Skip to main content

Potassium-Solubilizing Microorganisms and Their Role in Enhancing Soil Fertility and Health

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

Potassium, the third major plant nutrient, occurs in potassium-bearing minerals such as feldspars and micas. The soil-available K is usually very low and mostly becomes unavailable to plants. Furthermore, intensive cropping, runoff, leaching and soil erosion lead to soil potassium deficiency, providing stunted growth and limited physiological activities of plant. There are microbes (bacteria, actinomycetes and fungi) which are able to release soluble K from K-bearing minerals. KSMs, the soil microorganisms, could provide an alternative approach to make K available or soluble for the cropping system. These microbes secrete organic acids, which act as chelating agents to dissolve rock and chelate silicon ions releasing the K ions available to crops. These microbial cultures can be used as biofertilizers to make available K from mineral and rocks, ultimately influencing crop growth and quality which is a prerequisite for eco-friendly and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai-min Z, Gang-yong Z, Shuang-feng Z, Rui-ying Z, Bao-cheng Z (2013) Effect of phosphorus and potassium content of plant and soil inoculated with Paenibacillus kribensis CX-7 strain antioxidant and antitumor activity of Phyllanthus emblica in colon cancer cell lines. Int J Curr Microbiol Appl Sci 6:273–279

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere. Soil Bioinfolet 10(1B):248–257

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7(30):4250–4259

    Article  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3(12):80–85

    Google Scholar 

  • Balogh-Brunstad Z, Keller CK, Gill RA, Bormann BT, Li CY (2008) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry 88:153–167

    Article  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Bear F (1964) Chemistry of the soil. Oxford and IBH Publications, New York, USA, pp 129–130

    Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Miner Manag 8(62A):149–150

    Article  Google Scholar 

  • Bennett PC, Rogers JR, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19

    Article  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66

    Article  Google Scholar 

  • Buchholz DD, Brown JR (1993) Potassium in Missouri soils. Agricultural publication, pp 9–185

    Google Scholar 

  • Burgstaller ZA, Sreasser H, Wobking H, Shinner F (1992) Solubilization of zinc oxide from filterdust with Penicillium simplicissimum bioreactor, leaching and stoichiometry. Environ Sci Technol 26:340–346

    Article  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province Vietnam. Am J Life Sci 1(3):88–92

    Article  CAS  Google Scholar 

  • Doman DC, Geiger DR (1979) Effect of exogenously supplied foliar potassium on phloem loading in Beta vulgaris L. Plant Physiol 64:528–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11:187–196

    Article  CAS  Google Scholar 

  • George R, Michael S (2002) Potassium for crop production. Communication and Educational Technology Services, University of Minnesota Extension

    Google Scholar 

  • Grandstaff DE (1986) The dissolution rate of forsteritic olivine from Hawaiian beach sand. In: Colman SM, Dethier DP (eds) Rates of chemical weathering of rocks and minerals. Academic, New York, pp 41–60

    Google Scholar 

  • Groudev SN (1987) Use of heterotrophic micro-organisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of egg plant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hu XF, Chen J, Guo JF (2006) Two phosphate and potassium solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic-acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR, Kochian LV (1996) Critical-evaluation of organic-acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180:57–66

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Leyval C, Berthelin J (1989) Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110

    Article  CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu W, Xu X, Wu S, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Article  PubMed  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Malinovskaya IM, Kosenko LV, Votselko SK, Podgorskii VS (1990) Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. Mikrobiologiya 59:49–55

    Google Scholar 

  • Marschner H (1995) Functions of mineral nutrients: macronutrients. In: Marschner H (ed) Mineral nutrition of higher plants, 2nd edn. Academic, London, USA, pp 299–312

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • McAfee J (2008) Potassium, a key nutrient for plant growth. Department of Soil and Crop Sciences. http://jimmcafee.tamu.edu/files/potassium

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015c) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563

    Google Scholar 

  • Memon YM, Fergus IF, Hughes JD, Page DW (1988) Utilization of non-exchangeable soil potassium in relation to soil types, plant species and stage of growth. Aust J Soil Res 26:489–496

    Article  CAS  Google Scholar 

  • Nianikova GG, Kuprina EE, Pestova OV, Vodolazhskaia SV (2002) Immobilizing of Bacillus mucilaginosus, a producer of exopolysaccharides, on chitin. Priklalmaia Biokhilia I Mikrobiologiya 38:300–304

    CAS  Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681

    Article  CAS  PubMed  Google Scholar 

  • Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr J Biotechnol 5(4):348–350

    CAS  Google Scholar 

  • Prajapati KB, Modi HA (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIBTech J Microbiol 1(2–3):8–14

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leafl 5:71–75

    Google Scholar 

  • Prajapati KB, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Okra (Abelmoschus esculentus). Int J Agric Sci 3(1):181–188

    Google Scholar 

  • Raj SA (2004) Solubilization of silicate and concurrent release of phosphorus and potassium in rice ecosystem. In: Book chapter – conference paper biofertilizers technology. Coimbatore, pp 372–378

    Google Scholar 

  • Rajan SSS, Watkinson JH, Sinclair AG (1996) Phosphate rock for direct application to soils. Adv Agron 57:77–159

    Article  CAS  Google Scholar 

  • Ramarethinam S, Chandra K (2006) Studies on the effect of potash solubilizing bacteria Frateuria aurantia (Symbion-K- liquid formulation) on Brinjal (Solanum melongena L) growth and yield. Pestology 11:35–39

    Google Scholar 

  • Read JJ, Reddy KR, Jenkins JN (2006) Yield and quality of upland cotton as influenced by nitrogen and phosphorus. Eur J Agron 24:282–290

    Article  CAS  Google Scholar 

  • Reitmeir RF (1951) Soil potassium. In: Norman AG (ed) Advances in agronomy II. Academic, New York, pp 113–164

    Google Scholar 

  • Richards JE, Bates TE (1989) Studies on the potassium-supplying capacities of southern Ontario soils. III. Measurement of available K. Canadian. J Soil Sci 69(3):597–610

    CAS  Google Scholar 

  • Rosa-Magri MM, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Ceccato-Antonini SR (2012) Release of potassium from rock powder by the yeast torulaspora globosa. Braz Arch Biol Technol 55(4):577–582

    Article  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crop 21(2):118–124

    Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solublisers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol Appl Sci 3(9):622–629

    Google Scholar 

  • Sharpley AN (1989) Relationship between soil potassium forms and mineralogy. Soil Sci Soc Am J 52:1023–1028

    Article  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, Huang WY, Cao XY (2001) Dissolution of feldspar and potassium uptake by the strain NBT of silicate bacterium. Plant Nutr Fertil 7(4):459–466

    Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chili and cotton. Agric Sci China 2:40–412

    Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2012) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry: soil biology. Springer, Wien/New York/Berlin, USA

    Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Song SK, Huang PM (1988) Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids. Soil Sci Soc Am J 52:383–390

    Article  CAS  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    Article  CAS  Google Scholar 

  • Sparks DL (2000) Bioavailability of soil potassium, D-38-D-52. In: Sumner ME (ed) Handbook of soil science. CRC, Boca Raton

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD et al (eds) Potassium in agriculture. ASA, Madison, pp 201–276

    Google Scholar 

  • Styriakova I, Styriak I, Hradil D, Bezdicka P (2003) The release of iron bearing minerals and dissolution of feldspar by heterotrophic bacteria of Bacillus species. Ceram Silic 47(1):20–26

    CAS  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3:350–355

    Google Scholar 

  • Sun DS, Zhang Q (2006) Screening of silicate bacteria and bio-leaching silicon from silicate ores. J Xi’an Univ Sci Technol 26(2):235–239

    CAS  Google Scholar 

  • Surdam RC, MacGowan DB (1988) Oil field waters and sandstone diagenesis. Appl Geochem 2(5–6):613–620

    Google Scholar 

  • Syers JK (1998) Soil and plant potassium in agriculture. In: Proceedings No. 411, The International Fertiliser Society York, UK 32

    Google Scholar 

  • Tandon HLS, Sekhon GS (1988) Potassium research and agricultural production in India. Fertilizer Development and Consultation Organization, New Delhi, p 144

    Google Scholar 

  • Tang L, Zhang JZ (2008) Isolation, purification and identification of silicate-dissolving bacterial strains and studies of their biological characteristics. Shandong Agric Sci 1:71–73

    Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA (1996) Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usherwood NR (1985) The role of potassium in crop quality. In: Munson RD (ed) Potassium in agriculture. ASA-CSSA-SSSA, Madison, pp 489–513

    Google Scholar 

  • Van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Article  Google Scholar 

  • Wang W, Li J, Liu JS, Zhu BC (2009) Isolation of the silicate bacteria strain and determination of the activity of releasing silicon and potassium. J Anhui Agric Sci 37(17):7889–7891

    CAS  Google Scholar 

  • Weed SB, Davey CB, Cook MG (1969) Weathering of mica by fungi. Soil Sci Soc Am J 33:702–706

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trail. Geoderma 125:155–166

    Article  Google Scholar 

  • Xue BG (2005) Screening and identification of the bacterium which have efficiency on resolving phosphorus and potassium and in nitrogen fixation. J Huazhong Agric Univ 24(1):43–48

    Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59(12):1713–1723

    Article  Google Scholar 

  • Zhanga C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhao F, Sheng X, Huang Z, He L (2008) Isolation of mineral potassium-solubilizing bacterial strains from agricultural soils in Shandong Province. Biodivers Sci 16:593–600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Das, I., Pradhan, M. (2016). Potassium-Solubilizing Microorganisms and Their Role in Enhancing Soil Fertility and Health. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_20

Download citation

Publish with us

Policies and ethics