact of Verticillium longisporum on yield and morphology of winter oilseed rape (Brassica napus) in relation to systemic spread in the plant. J Phytopathol 156:698–707

    Article  Google Scholar 

  • Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, von Tiedemann A (2007) Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol 118:259–274

    Article  Google Scholar 

  • Eynck C, Koopmann B, von Tiedemann A (2009a) Identification of Brassica accessions with enhanced resistance to Verticillium longisporum under controlled and field conditions. J Plant Dis Protect 116:63–72

    Google Scholar 

  • Eynck C, Koopmann B, Karlovsky P, von Tiedemann A (2009b) Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum. Phytopathology 99:802–811

    Article  PubMed  CAS  Google Scholar 

  • Eynck C, Séguin-Swartz G, Clarke WE, Parkin IAP (2012) Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa. Mol Plant Pathol 18:887–899. doi:10.1111/J.1364-3703.2012.00798.X

    Article  Google Scholar 

  • Fahleson J, Lagercrantz U, Hu Q, Steventon A, Dixelius C (2003) Estimation of genetic variation among Verticillium isolates using AFLP analysis. Eur J Plant Pathol 109:361–371

    Article  CAS  Google Scholar 

  • Fahleson J, Hu Q, Dixelius C (2004) Phylogenetic analysis of Verticillium species based on nuclear and mitochondrial sequences. Arch Microbiol 181:435–442

    Article  PubMed  CAS  Google Scholar 

  • Floerl S, Druebert C, Majcherczyk A, Karlovsky P, Kües U, Polle A (2008) Defense reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms. BMC Plant Biol 8:129

    Article  PubMed  Google Scholar 

  • Floerl S, Druebert C, Arroud HI, Karlovsky P, Polle A (2010) Disease symptoms and mineral nutrition in Arabidopsis thaliana in response to Verticillium longisporum VL43 infection. J Plant Pathol 92:695–702

    Google Scholar 

  • Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GCM, Joosten MHAJ, Thomma BPHJ (2011) Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol 156:2255–2265

    Article  PubMed  CAS  Google Scholar 

  • Götze S, Feussner K, Kaever A, Landesfeind M, Drübert C, Herrfurth C, Polle A, Karlovsky P, Meinicke P, Feussner I (2011) Phenylpropanoids in the interaction of Verticillium longisporum and Arabidopsis thaliana. In: Gatz C (ed) From foliar to root-interacting pathogens and symbionts, 16–18 Feb 2011, Georg August University Göttingen: poster presentations: abstract 33. http://wwwuser.gwdg.de/~rootmicr/. Accessed 1 March 2012

  • Häffner E, Karlovsky P, Diederichsen E (2010) Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana. BMC Plant Biol 10:235

    Article  PubMed  Google Scholar 

  • Happstadius I, Ljungberg A, Kristiansson B, Dixelius C (2003) Identification of Brassica oleracea germplasm with improved resistance to Verticillium wilt. Plant Breed 122:30–34

    Article  Google Scholar 

  • Heale JB, Karapapa VK (1999) The Verticillium threat to Canada’s major oilseed crop: Canola. Can J Plant Pathol 21:1–7

    Google Scholar 

  • Iniguez-Luy LF, Lukens L, Farnham MW, Amasino RM, Osborn TC (2009) Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor Appl Genet 120:31–43

    Article  PubMed  CAS  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  PubMed  CAS  Google Scholar 

  • Johansson A, Goud JKC, Dixelius C (2006a) Plant host range of Verticillium longisporum and miclosclerotia density in Swedish soils. Eur J Plant Pathol 114:139–149

    Article  Google Scholar 

  • Johansson A, Staal J, Dixelius C (2006b) Early responses in the Arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. Mol Plant Microbe Interact 19:958–969

    Article  PubMed  CAS  Google Scholar 

  • Karapapa VK, Bainbridge BW, Heale JB (1997) Morphological and molecular characterization of Verticillium longisporum comb. nov., pathogenic to oilseed rape. Mycol Res 101:1281–1294

    Article  Google Scholar 

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein DB (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lipsa FD, Snowdon R, Friedt W (2012) Quantitative genetic analysis of condensed tannins in oilseed rape meal. Euphytica 184:195–205

    Article  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Mielke T (2010) Global analysis. All major oilseeds, oils & oilmeals. Supply, demand and prices. Oil World Annual 2. ISTA Mielke GmbH. http://www.oilworld.de

  • Mittasch J, Mikolajewski S, Breuer F, Strack D, Milkowski C (2010) Genomic microstructure and differential expression of the genes encoding UDP-glucose:sinapate glucosyltransferase (UGT84A9) in oilseed rape (Brassica napus). Theor Appl Genet 120:485–500

    Article  Google Scholar 

  • Nagaoka T, Doullah MAU, Matsumoto S, Kawasaki S, Ishikawa T, Hori H, Okazaki K (2010) Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theor Appl Genet 120:1335–1346

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Padda MS, Picha DH (2007) Methology optimization for quantification of total phenolics and individual phenolic acids in sweetpotato (Ipomoea batatas L.) roots. J Food Sci 72:412–415

    Article  Google Scholar 

  • Pantelides IS, Fjamos SE, Paplomatas EJ (2010) Ethylen perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae. Mol Plant Pathol 11:191–202

    Article  PubMed  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M-J, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  PubMed  CAS  Google Scholar 

  • Radoev M (2007) Genetic Analysis of Heterosis in Rapeseed (B. napus L.) by QTL Mapping. Dissertation, Georg August University Göttingen, Germany. http://webdoc.sub.gwdg.de/diss/2007/radoev. Accessed 1 March 2012

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by QTL mapping. Genetics 179:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Ratzinger A, Riediger N, von Tiedemann A, Karlovsky P (2009) Salicylic acid and salicylic acid glucoside in xylem sap of Brassica napus infected with Verticillium longisporum. J Plant Res 122:571–579

    Article  PubMed  CAS  Google Scholar 

  • Rygulla W, Seyis F, Lühs W, Eynck C, von Tiedemann A, Friedt W, Snowdon RJ (2007a) Combination of resistance to Verticillium longisporum from zero erucic acid Brassica oleracea and oilseed Brassica rapa genotypes in resynthesised rapeseed (Brassica napus) lines. Plant Breed 126:596–602

    Article  CAS  Google Scholar 

  • Rygulla W, Snowdon RJ, Eynck C, Koopmann B, von Tiedemann A, Lühs W, Friedt W (2007b) Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridization. Phytopathology 97:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Rygulla W, Snowdon RJ, Friedt W, Happstadius I, Cheung WY, Chen D (2008) Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus L.). Phytopathology 98:215–221

    Article  PubMed  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Steventon LA, Okori P, Dixelius C (2001) An investigation of the susceptibility of Arabidopsis thaliana to isolates of two species of Verticillium. J Phytopathol 149:395–401

    Article  Google Scholar 

  • Steventon LA, Fahleson J, Hu Q, Dixelius C (2002) Identification of the causal agent of Verticillium wilt of winter oilseed rape in Sweden, V. longisporum. Mycol Res 106:570–578

    Article  CAS  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Ohyama A, Hirai M, Fukuoka H (2004) Characteristics of microsatellites in Brassica rapa genome and their potential utilization for comparative genomics in Cruciferae. Breed Sci 54:85–90

    Article  CAS  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: A program for composite interval mapping of QTL. J Agr Genomics 2:1-5. http://wheat.pw.usda.gov/jag/papers96/paper196/indexp196.html. Accessed 1 March 2012

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Veronese P, Narasimhan ML, Stevenson RA, Zhu JK, Weller SC, Subbarao KV, Bresan RA (2003) Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant J 35:574–587

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2011) Windows QTL Cartographer 2.5, Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 1 March 2012

  • Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62:5607–5621

    Article  PubMed  CAS  Google Scholar 

  • Zeise K, von Tiedemann A (2002) Host specialization among vegetative compatibility groups of Verticillium dahliae in relation to Verticillium longisporum. J Phytopathol 150:112–119

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Association for Promotion of Private German Plant Breeding (GFP) and the Agency for Renewable Resources (FNR) of the Federal Ministry for Nutrition, Agriculture and Consumer Protection (BMELV). The DH populations used for verification of the markers were developed by German rapeseed breeding companies affiliated with the GFP. We thank Jutta Schaper, Anja Pöltl, Bashir Hosseini, Christian Werner and Liane Renno for excellent technical assistance, and Benjamin Wittkop and Florin Lipsa for help in RP-HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Obermeier.

Additional information

Christian Obermeier and Muhammed Ali Hossain contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure S1

Typical V. longisporum disease symptoms on the stem of a Brassica napus plant in the field showing the black microsclerotia (in the middle of picture) (JPG 1571 KB)

Supplementary figure S2

V. longisporum- (left) and mock-inoculated B. napus plants (right) of the partially resistant reference cultivar ‘Express’ 28 days post inoculation in a greenhouse screening procedure (JPG 962 KB)

Supplementary figure S3

Frequency distribution for classes of normalized AUDPC values in four greenhouse screening experiments for V. longisporum resistance with subpopulations of DH lines of the oilseed rape mapping population ‘Express 617’ x ‘R53’ (PPT 243 kb)

11032_2012_9794_MOESM4_ESM.ppt

Supplementary figure S4 Frequency distribution for classes of total soluble phenolics concentrations in the hypocotyls of mock- and V. longisporum–inoculated DH lines of the oilseed rape mapping population ‘Express 617’ x ‘R53’ in greenhouse screening experiment 4 (PPT 164 kb)

Supplementary material 5 (DOC 48 kb)

Supplementary material 6 (XLSX 27 kb)

Supplementary material 7 (DOC 47 kb)

Supplementary material 8 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obermeier, C., Hossain, M.A., Snowdon, R. et al. Genetic analysis of phenylpropanoid metabolites associated with resistance against Verticillium longisporum in Brassica napus . Mol Breeding 31, 347–361 (2013). https://doi.org/10.1007/s11032-012-9794-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9794-8

Keywords

Navigation