Skip to main content
Log in

Pseudomonasaeruginosa strain PS1 enhances growth parameters of greengram [Vignaradiata (L.) Wilczek] in insecticide-stressed soils

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Plant growth promoting rhizobacteria (PGPR) are known to increase growth and vigor of legumes in conventional cropping systems. Considering this as a basis, this study was aimed at identifying phosphate-solubilizing (PS) rhizobacterial strains expressing higher tolerance to insecticides, fipronil and pyriproxyfen, and synthesizing plant growth regulators even amid insecticide stress. The impact of selected rhizobacteria endowed with multitude of activities was investigated on greengram, grown in soils treated with different concentrations of insecticides. The fipronil and pyriproxyfen tolerant Pseudomonas aeruginosa strain PS1 produced plant growth promoting substances, both in the presence and absence of the insecticides. Both insecticides at recommended and higher rates, in general, had phytotoxic effects and decreased phytomass, symbiotic properties, nutrients uptake, and seed yield of greengram plants. Interestingly, P. aeruginosa PS1 even when used with all concentrations of the two insecticides significantly increased the measured parameters at 50 and 80 days after sowing, compared to the plants grown in soils treated with the same concentration of each insecticide but without inoculants. P. aeruginosa PS1 can be used as biofertilizer to augment the growth of greengram exposed to insecticide-stressed soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahemad M, Zaidi A, Khan MS, Oves M (2009) Factors affecting the variation of microbial communities in different agro-ecosystems. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, Heidelberg, pp 301–324

    Chapter  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Brick JM, Bostock RM, Silversone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Google Scholar 

  • Costerton JW (1985) The role of bacterial exopolysaccharides in nature and disease. Dev Ind Microbiol 26:249–261

    CAS  Google Scholar 

  • Devi KK, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78

    Article  PubMed  CAS  Google Scholar 

  • Dutta M, Sardar D, Pal R, Kole RK (2010) Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil. Environ Monit Assess 160:385–391

    Article  PubMed  CAS  Google Scholar 

  • Evans J, Seidel J, O’Connor GE, Watt J, Sutherland M (1991) Using omethoate insecticide and legume inoculant on seed. Aust J Exp Agric 31:71–76

    Article  CAS  Google Scholar 

  • Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA (2007) Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci U S A 104:10282–10287

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, Inc, New York

    Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Gordon S, Weber RP (1951) The calorimetric estimation of IAA. Plant Physiol 26:192–195

    Article  PubMed  CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  PubMed  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  PubMed  CAS  Google Scholar 

  • Iswaran V, Marwah TS (1980) A modified rapid Kjeldahl method for determination of total nitrogen in agricultural and biological materials. Geobios 7:281–282

    Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice-Hall of India, New Delhi, pp 134–144

    Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L). Int J Plant Prod 2:141–152

    Google Scholar 

  • Keneni A, Assefa F, Prabu PC (2010) Isolation of phosphate solubilizing bacteria from the rhizosphere of faba bean of Ethiopia and their abilities on solubilizing insoluble phosphates. J Agric Sci Technol 12:79–89

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • King JE (1932) The colorimetric determination of phosphorus. Biochem J 26:292–297

    PubMed  CAS  Google Scholar 

  • Leidi EO, Rodriguez-Navarro DN (2000) Nitrogen and phosphorus availability limit N2 fixation in bean. New Phytol 147:337–346

    Article  CAS  Google Scholar 

  • Linu MS, Stephen J, Jisha MS (2009) Phosphate solubilizing Gluconacetobacter sp, Burkholderia sp and their potential interaction with cowpea (Vigna unguiculata (L.) Walp). Int J Agric Sci 4:79–87

    CAS  Google Scholar 

  • Mody BR, Bindra MO, Modi VV (1989) Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch Microbiol 1:2–5

    Google Scholar 

  • Nare RWA, Savadogo PW, Gnankambary Z, Sedogo MP (2010) Effect of endosulfan, deltamethrin and profenophos on soil microbial respiration characteristics in two land uses systems in burkina faso. Res J Environ Sci 4:261–270

    CAS  Google Scholar 

  • Neiland JB (1981) Microbial iron compounds. Ann Rev Biochem 50:715–731

    Article  Google Scholar 

  • Pai T, Wang S, Lin C, Liao W, Chu H, Lin T, Liu C, Lin S (2009) Two types of organophosphate pesticides and their combined effects on heterotrophic growth rates in activated sludge process. J Chem Technol Biotechnol 84:1773–1779

    Article  CAS  Google Scholar 

  • Reeves MW, Pine L, Neilands JB, Balows A (1983) Absence of siderophore activity in Legionella species grown in iron-deficient media. J Bacteriol 154:324–329

    PubMed  CAS  Google Scholar 

  • Sadasivam S, Manikam A (1992) Biochemical methods for agricultural sciences. Wiley Eastern Limited, New Delhi

    Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  PubMed  CAS  Google Scholar 

  • Tank N, Saraf M (2003) Phosphate solubilization, exopolysaccharide production and indole acetic acid secretion by rhizobacteria isolated from Trigonella foenum-graecum. Ind J Microbiol 43:37–40

    Google Scholar 

  • Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol 85:1287–1299

    Article  PubMed  CAS  Google Scholar 

  • Velázquez E, Garc′ıa-Fraile P, Ramırez-Bahena MH, Rivas R, Martınez-Molina E (2010) Bacteria involved in nitrogen-fixing legume symbiosis: current taxonomic perspective. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Verlag, Wien. doi:10.1007/978-3-211-99753-6_1

  • Vikram A, Hamzehzarghani H (2008) Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiata L. Wilczek). Res J Microbiol 3:62–72

    Article  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Lee C (2008) Enrichment, isolation, and characterization of 4-chlorophenol-degrading bacterium Rhizobium sp 4-CP-20. Biodegradation 19:329–336

    Article  PubMed  CAS  Google Scholar 

  • Zablotowicz RM, Reddy KN (2004) Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview. J Environ Qual 33:825–831

    Article  PubMed  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  PubMed  CAS  Google Scholar 

  • Zaman-Allah M, Sifi B, L’Taief B, El-Aouni MH, Drevon JJ (2007) Rhizobial inoculation and P fertilization response in common bean (Phaseolus vulgaris) under glasshouse and field conditions. Exp Agric 43:67–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. N.A. Naqvi, Parijat Agrochemicals, New Delhi, India, for providing technical grade insecticides. Financial assistance from UGC, New Delhi, India during Ph. D. program is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saghir Khan.

Additional information

Communicated by M. Traugott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahemad, M., Khan, M.S. Pseudomonasaeruginosa strain PS1 enhances growth parameters of greengram [Vignaradiata (L.) Wilczek] in insecticide-stressed soils. J Pest Sci 84, 123–131 (2011). https://doi.org/10.1007/s10340-010-0335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-010-0335-0

Keywords

Navigation