Skip to main content

Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants

  • Chapter
  • First Online:
Phyto-Microbiome in Stress Regulation

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

One of the main obstacles to plant growth is the lack of the availability of nutrient elements in many agricultural environments in the world, especially the tropics where soils can be extremely low in nutrients. Using different mechanisms of action, plant growth-promoting rhizobacteria (PGPR) participate in geochemical nutrition cycles and determine their access to plants and the microbial community of the soil. Use of these bacteria as bio-inoculants will increase the availability of nutrient elements in soil, help to minimize the chemical fertilizer application, reduce environmental pollution, and promote sustainable agriculture. Considering comprehensive reviews previously published on plant growth enhancement mechanisms, this review focuses on what is known about the action mechanisms underlying the increase of the availability of nutrient elements as an effect of microbial colonization especially PGPR. In this chapter, some of the most important mechanisms and processes regarding the effects of PGPR on the availability and hence uptake of nutrient elements by plant are reviewed. The awareness of such mechanisms can be important for the selection and hence production of microbial inoculums, which are appropriate for biological fertilization as substituting or decreasing the need of using chemical fertilizers in crops. In this review, special consideration is given to the role of PGPR in the availability of nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) as macronutrients and iron (Fe) and manganese (Mn) as micronutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash P, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh H (2013) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20:5879–5885

    Article  CAS  Google Scholar 

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Google Scholar 

  • Abril A, Zurdo-Pineiro J, Peix A, Rivas R, Velazquez E (2007) Solubilization of phosphate by a strain of Rhizobium leguminosarum bv. trifolii isolated from Phaseolus vulgaris in El Chaco Arido soil (Argentina). In: First international meeting on microbial phosphate solubilization. Springer, Dordrecht, pp 135–138

    Chapter  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. J Inst Integr Omics Appl Biotechnol 3(3):39–46

    CAS  Google Scholar 

  • Ahemad M, Khan M (2010) Phosphate solubilizing Enterobacter asburiae strain PS2. Afr J Microbiol Res 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan M (2010a) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Eur Asian J Biosci 4:88–95

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan M (2011a) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 58:169–187

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2011b) Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide-stress. Microbiol J 1:54–64

    Article  Google Scholar 

  • Ahemad M, Khan MS (2011c) Effects of insecticides on plant-growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. strain PS19. Pestic Biochem Physiol 100:51–56

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011d) Pseudomonas aeruginosa strain PS1 enhances growth parameters of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. J Pest Sci 84:123–131

    Article  Google Scholar 

  • Ahemad M, Khan MS (2011e) Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Curr Microbiol 62:532–538

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2012a) Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451–459

    Google Scholar 

  • Ahemad M, Khan MS (2012b) Biotoxic impact of fungicides on plant growth promoting activities of phosphate-solubilizing Klebsiella sp. isolated from mustard (Brassica campestris) rhizosphere. J Pest Sci 85:29–36

    Google Scholar 

  • Ahemad M, Khan MS (2012c) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonasputida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2012d) Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann Microbiol 62:1531–1540

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ-Sci 26:1–20

    Article  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313

    Chapter  Google Scholar 

  • Altomare C, Tringovska I (2011) Beneficial soil microorganisms, an ecological alternative for soil fertility management. In: Lichtfouse E (ed) Genetics, biofuels and local farming systems. Springer Netherlands, Dordrecht, pp 161–214. https://doi.org/10.1007/978-94-007-1521-9_6

    Chapter  Google Scholar 

  • Amir H, Pineau R (2003) Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. Can J Microbiol 49:288–293

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Ann Revi Phytopathol 38:145–180

    Article  Google Scholar 

  • Archana D, Nandish M, Savalagi V, Alagawadi A (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil BIOINFOLET-A. Quart J Life Sci 10:248–257

    Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362. https://doi.org/10.1016/j.tibtech.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  • Autry A, Fitzgerald J (1990) Sulfonate S: a major form of forest soil organic sulfur. Biol Fertil Soils 10:50–56

    CAS  Google Scholar 

  • Azam F, Memon G (1996) Soil organisms. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp 200–232

    Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:15–16

    Article  Google Scholar 

  • Babana A, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant and Soil 287:51–58

    Article  CAS  Google Scholar 

  • Badr MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Res J Chem Sci ISSN 2231:606X

    Google Scholar 

  • Balogh-Brunstad Z, Keller C, Gill R, Bormann B, Li C (2008) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry 88:153–167

    Article  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. John Wiley & Sons, New York

    Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Article  CAS  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316. https://doi.org/10.1007/s00248-006-9164-3

    Article  CAS  PubMed  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant and Soil 317:235–255. https://doi.org/10.1007/s11104-008-9805-z

    Article  CAS  Google Scholar 

  • Basak B, Biswas D (2012) Modification of waste mica for alternative source of potassium: evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). LAP LAMBERT Academic Publishing, Riga

    Google Scholar 

  • Beattie GA (2007) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Plant-associated bacteria. Springer, Dordrecht, pp 1–56

    Google Scholar 

  • Becerra-Castro C, Prieto-Fernández A, Álvarez-López V, Monterroso C, Cabello-Conejo M, Acea M, Kidd P (2011) Nickel solubilizing capacity and characterization of rhizobacteria isolated from hyperaccumulating and non-hyperaccumulating subspecies of Alyssum serpyllifolium. Int J Phytoremediation 13:229–244

    Article  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423. https://doi.org/10.1111/j.1469-8137.2008.02657.x

    Article  CAS  PubMed  Google Scholar 

  • Bennett P, Choi W, Rogera J (1998) Microbial destruction of feldspars. Miner Manage 8:149–150

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Borch K, Bouma T, Lynch J, Brown K (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22:425–431

    Article  CAS  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339. https://doi.org/10.1023/A:1020218608266

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286. https://doi.org/10.1016/j.chemosphere.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  • Bünemann E (2008) Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients. Soil Biol Biochem 40:2116–2129

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Butterly C, Bünemann E, McNeill A, Baldock J, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416

    Article  CAS  Google Scholar 

  • Caballero-Mellado J, Onofre-Lemus J, Estrada-De Los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvaruso C, Turpault M-P, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577

    Article  PubMed  Google Scholar 

  • Carrillo-Castañeda G, Juárez Muñoz J, Ramón Peralta-Videa J, Gomez E, Gardea-Torresdey JL (2002) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in Alfalfa seedlings. J Plant Nutr 26:1801–1814

    Article  CAS  Google Scholar 

  • Chaintreuil C et al (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamam A et al (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry 87:65–77

    Article  CAS  PubMed  Google Scholar 

  • Charlson DV, Shoemaker RC (2006) Evolution of iron acquisition in higher plants. J Plant Nutr 29:1109–1125. https://doi.org/10.1080/01904160600689266

    Article  CAS  Google Scholar 

  • Chen L, Dodd IC, Theobald JC, Belimov AA, Davies WJ (2013) The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J Exp Bot 64(6):1565–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Combes-Meynet E, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2, 4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microbe Interact 24:271–284

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Contesto C et al (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189

    Article  Google Scholar 

  • Criquet S, Ferre E, Farnet A (2004) Annual dynamics of phosphatase activities in an evergreen oak litter: influence of biotic and abiotic factors. Soil Biol Biochem 36:1111–1118

    Article  CAS  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

    Chapter  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349. https://doi.org/10.1038/35053080

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil 245:35–47

    Article  CAS  Google Scholar 

  • Dalla Santa OR, Hernández RF, Alvarez GLM, Ronzelli Junior P, Soccol CR (2004) Azospirillum sp. inoculation in wheat, barley and oats seeds greenhouse experiments. Brazilian Arch Biol Technol 47:843–850

    Article  Google Scholar 

  • Dalton DA, Kramer S (2006) Nitrogen-fixing bacteria in non-legumes. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer Netherlands, Dordrecht, pp 105–130. https://doi.org/10.1007/978-1-4020-4538-7_3

    Chapter  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291

    Chapter  Google Scholar 

  • Datta M, Banik S, Gupta R (1982) Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69:365–373

    Article  CAS  Google Scholar 

  • Desai A, Archana G (2011) Role of siderophores in crop improvement. In: Maheshwari KD (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, Heidelberg, pp 109–139. https://doi.org/10.1007/978-3-642-21061-7_6

    Chapter  Google Scholar 

  • Diby P, Bharathkumar S, Sudha N (2005) Osmotolerance in biocontrol strain of pseudomonas pseudoalcaligenes MSP-538: a study using osmolyte, protein and gene expression profiling. Ann Microbiol 55:243–247

    CAS  Google Scholar 

  • Diby P, Sarma YR, Srinivasan V, Anandaraj M (2005b) Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L.) under green house cultivation. Ann Microbiol 55:171–174

    Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province Vietnam. Am J Life Sci 1:88–92

    Article  CAS  Google Scholar 

  • Dighton J, Boddy L (1989) Role of fungi in nitrogen, phosphorus and sulphur cycling in temperate forest ecosystems.

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil 212:153–162

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Döbereiner J, Day J, Dart P (1972) Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-Azotobacter paspali association. Microbiology 71:103–116

    Google Scholar 

  • Drogue B, Combes-Meynet E, Moënne-Loccoz Y, Wisniewski-Dyé F, Prigent-Combaret C (2013) Control of the cooperation between plant growth-promoting Rhizobacteria and crops by rhizosphere signals. Mol Microbial Ecol Rhizosphere 1 and 2:279–293

    Article  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244

    Article  PubMed  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plantarum 31:861–864

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571. https://doi.org/10.1007/s00374-009-0366-y

    Article  Google Scholar 

  • El Zemrany H et al (2006) Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil Biol Biochem 38:1712–1726

    Article  CAS  Google Scholar 

  • El-Khawas H, Adachi K (1999) Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertil Soils 28:377–381

    Article  CAS  Google Scholar 

  • Esquivel-Cote R, Ramírez-Gama RM, Tsuzuki-Reyes G, Orozco-Segovia A, Huante P (2010) Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant and Soil 337:65–75. https://doi.org/10.1007/s11104-010-0499-7

    Article  CAS  Google Scholar 

  • Etesami H, Hosseini H, Alikhani H, Mohammadi L (2014) Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. J Plant Growth Regul 33:654–670. https://doi.org/10.1007/s00344-014-9415-3

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani H, Mirseyed Hosseini H (2015a) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem. Sustainable development and biodiversity, vol vol. 12. Springer International Publishing, Cham, pp 183–258. https://doi.org/10.1007/978-3-319-24654-3_8

    Chapter  Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015b) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2:72–78. https://doi.org/10.1016/j.mex.2015.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández V, Winkelmann G (2005) The determination of ferric iron in plants by HPLC using the microbial iron chelator desferrioxamine E. Biometals 18:53–62. https://doi.org/10.1007/s10534-004-5773-9

    Article  CAS  PubMed  Google Scholar 

  • Fowler D, Smith R, Muller J, Hayman G, Vincent K (2005) Changes in the atmospheric deposition of acidifying compounds in the UK between 1986 and 2001. Environ Pollut 137:15–25

    Article  CAS  PubMed  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil 321:35–59

    Article  CAS  Google Scholar 

  • Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5

    Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant and Soil 191:181–188

    Article  CAS  Google Scholar 

  • Gamalero E, Glick BR (2012) Plant growth-promoting bacteria and metals phytoremediation phytotechnologies. In: Remediation of environmental contaminants. CRC Press, Boca Raton, pp 361–376

    Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  PubMed  Google Scholar 

  • Garcia NS, Fu F, Sedwick PN, Hutchins DA (2015) Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria. ISME J 9:238–245. https://doi.org/10.1038/ismej.2014.104

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012a) Plant growth-promoting bacteria: mechanisms and applications. Scientifica:1–15

    Google Scholar 

  • Glick BR (2012b) Plant growth-promoting bacteria: mechanisms and applications. Scientifica:963401. 15 p.

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2015a) Introduction to plant growth-promoting bacteria. In: Glick RB (ed) Beneficial plant-bacterial interactions. Springer International Publishing, Cham, pp 1–28. https://doi.org/10.1007/978-3-319-13921-0_1

    Chapter  Google Scholar 

  • Glick BR (2015b) Issues regarding the use of PGPB. In: Glick RB (ed) Beneficial plant-bacterial interactions. Springer International Publishing, Cham, pp 223–243. https://doi.org/10.1007/978-3-319-13921-0_8

    Chapter  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412. https://doi.org/10.1016/j.soilbio.2004.08.030

    Article  CAS  Google Scholar 

  • Groudev SN (1987) Use of heterotrophic microorganisms in mineral biotechnology. Eng Life Sci 7:299–306

    Google Scholar 

  • Guerinot ML (2010) Iron. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients. Springer, Berlin, Heidelberg, pp 75–94. https://doi.org/10.1007/978-3-642-10613-2_4

    Chapter  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Res Rev J Microbiol Biotechnol 2:1–7

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh L, Poole P (2002) Role of soil microorganisms in improving P nutrition of plants. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 133–143

    Chapter  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of egg plant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Hartmann A, Schmid M, Dv T, Berg G (2008) Plant-driven selection of microbes. Plant and Soil 321:235–257. https://doi.org/10.1007/s11104-008-9814-y

    Article  CAS  Google Scholar 

  • Harvey P, Warren R, Wakelin S (2009) Potential to improve root access to phosphorus: the role of non-symbiotic microbial inoculants in the rhizosphere. Crop Pasture Sci 60:144–151

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • He LY, Zhang YF, Ma HY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55

    Google Scholar 

  • He H et al (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Hong YF et al (2008) The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato. Plant Mol Biol 67:347–361. https://doi.org/10.1007/s11103-008-9324-6

    Article  CAS  PubMed  Google Scholar 

  • Hue NV, Vega S, Silva JA (2001) Manganese toxicity in a Hawaiian Oxisol affected by soil pH and organic amendments. Soil Sci Soc Am J 65:153–160

    Article  CAS  Google Scholar 

  • Hummerjohann J, Laudenbach S, Rétey J, Leisinger T, Kertesz MA (2000) The sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a New Member of thecys Regulon. J Bacteriol 182:2055–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates—solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Illmer P, Barbato A, Schinner F (1995) Solubilization of hardly-soluble AlPO 4 with P-solubilizing microorganisms. Soil Biol Biochem 27:265–270

    Article  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18:169–178. https://doi.org/10.1094/mpmi-18-0169

    Article  CAS  PubMed  Google Scholar 

  • Irwin JG, Campbell G, Vincent K (2002) Trends in sulphate and nitrate wet deposition over the United Kingdom: 1986–1999. Atmos Environ 36:2867–2879

    Article  CAS  Google Scholar 

  • Jain A et al (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsen I, Leggett ME, Richardson AE, Sims J, Sharpley A (2005) Rhizosphere microorganisms and plant phosphorus uptake. Phosphorus: Agric Environ:437–494

    Google Scholar 

  • James EK et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z 67. Mol Plant Microbiol Interact 15:894–906

    Article  CAS  Google Scholar 

  • Janssen A, Meijer S, Bontsema J, Lettinga G (1998) Application of the redox potential for controlling a sulfide oxidizing bioreactor. Biotechnol Bioeng 60:147–155

    Article  CAS  PubMed  Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer, Berlin, Heidelberg, pp 67–132. https://doi.org/10.1007/978-3-642-04812-8_2

    Chapter  Google Scholar 

  • Jiang C-Y, Sheng X-F, Qian M, Wang Q-Y (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Google Scholar 

  • Jin CW, He YF, Tang CX, Wu P, Zheng SJ (2006) Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant. Cell Environ 29:888–897

    Article  Google Scholar 

  • Johnson GV, Lopez A, La Valle FN (2002) Reduction and transport of Fe from siderophores. Plant and Soil 241:27–33. https://doi.org/10.1023/A:1016007708926

    Article  CAS  Google Scholar 

  • Jones D, Dennis P, Owen A, Van Hees P (2003) Organic acid behavior in soils–misconceptions and knowledge gaps. Plant and Soil 248:31–41

    Article  CAS  Google Scholar 

  • Jorquera MA, Hernández MT, Rengel Z, Marschner P, de la Luz MM (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129

    Article  CAS  Google Scholar 

  • Karuppiah P, Rajaram S (2011) Exploring the potential of chromium reducing Bacillus sp. and there plant growth promoting activities. J Microbiol Res 1:17–23

    Article  Google Scholar 

  • Kertesz MA (2000) Riding the sulfur cycle–metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175

    CAS  PubMed  Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55:1939–1945. https://doi.org/10.1093/jxb/erh176

    Article  CAS  PubMed  Google Scholar 

  • Kertesz MA, Fellows E, Schmalenberger A (2007) Rhizobacteria and plant sulfur supply. Adv Appl Microbiol 62:235–268

    Article  CAS  PubMed  Google Scholar 

  • Keshavarz Zarjani J, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Akhtar M, Mahmood M, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Microbial strategies for crop improvement. Springer, Berlin, Heidelberg, pp 133–160

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007a) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007b) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43. https://doi.org/10.1051/agro:2006011

    Article  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009a) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009b) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Kim K, McDonald G, Jordan D (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24:347–352

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald G (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Konhauser K, Ferris F (1996) Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: Implications for Precambrian iron formations. Geology 24:323–326

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya B, Raghuwanshi R, Meena V, Singh D, Dixit J (2015) Does a plant growth promoting rhizobacteria enhance agricultural sustainability. J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar KV, Singh N, Behl H, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  PubMed  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl H (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    Google Scholar 

  • Kundu BS, Sangwan P, Sharma PK, Nandwal AS (1997) Response of pearl millet to phytohormones produced by Azospirillum brasilense. Indian J Plant Physiol 2:101–104

    CAS  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198(3):656–669

    Google Scholar 

  • Lambrecht M, Okon Y, Broek AV, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol 8:298–300

    Article  CAS  PubMed  Google Scholar 

  • Latour X, Delorme S, Mirleau P, Lemanceau P (2009) Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: description of a strategy based on population and model strain studies. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer Netherlands, Dordrecht, pp 285–296. https://doi.org/10.1007/978-90-481-2666-8_19

    Chapter  Google Scholar 

  • Lemanceau P, Expert D, Gaymard F, Bakker PAHM, Briat JF (2009) Chapter 12 Role of iron in plant–microbe interactions. In: Advances in botanical research, vol vol. 51. Academic Press, pp 491–549. https://doi.org/10.1016/S0065-2296(09)51012-9

  • Leustek T, Martin MN, Bick J-A, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Biol 51:141–165

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1989) Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg, and Fe mobilization from minerals and plant growth. Plant and Soil 117:103–110

    Article  CAS  Google Scholar 

  • Li K, Ramakrishna W (2011) Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189:531–539

    Google Scholar 

  • Li F, Li S, Yang Y, Cheng L (2006) Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrol Mineral 25:440–448

    CAS  Google Scholar 

  • Lian B, Fu P, Mo D, Liu C (2002) A comprehensive review of the mechanism of potassium releasing by silicate bacteria. Acta Mineral Sin 22:179–183

    Google Scholar 

  • Liermann LJ, Kalinowski BE, Brantley SL, Ferry JG (2000) Role of bacterial siderophores in dissolution of hornblende. Geochim Cosmochim Acta 64:587–602

    Article  CAS  Google Scholar 

  • Lin Q-M, Rao Z-H, Sun Y-X, Yao J, Xing L-J (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Liu W, Xu X, Wu X, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Google Scholar 

  • Lugtenberg B (2015) Life of microbes in the rhizosphere. In: Lugtenberg B (ed) Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer International Publishing, Cham, pp 7–15. https://doi.org/10.1007/978-3-319-08575-3_3

    Chapter  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Turner review no. 14. Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131:1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Rajkumar M, Vicente J, Freitas H (2010) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13:126–139

    Article  CAS  Google Scholar 

  • Marschner H, Rimmington G (1988) Mineral nutrition of higher plants. Plant Cell Environ 11:147–148

    Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  CAS  PubMed  Google Scholar 

  • Maurya B, Meena VS, Meena O (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from Waste mica. Vegetos 27:181–187

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530. https://doi.org/10.1016/j.plantsci.2003.10.025

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2015) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 1–20

    Google Scholar 

  • Mengel K, Kirkby E (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Mills HAJJ et al. (1996) Plant analysis handbook II: a practical preparation, analysis, and interpretation guide. Potash and Phosphate Institute

    Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Gupta G, Jha PN (2012) Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. J Basic Microbiol 52:549–558

    Google Scholar 

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    Article  CAS  Google Scholar 

  • Mostajeran A, Amooaghaie R, Emtiazi G (2002) Root hair density and deformation of inoculated roots of wheat cultivars by Azospirillum brasilense Azospirillum/Trichoderma: the effects on dry bean and role of IAA in this phenomenon. Iranian Biol J 13:18–28

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Phosphorus in action. Springer, Heidelberg, pp 215–243

    Chapter  Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408. https://doi.org/10.1093/aob/mcs285

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424

    Article  CAS  PubMed  Google Scholar 

  • Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 7:404–419

    Article  CAS  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  CAS  PubMed  Google Scholar 

  • Osorio Vega NW (2007) A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake Revista Facultad Nacional de Agronomia. Medellin 60:3621–3643

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Google Scholar 

  • Pagella C, De Faveri D (2000) H 2 S gas treatment by iron bioprocess. Chem Eng Sci 55:2185–2194

    Article  CAS  Google Scholar 

  • Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI (2013) Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Scientific World Journal 2013

    Google Scholar 

  • Park MR, Baek S-H, Reyes BG, Yun SJ (2007) Overexpression of a high-affinity phosphate transporter gene from tobacco (NtPT1) enhances phosphate uptake and accumulation in transgenic rice plants. Plant and Soil 292:259–269. https://doi.org/10.1007/s11104-007-9222-8

    Article  CAS  Google Scholar 

  • Parker DR, Reichman SM, Crowley DE (2005) Metal chelation in the rhizosphere. Agronomy 48:57

    CAS  Google Scholar 

  • Parks EJ, Olson GJ, Brinckman FE, Baldi F (1990) Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. J Ind Microbiol 5:183–189

    Article  CAS  Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  CAS  Google Scholar 

  • Parmar P, Sindhu S (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Paul D (2012) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 52:1–10

    Article  Google Scholar 

  • Paul D, Sarma YR (2006) Plant growth promoting rhizobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS Root software. Arch Phytopathol Plant Protect 39:311–314. https://doi.org/10.1080/03235400500301190

    Article  CAS  Google Scholar 

  • Pedraza RO, Ramírez-Mata A, Xiqui ML, Baca BE (2004) Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol Lett 233:15–21

    Article  CAS  PubMed  Google Scholar 

  • Pereira PAA, Bliss FA (1989) Selection of common bean (Phaseolus vulgaris L.) for N2 fixation at different levels of available phosphorus under field and environmentally-controlled conditions. Plant and Soil 115:75–82

    Article  CAS  Google Scholar 

  • Pérez-Torres C-A, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrini LE, Petrini O, Laflamme G (1989) Recovery of endophytes of Abies balsamea from needles and galls of Paradiplosis tumifex. Phytoprotection 70:97–103

    Google Scholar 

  • Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:e370

    Google Scholar 

  • Pothier JF, Wisniewski-Dye F, Weiss-Gayet M, Moenne-Loccoz Y, Prigent-Combaret C (2007) Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology 153:3608–3622

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    Article  PubMed  Google Scholar 

  • Prajapati K, Modi H (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIBTech J Microbiol 1:8–14

    Google Scholar 

  • Prajapati K, Sharma M, Modi H (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leaflets 5:71–75

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on okra (Abelmoscus Esculantus). Int J Agric Sci Res (IJASR) 1:181–188

    Google Scholar 

  • Rajawat M, Singh S, Singh G, Saxena A (2012) Isolation and characterization of K-solubilizing bacteria isolated from different rhizospheric soil. In: Proceeding of 53rd annual conference of association of microbiologists of India, p 124

    Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Res 117:169–176

    Article  Google Scholar 

  • Ramos-Solano B, Lucas García JA, Garcia-Villaraco A, Algar E, Garcia-Cristobal J, Gutierrez Mañero FJ (2010) Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L. Plant and Soil 334:189–197. https://doi.org/10.1007/s11104-010-0371-9

    Article  CAS  Google Scholar 

  • Rashid M, Khalil S, Ayub N, Alam S, Latif F (2004a) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Rashid N, Imanaka H, Fukui T, Atomi H, Imanaka T (2004b) Presence of a novel phosphopentomutase and a 2-deoxyribose 5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic archaeon Thermococcus kodakaraensis. J Bacteriol 186:4185–4191. https://doi.org/10.1128/jb.186.13.4185-4191.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasouli-Sadaghiani M, Malakouti MJ, Khavazi K, Miransari M (2014) Siderophore Efficacy of Fluorescent Pseudomonades Affecting Labeled Iron (59Fe) Uptake by Wheat (Triticum aestivum L.) Genotypes Differing in Fe Efficiency. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses: Volume 2: Alleviation of soil stress by PGPR and Mycorrhizal fungi. Springer New York, New York, NY, pp 121–132. https://doi.org/10.1007/978-1-4939-0721-2_7

    Chapter  Google Scholar 

  • Renella G, Egamberdiyeva D, Landi L, Mench M, Nannipieri P (2006) Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd-contaminated soils. Soil Biol Biochem 38:702–708

    Article  CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson A, Pankhurst C, Doube B, Gupta V, Grace P (1994) Soil microorganisms and phosphorus availability Soil biota: management in sustainable farming systems, 50–62

    Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321:305–339

    Article  CAS  Google Scholar 

  • Robertson LA, Kuenen JG (2006) The colorless sulfur bacteria. In: The prokaryotes. Springer, New York, pp 985–1011

    Chapter  Google Scholar 

  • Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat J-F, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225

    Article  CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil 287:15–21

    Article  CAS  Google Scholar 

  • Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant and Soil 335:155–180

    Article  CAS  Google Scholar 

  • Rosenqvist J, Kilpatrick AD, Yardley BW (2014) Rochelle CA dissolution of K-feldspar at CO2-saturated conditions. In: EGU General Assembly Conference Abstracts, p 10909

    Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Saharan B (2011) Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648. https://doi.org/10.1007/s10295-007-0240-6

    Article  CAS  PubMed  Google Scholar 

  • Sandip B, Subrata P, Swati RG (2011) Isolation and characterization of plant growth promoting Bacillus Thuringiensis from agricultural soil of West Bengal. Res J Biotechnol 6:9–13

    CAS  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices Aromat Crops 21

    Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767. https://doi.org/10.1093/aob/mct048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan V, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Tilak K (1998) Free-living nitrogen fixers: Its role in crop production Microbes for Health, Wealth and Sustainable Environment, Malhotra Publ Co, New Delhi Edited by Verma AK: 25-64

    Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188–193. https://doi.org/10.1016/S1360-1385(03)00048-7

    Article  CAS  PubMed  Google Scholar 

  • Seeling B, Zasoski RJ (1993) Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil. Plant and Soil 148:277–284

    Article  CAS  Google Scholar 

  • Sevilla M, Gunapala N, Burris R, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant Microbe Interact 14:358–366

    Article  CAS  PubMed  Google Scholar 

  • Shaharoona B, Jamro G, Zahir Z, Arshad M, Memon K (2007) Effectiveness of Various Pseudomonas spp. and Burkholderia caryophylli Containing ACC-Deaminase for Improving Growth and Yield of Wheat (Triticum aestivum I.). J Microbiol Biotechnol 17:1300

    CAS  PubMed  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP 3 influences iron acquisition in mung bean (Vigna radiata L. Wilczek). Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:1

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar S (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, Switzerland, pp 203–219

    Chapter  Google Scholar 

  • Shelobolina E, Xu H, Konishi H, Kukkadapu R, Wu T, Blöthe M, Roden E (2012) Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl Environ Microbiol 78:5746–5752. https://doi.org/10.1128/AEM.01034-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Google Scholar 

  • Sheng X, Huang W (2001) Mechanism of potassium release from feldspar affected by the sprain Nbt of silicate bacterium. Acta Pedol Sin 39:863–871

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Shweta B, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC (2008) Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). J Microbiol Biotechnol 18:1578–1583

    CAS  PubMed  Google Scholar 

  • Siebner-Freibach H, Hadar Y, Chen Y (2003) Siderophores sorbed on Ca-montmorillonite as an iron source for plants. Plant and Soil 251:115–124

    Article  CAS  Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2014a) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Geomicrobiology and biogeochemistry. Springer, Berlin, pp 175–198

    Chapter  Google Scholar 

  • Sindhu SS, Phour M, Choudhary SR, Chaudhary D (2014b) Phosphorus cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants. In: Geomicrobiology and biogeochemistry. Springer, Berlin, pp 199–237

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185

    Chapter  Google Scholar 

  • Singh AK, Cameotra SS (2013) Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria. Appl Biochem Biotechnol 170:1038–1056

    Article  CAS  PubMed  Google Scholar 

  • Singh JS, Pandey VC, Singh D (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development Agriculture. Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • Singh Y, Ramteke P, Shukla PK (2013) Isolation and characterization of heavy metal resistant Pseudomonas spp. and their plant growth promoting activities. Adv Appl Sci Res 4:269–272

    CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use Maize (Zea mays) Rhizobacteria as Plant Growth Promoter? Vegetos-An Int J Plant Res 28:86–99

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312:15–23. https://doi.org/10.1007/s11104-008-9560-1

    Article  CAS  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. In: Advances in soil science. Springer, New York, pp 1–63

    Google Scholar 

  • Sridevi M, Mallaiah K, Yadav N (2007) Phosphate solubilization by Rhizobium isolates from Crotalaria species. J Plant Sci 2:635–639

    Article  CAS  Google Scholar 

  • Stamford NP, Santos PRD, Moura AMMFD, Freitas ADSS (2003) Biofertilizers with natural phosphate, sulphur and Acidithiobacillus in a soil with low available P. Sci Agricola 60:767–773

    Article  CAS  Google Scholar 

  • Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick BR (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708

    Article  CAS  PubMed  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Štyriakova I, Štyriak I, Galko I, Hradil D, Bezdicka P (2003) The release of iron-bearing minerals and dissolution of feldspars by heterotrophic bacteria of Bacillus species. Ceram Silik 47:20–26

    Google Scholar 

  • SubbaRao NS (1982) Advances in agricultural microbiology Oxford and IBH Publications Company, India: 229–305

    Google Scholar 

  • Subhashini D, Kumar A (2014) Phosphate solubilising Streptomyces spp. obtained from the rhizosphere of Ceriops decandra of Coringa mangroves. Indian J Agric Sci:84

    Google Scholar 

  • Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388. https://doi.org/10.1016/j.biotechadv.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  • Swaby R, Sperber J (1958) Phosphate dissolving micro-organisms in the rhizosphere of legumes Nutrition of the legumes (EG Hollworth, ed):289-294

    Google Scholar 

  • Tang C, Robson AD, Dilworth MJ (1990) A split-root experiment shows that iron is required for nodule initiation in Lupinus angustifolius L. New Phytol 115:61–67

    Article  CAS  Google Scholar 

  • Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94

    Article  CAS  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Yadav RS, Meena SC (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164:279–282

    Article  CAS  Google Scholar 

  • Taurian T et al (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant and Soil 329:421–431

    Article  CAS  Google Scholar 

  • Theunis M (2005) IAA biosynthesis in rhizobia and its potential role in symbiosis PhD thesis, Universiteit Antwerpen

    Google Scholar 

  • Trolove S, Hedley M, Kirk G, Bolan N, Loganathan P (2003) Progress in selected areas of rhizosphere research on P acquisition. Soil Res 41:471–499

    Article  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: A review. Appl Biochem Microbiol 42:117–126. https://doi.org/10.1134/S0003683806020013

    Article  CAS  Google Scholar 

  • Turner BL (2006) Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Inositol phosphates: linking agriculture and the environment, vol 4. CAB International, Wallingford, UK, p 186

    Google Scholar 

  • Ullman WJ, Welch SA (2002) Organic ligands and feldspar dissolution water–rock interactions, ore deposits, and environmental geochemistry: A tribute to David Crerar. Special Publication 7:3–35

    CAS  Google Scholar 

  • Upadhyay A, Srivastava S (2010) Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd

    Google Scholar 

  • Uroz S, Calvaruso C, Turpault M-P, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Google Scholar 

  • Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Urrutia MM, Beveridge TJ (1994) Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis). Chem Geol 116:261–280

    Article  CAS  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DL (1994) Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microb Ecol 27:241–251

    Article  CAS  PubMed  Google Scholar 

  • Vansuyt G, Robin A, Briat J-F, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–447

    Article  CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Velázquez E, Silva LR, Ramírez-Bahena M-H, Peix A (2016) Diversity of Potassium-Solubilizing Microorganisms and Their Interactions with Plants. In: Meena SV, Maurya RB, Verma PJ, Meena SR (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer India, New Delhi, pp 99–110. https://doi.org/10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Veresoglou SD, Menexes G (2010) Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant and Soil 337:469–480

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wainwright M (1984) Sulfur oxidation in soils. Adv Agron 37:349–396

    Article  CAS  Google Scholar 

  • Walker V et al (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant and Soil 356:151–163

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Wang RR, Wang Q, He LY, Qiu G, Sheng XF (2015) Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals. World J Microbiol Biotechnol 31:747–753

    Article  CAS  PubMed  Google Scholar 

  • Welch S, Taunton A, Banfield J (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J 19:343–367

    Article  CAS  Google Scholar 

  • Wen F, VanEtten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw MA (1999) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  Google Scholar 

  • Wintergerst ES, Maggini S, Hornig DH (2007) Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51:301–323. https://doi.org/10.1159/000107673

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xiafang S, Weiyi H (2002) Study on the conditions of potassium release by strain NBT of silicate bacteria Scientia Agricultural Sinica (China)

    Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions TAG Theoretical and applied genetics Theoretische und angewandte. Genetik 115:35–46. https://doi.org/10.1007/s00122-007-0538-9

    Article  CAS  Google Scholar 

  • Yehuda Z, Shenker M, Romheld V, Marschner H, Hadar Y, Chen Y (1996) The Role of Ligand Exchange in the Uptake of Iron from Microbial Siderophores by Gramineous Plants. Plant Physiol 112:1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42

    Chapter  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani P (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Microbial strategies for crop improvement. Springer, pp 23–50

    Google Scholar 

  • Zeng X, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and Potassium-Solubilizing Ability of Bacillus Circulans Z 1–3. Adv Sci Lett 10:173–176

    Article  CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang A-M, Zhao G-Y, Gao T-G, Wang W, Li J, Zhang S-F, Zhu B-C (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47

    Article  CAS  Google Scholar 

  • Zhao F, X-f S, Huang Z, He L (2008) Isolation of mineral potassium-solubilizing bacterial strains from agricultural soils in Shandong Province. Biodivers Sci 16:593–600

    Article  CAS  Google Scholar 

  • Zheng C-J, Tu G-q (2005) Study on the potassium dissolving ability of silicate bacteria. J Shaoguan Univ (Soc Sci) 6:025

    Google Scholar 

  • Zhu D, Kwon S, Pignatello JJ (2005) Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions. Environ Sci Tech 39:3990–3998. https://doi.org/10.1021/es050129e

    Article  CAS  Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture–status and perspectives. J Plant Physiol 171:656–669

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Zhang F (2010) Soil and crop management strategies to prevent iron deficiency in crops. Plant and Soil 339:83–95. https://doi.org/10.1007/s11104-010-0566-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank University of Tehran and University of Saskatchewan for providing the necessary facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Etesami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Etesami, H., Adl, S.M. (2020). Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. In: Kumar, M., Kumar, V., Prasad, R. (eds) Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2576-6_9

Download citation

Publish with us

Policies and ethics