Skip to main content

Role of Siderophores in Crop Improvement

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Nutrient Management

Abstract

Iron is critical for life and poses the living system with a number of challenges. Its low solubility in the environment is of major concern which tends to create problems during its acquisition and transport. Its rich redox chemistry that underlies many of iron’s essential biological functions has resulted in highly evolved mechanisms of iron transport in living system. Iron, although available in plenty in rhizospheric soil, is seldom in its bioavailable form at neutral and alkaline pH, hence there always prevails an “iron stressed” condition. Siderophore is the Greek phrase for “iron bearer” and is applied to molecules that can bind metal at very high affinity. One of the major mechanisms evolved for iron acquisition to combat the iron-stressed condition is synthesis of high-affinity siderophore-mediated iron transport systems. Two main components – siderophore production, and synthesis of membrane receptor molecules which mediate internalization of iron bound to siderophores – form part of this high-affinity transport system. Better exploration and exploitation of soil resources require increasing the efficiency of nutrient uptake by plants/microorganisms and decreasing nutrient augmentation in the soil from outside. Achieving this condition requires understanding of intimate processes and factors that govern nutrient availability to plants and microorganisms. The present chapter addresses this issue with special emphasis on siderophore-mediated iron acquisition system, the significance of iron–siderophore affinity in niche colonization by specific group of microorganisms, significance of possessing diverse ferri-siderophore uptake system and its impact in competitive survival of microorganisms in the rhizosphere, and how all these factors contribute to the plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akers HA (1983) Isolation of the siderophore schizokinen from soil of rice fields. Appl Environ Microbiol 45:1704–1706

    PubMed  CAS  Google Scholar 

  • Amerelle V, O’Brien MR, Fabiano E (2008) ShmR is essential for utilization of heme as a nutritional iron source in Sinorhizobium meliloti. Appl Environ Microbial 74:6463–6475

    Google Scholar 

  • Andrew SC, Robinson AK, Rodriguez-Quinons F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  Google Scholar 

  • Ankenbaur RG, Quan HN (1994) Fpt A, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. J Bacteriol 176:307–319

    Google Scholar 

  • Archana G (2010) Engineering nodulation competitiveness of rhizobial bioinoculants in soil. In: Knan MS et al (eds) Microbes for legume improvement. Springer, Wien. doi:10.1007/978-3-211-99753-6_8

    Google Scholar 

  • Archibald F (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19:29–32

    Article  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Bai YM, D’Aoust F, Smith DL, Driscott BT (2002) Isolation of plant growth promoting Bacillus strains from soybean nodules. Can J Microbiol 48:230–238

    Article  PubMed  CAS  Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    Article  CAS  Google Scholar 

  • Becker JO, Cook RJ (1988) Role of siderophores in suppression of Pythium species and production of increased growth response of wheat by fluorescent pseudomonads. Phytopathology 78:778–782

    Article  CAS  Google Scholar 

  • Benson HP, Boncompagni E, Guerinot ML (2005) An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicerm – Soybean symbiosis. Mol Plant Microbe Interact 18:950–959

    Article  PubMed  CAS  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  PubMed  CAS  Google Scholar 

  • Braun V (2005) Bacterial iron transport related to virulence Russel W, Herwald H (eds) Concepts in Bacterial virulence. Contrib Microbiol, Basl, Kaeger pp 210–233

    Google Scholar 

  • Braun V, Hantke K, Koster W (1998) Bacterial iron transport: mechanisms, genetics and regulation. Met Ions Biol Syst 35:67–145

    PubMed  CAS  Google Scholar 

  • Brickman TJ, Armstrong SK (1999) Essential role of the iron-regulated outer membrane receptor fauA in alcaligin siderophore mediated iron uptake in Bordetella species. J Bacteriol 181:5958–5966

    PubMed  CAS  Google Scholar 

  • Buchanan SK, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M, Chakraborty R, Van der Helm D, Deisenhofer J (1999) Crystal structure of the outer membrane active transporter Feg A from E. coli. Nat struct Biol 6:56–63

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228

    Article  CAS  Google Scholar 

  • Buyer JS, Leong J (1986) Iron transport – mediated antagonism between plant growth promoting and plant deleterious Pseudomonas strains. J Biol Chem 261:791–794

    PubMed  CAS  Google Scholar 

  • Buyer JS, Kratzke MG, Sikora LJ (1993) A method for detection of pseudobactin, the siderophore produced by a plant-growth-promoting Pseudomonas strain, in the barley rhizosphere. Appl Environ Microbiol 59:677–681

    PubMed  CAS  Google Scholar 

  • Byers BR, Araceneaux JE (1998) Microbial iron transport: iron acquisition by pathogenic microorganisms. Met Ions Biol Syst 35:37–366

    PubMed  CAS  Google Scholar 

  • Byers BR, and Arceneaux JEL (1977) Microbial transport and utilization of iron. In: Weinberg ED, (ed.), Microorganisms and minerals. Marcel Dekker, Inc., New York p. 215–249

    Google Scholar 

  • Chakraborty U, Purkayastha RP (1984) Role of rhizobiotoxine in protecting soybean roots from Macrophomina phaseolina infection. Can J Microbiol 30:285–289

    Article  PubMed  CAS  Google Scholar 

  • Chen LM, Dick W, Streeter JG, Hoitink HAJ (1998) Fe chelates from compost microorganisms improve Fe nutrition of soybean and oat. Plant soil 200:139–147

    Article  CAS  Google Scholar 

  • Cobessi D, Celia H, Folschweiller N, Schalk IJ, Abdallah MA, Pattus F (2005) The crystal structure of the pyoverdine outer membrane receptor Fpv A from Pseudomonas aeruginosa at 3.6 angstroms resolution. J Mol Biol 347(1):121–134

    Article  PubMed  CAS  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdins. Environ Microbiol 4:787–798

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen CN (2003) Transferrin-iron uptake by gram-negative bacteria. Front Biosci 8:836–847

    Article  Google Scholar 

  • Cornish AS, Page WJ (1998) The catecholate siderophores of Azotobacter vinelandi: their affinity for iron and role in oxygen stress management. Microbiology 144:1747–1754

    Article  CAS  Google Scholar 

  • Crosa JH (1989) Genetics and molecular biology of siderophore mediated iron transport in E. coli. Microbiol Rev 53:517–530

    PubMed  CAS  Google Scholar 

  • Crowley DE, Reid CPP, Szaniszlo PJ (1987) Microbial siderophores as iron sources for plants. In: Winklemann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH Publishers, New York, pp 375–386

    Google Scholar 

  • Crowley DE, Reid CPP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87:685–688

    Article  Google Scholar 

  • Crowley DE, Ro¨mheld V, Marschner H, Szaniszlo PJ (1992) Root-microbial effects on plant iron uptake from siderophores and phytosiderophores. Plant Soil 142:1–7

    CAS  Google Scholar 

  • Dahsti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean under short season conditions. Plant Soil 200:205–213

    Article  Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition-a quantitative approach. Plant soil 156:1–20

    Article  Google Scholar 

  • Dean CR, Poole K (1993) Cloning and characterization of the ferric enterobactin receptor gene (pfe A) of Pseudomonas aeruginosa. J Bacteriol 175:317–324

    PubMed  CAS  Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–448

    Google Scholar 

  • Dhungana S, Crumbliss AL (2005) Coordination chemistry and redox processes in siderophore-mediated iron transport. Geomicrobiol J 22:87–98

    Article  CAS  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1994) Suppression of Fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci Technol 4:279–288

    Article  Google Scholar 

  • Earhart CF, McIntosh MA (1977) Coordinate regulation by iron of the synthesis of phenolate compounds and three outer membrane proteins in E. coli. J Bacteriol 131:331–339

    PubMed  Google Scholar 

  • Ehteshamul-Haque S, Hashmi RY, Ghaffar A (1992) Biological control of root rot disease of lentil Lens. Newsletter 19:43–45

    Google Scholar 

  • Elad Y, Baker R (1985) The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp. Phytopathology 75:1053–1059

    Article  CAS  Google Scholar 

  • Endriss F, Braun V (2004) Loop deletions indicate regions important for Fhu A transport and receptor functions in E. coli. J Bacteriol 186:4818–4823

    Article  PubMed  CAS  Google Scholar 

  • Faraldo-Gomez JD, and Sansom MSP (2003) Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Bio 4:105–116

    Article  CAS  Google Scholar 

  • Ferguson A, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore mediated Iron transport: crystal structure of Flu A with bound dipopolysaccharide. Science 282:2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AD, Chakraborty R, Smith BS, Esser L, Van der Helm D, and Deisenhofer, J (2002) Structural basis of gating by the outer membrane transporter FecA. Science. 295:1715–1719

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobiam japoniam. J Bacteriol 172:3298–3303

    PubMed  CAS  Google Scholar 

  • Guiseppi JD, Fridovich I (1982) Oxygen toxicity in Streptococcus sanguis. J Biol Chem 257:4046–4051

    Google Scholar 

  • Halda-Alija L (2003) Identification of indole-3 acetic acid producing fresh water wetland rhizosphere bacteria associated with Juncus effuses L. Can J Microbiol 49:781–787

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (1981) Regulation of ferric uptake iron transport in E. coli K12- isolation of a constitutive mutant. Mol Gen Genet 182:288–293

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Stephen UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    PubMed  CAS  Google Scholar 

  • Hemantaranjan A, Garg OK (1986) Introduction of nitrogen fixing nodules through iron and zinc fertilization in the non nodule-forming French bean (Phaseolus vulgaris L). J Plant Nutr 9:281–288

    Article  CAS  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotinamide synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotinamide synthase gene expression differs in barley and rice under Fe- deificient conditions. Plant J 25:159–167

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 248:293–303

    Article  Google Scholar 

  • Hordt W, Ro¨mheld V, Winkelmann G (2000) Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and Strategy II plants. BioMetals 13:37–46

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotinamide synthetase genes OsNAS1, OsNAS2 and OsNAS3 are expressed in cells involved in long distance transport of iron and differentaitially regulated by iron. Plant J 36:366–381

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Suzuki M, Takahashi M , Nakashini H, Mori S, Nishizawa NK (2004) Rice nicotinamide aminotransferase gene (NAATI) is expressed in cells involved in long distance transport of iron. In: Abstracts of the XII International symposium on iron nutrition and interactions in plants Tokyo, Japan pp 204

    Google Scholar 

  • Jadhav RS, Desai AJ (1994) Role of siderophore in iron uptake in cowpea Rhizobium GN1 (Peanut isolate): possible involvement of iron repressible outer membrane proteins. FEMS Microbiol Lett 115:185–190

    Article  CAS  Google Scholar 

  • Jadhav R, Thaker NV, Desai A (1994) Involvement of the siderophores of cowpea Rhizobium in the iron nutrition of the peanut. World J Microbiol Biotechnol 10:360–361

    Article  CAS  Google Scholar 

  • Janakiraman A, Slauch JM (2000) The putative iron transport system SitABCD encoded on SP II is required for full virulence of Salmonella typhimurium. Mol Microbiol 35:1146–1155

    Article  PubMed  CAS  Google Scholar 

  • Jin CW, He YF, Tang CX, Wu P, Zhng SJ (2006) Mechanisms of microbial enhanced iron uptake in red clover. Plant Cell Environ 29:888–897

    Article  PubMed  Google Scholar 

  • Jin CW, You GY, Zheng SJ (2008) The iron deficiency-induced phenolics secretion plays multiple important roles in plant iron acquisition underground. Plant Signal Behavior 3:60–61

    Article  Google Scholar 

  • Joshi F, Archana G, Desai A (2006a) Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Curr Microbiol 53:141–147

    Article  PubMed  CAS  Google Scholar 

  • Joshi FR, Kholiya SP, Archana G, Desai AJ (2006b) Siderophore cross-utilization amongst nodule isolates of the cowpea miscellany group and its effect on plant growth in the presence of antagonistic organisms. Microbiol Res. doi:10.1016

    PubMed  Google Scholar 

  • Joshi F, Chaudhary A, Joglekar P, Archana G, Desai AJ (2008) Effect of expression of Brdyrhizobium japonicum 61A152 fegA gene in Mesorhizobium sp., on its competitive survival and nodule occupancy on Arachis hypogeal. Appl Soil Ecol 40:338–347

    Article  Google Scholar 

  • Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:2435–2445

    PubMed  CAS  Google Scholar 

  • Jurkevitch E, Hadar Y, Chan Y (1992) Differential siderophore utilization and iron uptake by soil and rhizosphere bacteria. Appl Environ Microbial 58:119–124

    CAS  Google Scholar 

  • Kammler M, Schon C, Hantke K (1993) Characterisation of the ferrous iron uptake system of E. coli. J Bacteriol 175:6212–6219

    PubMed  CAS  Google Scholar 

  • Khan A (2010) Utilization of heterologous iron-siderophore complex by Peanut and Pigeon pea Rhizobia: Cloning and expression of cognate receptor gene PhD Thesis The MS University of Baroda, Vadodara INDIA

    Google Scholar 

  • Khan A, Geetha R, Akolkar A, Pandya A, Archana G, Desai AJ (2006) Differential cross- utilization of heterologous siderophores by nodule bacteria of Cajanus cajan and its possible role in growth under iron-limited conditions. Appl Soil Ecol 34:19–26

    Article  Google Scholar 

  • Kloepper JW, Leong J, Tientze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kobayashi T, Suzuki M, Inoue H, Nakashini R, Michiko I (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron- deficiency-responsive elements. J Expt Bot 56:1305–1316

    Article  CAS  Google Scholar 

  • Kraemer SM, Crowley DE, Kretzschmar R (2006) Geochemical aspects of phytosiderophore promoted iron acquisition by plants. Adv Agron 91:1–46

    Article  CAS  Google Scholar 

  • Lemanceau P, Expert D, Gaymard D, Bakker PAHM (2009) Role of iron in plant-microbe interactions. Adv Bot Res 51:491–549

    Article  CAS  Google Scholar 

  • Levier K, Guerinot ML (1996) The Bradyrhizobium japonicum feg A gene encodes an iron regulated outer membrane protein with similarity to hydroxamate-type siderophore receptors. J Bacteriol 178:7265–7275

    PubMed  CAS  Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172

    Article  CAS  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63(1):99–105

    PubMed  CAS  Google Scholar 

  • Loper JE, Lindow SE (1994) A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl Environ Microbiol 60:1934–1941

    PubMed  CAS  Google Scholar 

  • Marschner P, Crowley DE (1997) Iron Stress and Pyoverdin Production by a Fluorescent Pseudomonad in the Rhizosphere of WhiteLupine (Lupinus albus L.) and Barley (Hordeum vulgare L.). Appl Environ Microbiol 63(1):277–281

    PubMed  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soil 30:433–439

    Article  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux J-P, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Meyer JN (2000) Pyoverdines: pigments siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328

    CAS  Google Scholar 

  • Miller RH, May S (1991) Legume inoculation: successes and failures. In: Keister DL, Cregan PB (eds) The Rhizospere and plant growth. Kluwer, New York, pp 123–134

    Chapter  Google Scholar 

  • Morrissey J, Guerinot L (2009) Iron uptake and transport in plants: the good, the bad and the ionome. Chem Rev 109(10):4553–4567

    Article  PubMed  CAS  Google Scholar 

  • Morton D, Whitby P, Jin H, Ren Z, Stull T (1999) Effect of multiple mutations in the hemoglobin-and hemoglobin-hepatoglobin- binding proteins HgpA, HgpB, and HgpC of Haemoplilus influenzae type b. Infect Immun 67:2729–2739

    PubMed  CAS  Google Scholar 

  • Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa N, Mori S (2000) Two dioxygenase genes Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207

    Article  PubMed  CAS  Google Scholar 

  • Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Saski T, Kikuchi S, Mori S, Nishizawa NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe- deficient barley roots. Plant J 30:83–94

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1977) Siderophores: Biochemical ecology and mechanism of iron transport in enterobacteria: In Bio-organic Chemistry II Raymond, K.N. (ed.) American Chemical Society, Washington D.C. pp.3–22

    Google Scholar 

  • Neilands JB (1952) A crystalline organo-iron pigment from a rust fungus Ustilagi sphaerogena. J Am Chem Soc 74:486–487

    Article  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Article  PubMed  CAS  Google Scholar 

  • Neilands J.B. (1982) Microbial envelope proteins related to iron. Annu Rev Microbiol 36: 285–309

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Nelson M, Cooper CR, Crowley DE, Reid CPP, Szaniszlo PJ (1988) An Escherichia coli bioassay of individual siderophores in soil. J Plant Nutr 11:915–924

    Article  CAS  Google Scholar 

  • Nienaber A, Hennecke H, Fischer HM (2001) Discovery of a heme uptake system in the soil bacterium Bradyrhizobium japonicum. Mol Microbiol 41:787–800

    Article  PubMed  CAS  Google Scholar 

  • Nozoye T, Itai RN, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) Diuranal changes in the expression of genes that participate in phytosiderophore synthesis in rice. Soil Sci Plant Nutr 50:1125–1131

    Article  CAS  Google Scholar 

  • Nye PH (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61:7–26

    Article  CAS  Google Scholar 

  • O’Brien IG, Gibson F (1970) The structure of enterochelin and related 2, 3-dihydroxy-N- benzoylserine conjugates from E. coli. Biochim Biophys Acta 215:293–402

    Google Scholar 

  • O’Cuiv P, Clarke P, Lynch D, O’Connell M (2004) Identification of rht X and fpt X, novel genes encoding proteins that show homology and function in the utilization of the siderophores rhizobactin 1021 by Sinorhizobium meliloti and pyochelin by Pseudomonas aeruginosa respectively. J Bacteriol 186:2996–3005

    Article  CAS  Google Scholar 

  • O’Hara GW, Dilworth MJ, Boonkerd N, Parpial P (1988) Iron deficiency specifically limits nodules development in peanut inoculated with Bradyrhizobium sp. Newphytology 108:51–57

    Google Scholar 

  • Patel HN, Chakraborty RN, Desai SB (1994) Effect of iron on siderophore production and on outer membrane proteins of Rhizobium leguminosarum IARI 102. Curr Microbiol 28:119–121

    Article  CAS  Google Scholar 

  • Perry RD, San Clemente CL (1979) Siderophore synthesis in Klebsiella pneumoniac and Shigella sonnei during iron deficiency. J Bacteriol 140:1129–1132

    PubMed  CAS  Google Scholar 

  • Persmark M, Pittman P, Buyer JS, Schwyn B, Gill R, Neilands JB (1993) Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59:1688–1690

    Google Scholar 

  • Plessner O, Klapatch T, Guerinot ML (1993) Siderophore utilization by Bradyrhizobiam Japonicum. Appl Environ Microbiol 59:1688–1690

    PubMed  CAS  Google Scholar 

  • Posey JE, Gherardini FC (2000) Lack of a role for iron in the Lyme disease pathogen. Science 288:1651–1653

    Article  PubMed  CAS  Google Scholar 

  • Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelator in soils. Nature 287:833–834

    Article  CAS  Google Scholar 

  • Powell PE, Szaniszlo PJ, Reid CPP (1983) Confirmation of occurrence of hydroxamate siderophores in soil by a novel Escherichia coli bioassay. Appl Environ Microbiol 46:1080–1083

    PubMed  CAS  Google Scholar 

  • Qian Y, Lee JH, Holmes RK (2002) Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diptheriae. J Bacteriol 184:4846–4856

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MPM, Van der Sluis I, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081

    Article  Google Scholar 

  • Rajendran G, Mistry S, Desai AJ, Archana G (2007) Functional expression of E. coli fhuA gene in Rhizobium spp. of Cajanus cajan provides growth advantage in presence of Fe3+: ferrichrome as iron source. Arch Microbiol 187:257–264

    Article  PubMed  CAS  Google Scholar 

  • Rao DLN, Pal KK (2003) Biofertilizers in oilseeds production: Status and future strategies. National Seminar on Stress Management in Oilseeds for attaining self reliance in vegetable oils. Directorate of Oilseeds Research. Indian Council of Agricultural research, Hyderabad, India. pp 195–220

    Google Scholar 

  • Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores In: Iron transport in bacteria. In: Cross JH, Mey AR, Pyne SM (eds) pp 3–17

    Google Scholar 

  • Raymond KR, Dertz E, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588

    Article  PubMed  CAS  Google Scholar 

  • Reid RT, Live DH, Faulkner DJ, Butler A (1993) A siderophore from a marine bacterium with an exceptional high affinity constant. Nature 366:455–458

    Article  PubMed  CAS  Google Scholar 

  • Reigh G, O’Conell M (1993) Siderophore mediated iron transport correlates with the presence of specific iron-regulated proteins in the outer membrane of Rhizobium melildi. J Bacteriol 175:94–102

    PubMed  CAS  Google Scholar 

  • Robin A, Mougel C, Siblot S, Vansuyt G, Mazurier S, Lemaneceae P (2006) Effect of ferritin overexpression in tobacco on the structure of bacterial and Pseudomonad communities associated with roots. FEMS Microbiol Ecol 58:492–502

    Article  PubMed  CAS  Google Scholar 

  • Robin A, Mougel C, Siblot S, Vansuyt G, Mazurier S, Lemaneceae P (2007) Diversity of root associated fluorescent pseudomonads as affected by ferritin overexpression in tobacco. Environ Microbiol 9:1724–1737

    Article  PubMed  CAS  Google Scholar 

  • Romheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed  CAS  Google Scholar 

  • Rroco E, Kosegarten H, Harizaj F, Imani J, Mengel K (2003) The importance of soil microbial activity for the supply of iro to sorghum and rape. Eur J Agron 19:487–493

    Article  CAS  Google Scholar 

  • Runyan-Janecky LJ, Reeves SA, Gonzales EG, Payne SM (2003) Contribution of the Shigella flexeneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect Immun 71:1919–1928

    Article  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Smith MJ, Schoolery JN, Schwyn B, Holden I, Neilands JB (1985) Rhizobactin a structurally novel siderophore from Rhizobium meliloti. J Am Chem Soc 107:1739–1743

    Article  CAS  Google Scholar 

  • Stevens JB, Carter RA, Hussain H, Carson KC, Dilworth MJ, Johnston AWB (1999) The fhu genes of Rhizobium leguminosarum, specifying siderophore uptake proteins: fhu DCB are adjacent to a pseudogene version of fhuA. Microbiology 145:593–601

    Article  PubMed  CAS  Google Scholar 

  • Strecter JG (1994) Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can J Microbiol 40:513–522

    Article  Google Scholar 

  • Takagi, S. 1976. Naturally occurringiron-chelating compounds in oat- and rice-rootwashings. I. Activity measurement and preliminary characterization. Soil Sci. Plant Nutr. 22, 423–433.

    Article  CAS  Google Scholar 

  • Takahashi M, Yamaguchi H, Nakanishi H, Shiori T, Nishizawa N, Mori S (1999) Cloning for two genes for nicotinamide aminotransferase, critical enzyme in iron acquisition (strategy II) in graminaceous plant. Plant Physiol 121:947–956

    Article  PubMed  CAS  Google Scholar 

  • Todd JD, Wexler M, Sawers G, Yeoman KH, Poole PS, Johnston AW (2002) RirA, an iron-responsible regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology 148:4059–4071

    PubMed  CAS  Google Scholar 

  • Touti D (2000) Sensing and protecting against superoxide stress in E.coli- how many ways are there to trigger SOX RS response? Redox Rep 5(5):287–293

    Article  Google Scholar 

  • Van der Helm D (1998) The physical chemistry of bacterial outer-membrane siderophore receptor proteins. Met Ions Ions Biol Syst 35:355–401

    Google Scholar 

  • Van Tiel-Mankvald GJ, Mentjox-Veruurt JN, Oudega B, Graff FK (1982) Siderophore production by Enterobacter cloacae and a common receptor protein for the uptake of aerobactin and cloaein DF 13. J Bacteriol 150:490–497

    Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, and Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol. Plant-Microbe Interact. 4:441–447.

    Article  CAS  Google Scholar 

  • Verma DPS, Long S (1983) The molecular biology of Rhizobium-legume symbiosis. Int Rev Cytol Snppl 14:211–245

    CAS  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: From siderophores to homophores. Annu Rev Microbiol 58:611–647

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (2006) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  Google Scholar 

  • Wexler M, Todd JD, O’Kolade D, Bellini AM, Hemmings GS, Johnston AWB (2003) Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum. Microbiology 149:1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Romheld V, Marschner H (1991) Role of root apoplasm for iron acquisition by wheat plants. Plant Physiol 97:1302–1305

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, San Yan Xie X, Kim MS, Dowd SE, Pare PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank students from their laboratory whose work has been cited in this chapter. The financial assistance provided by DBT, India and UGC, India to support the research is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Desai, A., Archana, G. (2011). Role of Siderophores in Crop Improvement. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Nutrient Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21061-7_6

Download citation

Publish with us

Policies and ethics