Skip to main content

Advertisement

Log in

Promotion of plant growth by ACC deaminase-producing soil bacteria

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plant growth-promoting bacteria that contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase facilitate plant growth and development by decreasing plant ethylene levels, especially following a variety of environmental stresses. In this review, the physiological basis for this growth-promotion effect is examined in some detail. In addition, models are presented that endeavour to explain (i) the seemingly paradoxical effects of ethylene on a plant’s response to stress, (ii) how the expression of this enzyme is transcriptionally regulated in many bacterial strains and (iii) how ACC deaminase-containing plant growth-promoting bacteria alter plant gene expression and positively modulate plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylate

AOA:

Aminooxyacetic acid

AVG:

L-α-(aminoethoxyvinyl)-glycine

CRP:

Cyclic AMP receptor protein

FNR:

Fumarate–nitrate reduction regulatory protein

IAA:

Indole-3-acetic acid

Lrp:

Leucine-responsive regulatory protein

1-MCP:

1-Methylcyclopropene

PAHs:

Polycyclic aromatic hydrocarbons

PCBs:

Polycyclic biphenyls

RAP PCR:

RNA arbitrarily primed PCR

References

  • Abeles, F. B., Morgan, P. W., & Saltveit, M. E. Jr. (1992). Ethylene in plant biology. New York: Academic Press.

    Google Scholar 

  • Apse, M. P., Aharon, G. S., Snedden, W. A., & Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285, 1256–1258.

    Article  PubMed  CAS  Google Scholar 

  • Arshad, M., & Frankenberger, W. T. Jr. (2002). Ethylene: Agricultural sources and applications. Dordrecht, The Netherlands: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Babalola, O. O., Osir, E. O., Sanni, A. I., Odhaimbo, G. D., & Bulimo, W. D. (2003). Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. African Journal of Biotechnology, 2, 157–160.

    CAS  Google Scholar 

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., & Glick, B. R. (2005). Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37, 241–250.

    Article  CAS  Google Scholar 

  • Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., Borisov, A. Y., Tikhonovich, I. A., Kluge, C., Preisfeld, A., Dietz, K. J., & Stepanok, V. V. (2001). Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47, 642–652.

    Article  PubMed  CAS  Google Scholar 

  • Blaha, D., Prigent-Combaret, C., Mirza, M. S., & Moënne-Loccoz, Y. (2006). Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiology Ecology, 56, 455–470.

    Article  PubMed  CAS  Google Scholar 

  • Burd, G. I., Dixon, D. G., & Glick, B. R. (1998). A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Applied and Environmental Microbiology, 64, 3663–3668.

    PubMed  CAS  Google Scholar 

  • Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46, 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Burg, S. P., & Burg, E. A. (1966). The interaction between auxin and ethylene and its role in plant growth. American Journal of Botany, 55, 262–269.

    CAS  Google Scholar 

  • Campbell, B. G., & Thomson, J. A. (1996). 1-Aminocyclopropane-1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiology Letters, 138, 207-210.

    Article  PubMed  CAS  Google Scholar 

  • Ciardi, J. A., Tieman, D. M., Lund, S. T., Jones, J. B., Stall, R. E., & Klee, H. J. (2000). Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiology, 123, 81–92.

    Article  PubMed  CAS  Google Scholar 

  • Dey, R., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Aracis hypoggaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159, 371–394.

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri, N., & Estell, M. (2004). Auxin signaling and regulated protein degradation. Trends in Plant Science, 9, 302–308.

    Article  PubMed  CAS  Google Scholar 

  • Duan, J., Müller, K. M., Charles, T. C., Vesely, S., & Glick, B. R. (2006). 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in Rhizobia: Isolation, characterization and regulation. Proceedings of the 7th International PGPR Workshop (50 pp). Amsterdam.

  • Else, M. A., & Jackson, M. B. (1998). Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Australian Journal of Plant Physiology, 25, 453–458.

    Article  CAS  Google Scholar 

  • Farwell, A. J., Vesely, S., Nero, V., Rodriguez, H., Shah, S., Dixon, D. G., & Glick, B. R. (2006). The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant and Soil, 288, 309–318.

    Article  CAS  Google Scholar 

  • Ghosh, S., Penterman, J. N., Little, R. D., Chavez, R., & Glick, B. R. (2003). Three newly isolated plant growth-promoting bacilli facilitate the growth of canola seedlings. Plant Physiology and Biochemistry, 41, 277–281.

    Article  CAS  Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.

    CAS  Google Scholar 

  • Glick, B. R., Karaturovíc, D. M., & Newell, P. C. (1995). A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian Journal of Microbiology, 41, 533–536.

    CAS  Google Scholar 

  • Glick, B. R., Patten, C. L., Holguin, G., & Penrose, D. M. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria. London: Imperial College Press.

    Google Scholar 

  • Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, B. M., Huang, X. D., Gurska, Y., Gerhardt, K. E., Wang, W., Lampi, M. A., Zhang, C., Khalid, A., Isherwood, D., Chang, P., Wang, H., Dixon, D. G., & Glick, B. R. (2006). Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants, Proceedings of the 29th Arctic and Marine Oil Spill Program Technical Seminar (Vol. 1, pp. 389–400).

  • Grichko, V. P., Filby, B., & Glick, B. R. (2000). Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. Journal of Biotechnology, 81, 45-53.

    Article  PubMed  CAS  Google Scholar 

  • Grichko, V. P., & Glick, B. R. (2000). Identification of DNA sequences that regulate the expression of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate deaminase gene. Canadian Journal of Microbiology, 46, 1159–1165.

    Article  PubMed  CAS  Google Scholar 

  • Grichko, V. P., & Glick, B. R. (2001a). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39, 11–17.

    Article  CAS  Google Scholar 

  • Grichko, V. P., & Glick, B. R. (2001b). Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiology and Biochemistry, 39, 19–25.

    Article  CAS  Google Scholar 

  • Guinel, F. C., & Geil, R. D. (2002). A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Canadian Journal of Botany, 80, 695–720.

    Article  CAS  Google Scholar 

  • Honma, M. (1985). Chemically reactive sulfhydryl groups of 1-aminocyclopropane-1-carboxylate deaminase. Agricultural and Biological Chemistry, 49, 567–571.

    CAS  Google Scholar 

  • Honma, M. (1993). Stereospecific reaction of 1-aminocyclopropane-1-carboxylate deaminase. In J. C. Pech, A. Latché, & C. Balagué (Eds.), Cellular and molecular aspects of the plant hormone ethylene (pp. 111–116). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Honma, M., & Shimomura, T. (1978). Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agricultural and Biological Chemistry, 42, 1825–1831.

    CAS  Google Scholar 

  • Hontzeas, N., Richardson, A. O., Belimov, A. A., Safranova, V. I., Abu-Omar, M. M., & Glick, B. R. (2005). Evidence for horizontal gene transfer (HGT) of ACC deaminase genes. Applied and Environmental Microbioogy, 71, 7556–7558.

    Article  CAS  Google Scholar 

  • Hontzeas, N., Zoidakis, J., Glick, B. R., & Abu-Omar, M. M. (2004a). Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: A key enzyme in bacterial plant growth promotion. Biochimica et Biophysica Acta, 1703, 11–19.

    PubMed  CAS  Google Scholar 

  • Hontzeas, N., Saleh, S. S., & Glick, B. R. (2004b). Changes in gene expression in canola roots induced by ACC deaminase-containing plant growth-promoting bacteria. Molecular Plant–Microbe Interactions, 17, 865–871.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X.-D., El-Alawai, Y., Gurska, J., Glick, B. R., & Greenberg, B. M. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 81, 139–147.

    Article  CAS  Google Scholar 

  • Huang, X.-D., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004). Responses of plants to creosote during phytoremediation and their significance for remediation processes. Environmental Pollution, 130, 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Hyodo, H. (1991). Stress/wound ethylene. In A. K. Mattoo, & J. C. Shuttle (Eds.), The plant hormone ethylene (pp. 65–80). Boca Raton: CRC Press.

    Google Scholar 

  • Jacobson, C. B., Pasternak, J. J., & Glick, B. R. (1994). Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Canadian Journal of Microbiology, 40, 1019–1025.

    Article  CAS  Google Scholar 

  • Jansonius, N. J. (1998). Structure, evolution and action of vitamin B6-dependent enzymes. Current Opinion in Structural Biology, 8, 759–769.

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y. J., Kakuta, Y., Sugawara, M., Igarashi, T., Oki, N., Kisaki, M., Shoji, T., Kanetuna, Y., Horita, T., Matsui, H., & Honma, M. (1999). Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Bioscience, Biotechnology and Biochemistry, 63, 542–549.

    Article  CAS  Google Scholar 

  • Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., & Kishore, G. M. (1991). Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell, 3, 1187–1193.

    Article  PubMed  CAS  Google Scholar 

  • Klee, H. J., & Kishore, G. M. (1992). Control of fruit ripening and senescence in plants. United States Patent Number: 5,702,933.

  • Leonard, P. M., Smits, S. H. J., Sedelnikova, S. E., Brinkman, A. B., de Vos, W. M., van der Oost, J., Rice, D. W., & Rafferty, J. B. (2001). Crystal structure of the Lrp-like transcrptional regulator from the archaeon Pyrococcus furiosus. EMBO Journal, 20, 990–997.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., & Glick, B. R. (2001). Transcriptional regulation of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Canadian Journal of Microbiology, 47, 359–367.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., Shah, S., Saleh-Lakha, S., & Glick, B. R. (2006). Growth of tobacco in nickel-contaminated soil in the presence of the plant growth-promoting bacterium Pseudomonas putida UW4. Current Microbiology (in press).

  • Ma, W., Charles, T. C., & Glick, B. R. (2004). Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Applied and Environmental Microbiology, 70, 5891–5897.

    Article  PubMed  CAS  Google Scholar 

  • Ma, W., Guinel, F. C., & Glick, B. R. (2003b). The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Applied and Environmental Microbiology, 69, 4396–4402.

    Article  PubMed  CAS  Google Scholar 

  • Ma, W., Sebestianova, S., Sebestian, J., Burd, G. I., Guinel, F., & Glick, B. R. (2003a). Prevalence of 1-aminocyclopropaqne-1-carboxylate in deaminase in Rhizobia spp. Antonie Van Leeuwenhoek, 83, 285–291.

    Article  PubMed  CAS  Google Scholar 

  • Madhaiyan, M., Poonguzhali, S., Ryu, J., & Sa, T. (2006). Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocycloprpane-1-carboxylate deaminase-containing Methylobacterium fjisawaense. Planta, 224, 268–278.

    Article  PubMed  CAS  Google Scholar 

  • Mayak, S., Tirosh, T., & Glick, B. R. (2004a). Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Science, 166, 525–530.

    Article  CAS  Google Scholar 

  • Mayak, S., Tirosh, T., & Glick, B. R. (2004b). Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiology and Biochemistry, 42, 565–572.

    Article  PubMed  CAS  Google Scholar 

  • Minami, R., Uchiyama, K., Murakami, T., Kawai, J., Mikami, K., Yamada, T., Yokoi, D., Ito, H., Matsui, H., & Honma, M. (1998). Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. Journal of Biochemistry, 123, 1112–1118.

    PubMed  CAS  Google Scholar 

  • Morgan, P. W., & Gausman, H. W. (1966). Effects of ethylene on auxin transport. Plant Physiology, 41, 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Nie, L., Shah, S., Burd, G. I., Dixon, D. G., & Glick, B. R. (2002). Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiology and Biochemistry, 40, 355–361.

    Article  CAS  Google Scholar 

  • Nukui, N., Ezura, H., Yuhashi, K., Yasuta, T., & Minamisawa, K. (2000). Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiology, 41, 893–897.

    Article  PubMed  CAS  Google Scholar 

  • Nukui, N., Minamisawa, K., Ayabe, S. I., & Aoki, T. (2006). Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Applied and Environmental Microbiology, 72, 4964–4969.

    Article  PubMed  CAS  Google Scholar 

  • Penrose, D. M., Moffatt, B. A., & Glick, B. R. (2001). Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Canadian Journal of Microbiology, 47, 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Pierik, R., Tholen, D., Poorter, H., Visser, E. J. W., & Voesenek, L. A. C. J. (2006). The Janus face of ethylene: Growth inhibition and stimulation. Trends in Plant Science, 11, 176–183.

    Article  PubMed  CAS  Google Scholar 

  • Prayitno, J., Rolfe, B. G., & Mathesius, U. (2006). The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiology, 142, 168–180.

    Article  PubMed  CAS  Google Scholar 

  • Reed, M. L. E., & Glick, B. R. (2005). Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology, 51, 1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Robison, M. M., Griffith, M., Pauls, K. P., & Glick, B. R. (2001a). Dual role of ethylene in susceptibility of tomato to Verticillium wilt. Journal of Phytopathology, 149, 385–388.

    Article  CAS  Google Scholar 

  • Robison, M. M., Shah, S., Tamot, B., Pauls, K. P., Moffatt, B. A., & Glick, B. R. (2001b). Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Molecular Plant Pathology, 2, 135–145.

    Article  CAS  Google Scholar 

  • Sheehy, R. E., Honma, M., Yamada, M., Sasaki, T., Martineau, B., & Hiatt, W. R. (1991). Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase. Journal of Bacteriology, 173, 5260–5265.

    PubMed  CAS  Google Scholar 

  • Sisler, E. C., & Serek, M. (1997). Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiologia Plantarum, 100, 577–582.

    Article  CAS  Google Scholar 

  • Stearns, J., & Glick, B. R. (2003). Transgenic plants with altered ethylene biosynthesis or perception. Biotechnology Advances, 21, 193–210.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, J. C., Shah, S., Dixon, D. G., Greenberg, B. M., & Glick, B. R. (2005). Tolerance of transgenic canola expressing 1-aminocyclopropane-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiology and Biochemistry, 43, 701–708.

    Article  PubMed  CAS  Google Scholar 

  • Sturz, A. V., & Nowak, J. (2000). Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied Soil Ecology, 15, 183–190.

    Article  Google Scholar 

  • Suttle, J. C. (1988). Effect of IAA on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalkamic in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiology, 88, 795–799.

    PubMed  CAS  Google Scholar 

  • Timmusk, S., & Wagner, E. G. H. (1999). The plant growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Molecular Plant–Microbe Interactions, 12, 951–959.

    Article  PubMed  CAS  Google Scholar 

  • Uchiumi, T., Ohwada, T., Itakura, M., Mitsui, H., Nukui, N., Dawadi, P., Kaneko, T., Tabata, S., Yokoyama, T., Tejima, K., Saeki, K., Omori, H., Hayashi, M., Maekawa, T., Sriprang, R., Murooka, Y., Tajima, S., Simomura, K., Nomura, M., Suzuki, A., Shimoda, Y., Sioya, K., Abe, M., & Minamisawa, K. (2004). Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. Journal of Bacteriology, 186, 2439–2448.

    Article  PubMed  CAS  Google Scholar 

  • Van Loon, L. C. (1984). Regulation of pathogenesis and symptom expression in diseased plants by ethylene. In Y. Fuchs, & E. Chalutz (Eds.), Ethylene: Biochemical, physiological and applied aspects (pp. 171–180). The Hague: Martinus Nijhoff/Dr W. Junk.

    Google Scholar 

  • Van Loon, L. C., Geraats, B. P. J., & Linthorst, H. J. M. (2006). Ethylene as a modulator of disease resistance in plants. Trends in Plant Science, 11, 184–191.

    Article  PubMed  CAS  Google Scholar 

  • Van Loon, L. C., & Glick, B. R. (2004). Increased plant fitness by rhizobacteria. In H. Sandermann (Ed.), Molecular ecotoxicology of plants (pp. 177–205). Berlin: Springer-Verlag.

    Google Scholar 

  • Walsh, C., Pascal, R. A., Johnston, M., Raines, R., Dikshit, D., Krantz, A., & Honma, M. (1981). Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-1-carboxylate from Pseudomonas sp. Biochemistry, 20, 7509–7519.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Knill, E., Glick, B. R., & Défago, G. (2000). Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth promoting and disease-suppressive capacities. Canadian Journal of Microbiology, 46, 898–907.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Ramette, A., Punjasamarnwong, P., Zala, M., Natsch, A., Moënne-Loccoz, Y., & Défago, G. (2001). Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated pseudomonads of worldwide origin. FEMS Microbiology Ecology, 37, 105–116.

    Article  CAS  Google Scholar 

  • Yang, S. F., & Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35, 155–189.

    Article  CAS  Google Scholar 

  • Yuhashi, K. I., Ichikawa, N., Ezura, H., Akao, S., Minakawa, Y., Nukui, N., Yasuta, T., & Minamisawa, K. (2000). Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Applied and Environmental Microbiology, 66, 2658–2663.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this review was funded by the Natural Sciences and Engineering Research Council of Canada, to B.R.G. and a fellowship to J.C. We thank Dr. Elisa Gamalero for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard R. Glick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glick, B.R., Cheng, Z., Czarny, J. et al. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119, 329–339 (2007). https://doi.org/10.1007/s10658-007-9162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9162-4

Keywords

Navigation