Skip to main content

Advertisement

Log in

Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in Plant Biology. Academic Press, San Diego

    Google Scholar 

  2. Adam G, Duncan HJ (1999) Effect of diesel fuel on growth of selected plant species. Environ Geochem Health 21:353–357

    CAS  Google Scholar 

  3. Arshad M, Shaharoona B, Mahmood T (2007) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere (in press)

  4. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol (in press)

  5. Arshad M, Frankenberger WT (1990) Ethylene accumulation in soil in response to organic amendments. Soil Sci Soc Am J 54:1026–1031

    Article  CAS  Google Scholar 

  6. Arshad M, Frankenberger WT (1990) Production and stability of ethylene in soil. Biol Fert Soils 10:29–34

    CAS  Google Scholar 

  7. Arshad M, Frankenberger WT (1991) Effects of soil properties and trace elements on ethylene production in soils. Soil Science 151:377–386

    Article  CAS  Google Scholar 

  8. Arshad M, Frankenberger WT (1991) Microbial production of plant hormones. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 327–334

    Google Scholar 

  9. Arshad M, Frankenberger WT (1998) Plant growth regulating substances in the rhizosphere: microbial production and functions. Advances in Agronomy 62:146–151

    Google Scholar 

  10. Arshad M, Frankenberger WT (2002) Ethylene: agricultural sources and applications. Kluwer Academic / Plenum Publishers, New York

    Google Scholar 

  11. Babalola OO, Osir EO, Sanni AI, Odhaimbo GD, Bulimo WD (2003) Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. Afr J Biotechnol 2:157–160

    CAS  Google Scholar 

  12. Barka EA, NowakJ, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans Strain PsJN. Appl Environ Microbiol 72:7246–7252

    CAS  Google Scholar 

  13. Bashan Y (1994) Symptom expression and ethylene production in leaf blight of cotton caused by Alternaria macrospora and Alternaria alternata alone and combined. Can J Bot 72:1574–1579

    CAS  Google Scholar 

  14. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    CAS  Google Scholar 

  15. Belimov AA, Safronova VI, Mimura T (2002) Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can J Microbiol/Rev Can Microbiol 48:189–199

    CAS  Google Scholar 

  16. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252

    Google Scholar 

  17. Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot (doi:10.1093/jxb/erm010)

  18. Bensalim S, Nowak J, Asiedu S K (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Google Scholar 

  19. Blaha D, Combaret CP, Mirza MS, LoccozYM (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    CAS  Google Scholar 

  20. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Cur Opin Plant Biol 4:343–350

    CAS  Google Scholar 

  21. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    CAS  Google Scholar 

  22. Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65:322–326

    CAS  Google Scholar 

  23. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Google Scholar 

  24. Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  Google Scholar 

  25. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    CAS  Google Scholar 

  26. Cattelana AJ, Hartela PG, Fuhrmann JJ (1999) Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  Google Scholar 

  27. Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein and related proteins. Cell 89:1133–1144

    CAS  Google Scholar 

  28. Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol 106:45–51

    CAS  Google Scholar 

  29. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol (in press)

  30. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    CAS  Google Scholar 

  31. Coupland D, Jackson MB (1991) Effects of mecoprop (an auxin analogue) on ethylene evolution and epinasty in two biotypes of stellaria media. Ann Bot 68:167–172

    CAS  Google Scholar 

  32. Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sci Hortic 78:83–125

    CAS  Google Scholar 

  33. de Prado JL, de Prado RA, Shimabukuro RH (1999) The effect of diclofop on membrane potential, ethylene induction, and herbicide phytotoxicity in resistant and susceptible biotypes of grasses. Pestic Biochem Physiol 63:1–14

    CAS  Google Scholar 

  34. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–94

    CAS  Google Scholar 

  35. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    CAS  Google Scholar 

  36. Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Mañero J (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51:245–258

    CAS  Google Scholar 

  37. Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? 4th International Crop Science Congress. http://www.cropscience.org.au/icsc2004/poster/1/3/4/510_doddicref.htm (Accessed at June 17, 2007)

  38. Donate-Correa J, Leon-Barrios M, Perez-Galdona R (2005) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:261–272

    Google Scholar 

  39. Elad Y (1988) Involvement of ethylene in the disease caused by Botrytis cinerea on rose and carnation flowers and the possibility of control. Ann Appl Biol 113:589–598

    CAS  Google Scholar 

  40. Else MA, Hall KC, Arnold GM, Davies WJ, Jackson MB (1995) Export of abscisic acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Plant Physiol 107:377–384

    CAS  Google Scholar 

  41. Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level. In: Schüürmann G, Markert B (eds) Ecotoxicology. Wiley, New York, pp 587–620

    Google Scholar 

  42. Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, London, pp 77–86

    Google Scholar 

  43. Feng J, Barker AV (1993) Ethylene evolution and ammonium accumulation by tomato plants under water and salinity stresses. J Plant Nutr 15:2471–2490

    Google Scholar 

  44. Ferro AJ, Bestwick RK, Brown LR (1995) Inventors; agritope, assignee. 1995/05/16. Genetic control of ethylene biosynthesis in plants using S-adenosylmethionine hydrolase. US Patent # 05416250; 1995

  45. Frankenberger WT, Arshad M (1995) Phytohormones in soil: microbial production and function. Marcel Dekker, New York

    Google Scholar 

  46. Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    CAS  Google Scholar 

  47. Glick BR Bashan Y 1997 Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378

    Google Scholar 

  48. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    CAS  Google Scholar 

  49. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    CAS  Google Scholar 

  50. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  51. Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53

    CAS  Google Scholar 

  52. Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    CAS  Google Scholar 

  53. Grichko VP, Glick BR (2001) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem 39:19–25

    CAS  Google Scholar 

  54. Grichko VP, Glick BR, Grishko VI, Pauls KP (2005) Evaluation of tomato plants with constitutive, root-specific, and stress-induced ACC deaminase gene expression. Russ J Plant Physiol 52:359–364

    CAS  Google Scholar 

  55. Hewitt K (1997) Regions at risk: a geographical introduction to disasters. Addision Wesley Longman Limited, Harlow

    Google Scholar 

  56. Higgins JD, Newbury HJ, Barbara1 DJ, Muthumeenakshi S, Puddephat IJ (2006) The production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidases 1 and 2 to extend shelf-life. Mole Breed 17:7–20

    CAS  Google Scholar 

  57. Hong Y, Glick BR, Pasternak JJ (1991) Plant-microbial interaction under gnotobiotic conditions: a scanning electron microscope study. Curr Microbiol 23:111–114

    Google Scholar 

  58. Honma M (1985) Chemically reactive sulfhydryl groups of 1-aminocyclopropane-1-carboxylate deaminase. Agric Biol Chem 49:567–571

    CAS  Google Scholar 

  59. Honma M, Shimomura T (1978) Metabolism of 1-amino-cyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  60. Hontzeas N, Hontzeas CE, Glick BR (2006) Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase. Biotechnol Adv 24:420–426

    CAS  Google Scholar 

  61. Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium P. putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19

    CAS  Google Scholar 

  62. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    CAS  Google Scholar 

  63. Jackson MB (1997) Hormones from roots as signal for the shoots of stressed plants. Trends Plant Sci 2:22–28

    Google Scholar 

  64. Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol/Rev Can Microbiol 40:1019–1025

    CAS  Google Scholar 

  65. Ji P, Campbell HL, Kloepper JW, Jones JB, Suslow TV, Wilson M (2006) Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth- promoting rhizobacteria. Biol Control 36:358–367

    Google Scholar 

  66. Jia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549

    CAS  Google Scholar 

  67. Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM et al (2005) Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187:6488–6498

    CAS  Google Scholar 

  68. Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254

    CAS  Google Scholar 

  69. Karthikeyan S, Zhao Z, Kao C, Zhou Q, Tao Z, Zhang H, Liu H (2004) Structural analysis of 1-aminocyclopropane-1-carboxylate deaminase: observation of an aminyl intermediate and identification of Tyr294 as the active-site nucleophile. Angew Chem Int Ed 43:3425–3429

    CAS  Google Scholar 

  70. Karthikeyan S, Zhou Q, Zhao Z, Kao CL, Tao Z, Robinson H, Liu HW, Zhang H (2004) Structural analysis of Pseudomonas 1-aminocyclopropane-1-carboxylate deaminase complexes: insight into the mechanism of a unique pyridoxal-5′-phosphate dependent cyclopropane ring-opening reaction. Biochemistry 43:13328–13339

    CAS  Google Scholar 

  71. Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    CAS  Google Scholar 

  72. Klee HJ, Hayford MB, Kretzmer KA, Barry GE, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    CAS  Google Scholar 

  73. Klee HJ, Kishore GM (1992) Control of fruit ripening and senescence in plants. International Patent No.WO92/12249. European Patent Office, World Intellectuall Property Organization

  74. Kogan FN (1997) Global drought watch from space. Bull Bridge Univ Press, New York

    Google Scholar 

  75. Kumar A, Taylor MA, Mad Arif SA, Davies HV (1996) Potato plants expressing antisense and sense S-adenosylme-thionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J9:47–58

    Google Scholar 

  76. Lasserre E, Bouquin T, Hernandez JA, Bull J, Pech JC, Balagua C (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L). Mol Gen Genet 251:81–90

    CAS  Google Scholar 

  77. Lee KH, LaRue TA (1992) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. Plant Physiol 100:1759–1763

    Article  CAS  Google Scholar 

  78. Lei CH, Lindstrom JT, Woodson WR (1996) Reduction of 1-aminocyclopropane-1-carboxylic acid (ACC) in pollen by expression of ACC deaminase in transgenic petunias. Plant Physiol 149(Suppl):111

    Google Scholar 

  79. Li Q, Saleh-Lakha S, Glick BR (2005) The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51:511–514

    CAS  Google Scholar 

  80. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    CAS  Google Scholar 

  81. Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    CAS  Google Scholar 

  82. Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    CAS  Google Scholar 

  83. Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie Leeuwenhoek 83:285–291

    CAS  Google Scholar 

  84. Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–78

    CAS  Google Scholar 

  85. Mattoo AK, Suttle JC (1991) The Plant Hormone Ethylene. CRC Press, Boca Raton, FL

    Google Scholar 

  86. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    CAS  Google Scholar 

  87. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    CAS  Google Scholar 

  88. Mayak S, Tivosh T, Glick BR (1999) Effect of wild type and mutant plant growth-promoting rhizobacteria on the rooting of mungbeen cuttings. J Plant Growth Regul 18:49–53

    CAS  Google Scholar 

  89. McCune JM (1975) Definition of invisible injury in plants. In: Treshow M (ed) Interaction of air pollutants and plant diseases. 122:307–334

  90. McGarvey DJ, Yu H, Chrlstoffenen RE (1990) Nucleotide sequence of a ripening related cDNA from avocado fruit. Plant Mol Biol 15:165–167

    CAS  Google Scholar 

  91. Mehlhorn H, Wellburn AR (1987) Stress ethylene formation determines plant sensitivity to ozone. Nature 327:417–418

    CAS  Google Scholar 

  92. Mendelsohn R, Rosenberg NJ (1994) Framework for integrated assessments of global warming impacts. Clim Change 28:15–44

    CAS  Google Scholar 

  93. Minami R., Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem (Tokyo) 123:1112–1118

    CAS  Google Scholar 

  94. Moeder W, Barry CS, Tauriainen AA, Betz C, Tuomainen J, Utriainen M, Grierson D, Sandermann H, Langebartels C, Kangasjärvi J (2002) Ethylene synthesis regulated by bi-phasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol 130:1918–1926

    CAS  Google Scholar 

  95. Nadeem SM., Hussain I, Naveed M, Ashgar HN, Zahir ZA, Arshad M (2006) Performance of plant growth promoting rhizobacteria containing ACC-deaminase activity for improving growth of maize under salt-stressed conditions. Pak J Agri Sci 43:114–121

    Google Scholar 

  96. Nadeem SM., Zahir ZA, Naveed M, Arshad M, Shahzad SM (2006) Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil Environ 25:78–84

    Google Scholar 

  97. Nayani S, Mayak S, Glick BR (1998) The effect of plant growth promoting rhizobacteria on the senescence of flower petals. Ind J Exp Biol 36:836–839

    Google Scholar 

  98. Neljubow D (1901) Ueber die horizontale nutation der stengel von Pisum sativum und einiger anderer. Pflanzen Beih Bot Zentralbl 10:128–139

    Google Scholar 

  99. Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    CAS  Google Scholar 

  100. Nukui N, Ezura H, Yuhashi K, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897

    CAS  Google Scholar 

  101. O’Donnell PJ, Calvert CM, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–17

    CAS  Google Scholar 

  102. Okazaki S, Nukui N, Sugawara M, Minamisawa K (2004) Rhizobial strategies to enhance symbiotic interactions: rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ 19:99–111

    Google Scholar 

  103. Oldroyd GED, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    CAS  Google Scholar 

  104. Olson DC, Oetiker JH, Yang SF (1995) Analysis of LE-ACS3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. J Biol Chem 270:14056–14061

    CAS  Google Scholar 

  105. Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:170–180

    Google Scholar 

  106. Patten CL, Glick BR (2002) The role of bacterial indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    CAS  Google Scholar 

  107. Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol 47:368–372

    CAS  Google Scholar 

  108. Prasad MNV, Strazalka K (2000) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Boston, pp 153–160

    Google Scholar 

  109. Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD, Sessitsch A (2006) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566

    CAS  Google Scholar 

  110. Rasche F, Marco-Noales E, Velvis H, Overbeek LS, López MM, Elsas JD, Sessitsch A (2006) Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil 298:123–140

    Google Scholar 

  111. Reed AJ, Magin KM, Anderson JS, Austin GD, Rangwala T, Linde DC, Love JN, Rogers SG, Fuchs RL (1995) Delayed ripening tomato plants expressing the enzyme 1-aminocyclopropane-1-carboxylic acid deaminase. 1. Molecular characterization, enzyme expression, and fruit ripening traits. J Agric Food Chem 43:1954–1962

    CAS  Google Scholar 

  112. Reed MLE, Warner BG, Glick BR (2005) Plant growth-promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429

    CAS  Google Scholar 

  113. Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    CAS  Google Scholar 

  114. Reid MS, Wu MJ (1992) Ethylene and flower senescence. Plant Growth Regul 11:37–43

    CAS  Google Scholar 

  115. Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1924

    CAS  Google Scholar 

  116. Robison MM, Griffith M, Pauls KP, Glick BR (2001) Dual role of ethylene in susceptibility of tomato to Verticillium wilt. J Phytopathol 2:385–388

    Google Scholar 

  117. Robison MM, Shah S, Tamot B, Pauls KP, Mott BA, Glick BR (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol 2:135–145

    CAS  Google Scholar 

  118. Rodecap KD, Tingey DT, Tibbs JH (1981) Cadmium-induced ethylene production in bean plants. Z Pflanzenphysiol 105:65–74

    CAS  Google Scholar 

  119. Ross GS, Knighton ML, Yee ML (1992) An ethylene-related cDNA from ripening apples. Plant Mol Biol 19:231–238

    CAS  Google Scholar 

  120. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fert Soils 42:267–272

    CAS  Google Scholar 

  121. Saleh SS, Glick BR (2001) Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and Pseudomonas putida UW4. Can J Microbiol/Rev Can Microbiol 47:698–705

    CAS  Google Scholar 

  122. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    CAS  Google Scholar 

  123. Sergeeva E, Shah S, Glick BR (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotech 22:277–282

    CAS  Google Scholar 

  124. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka E, Wang-Pruski G, Faure D, Reiter B, Glick BR, Nowak J (2005) Burkholderia phytofirmins sp. Nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192

    CAS  Google Scholar 

  125. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    CAS  Google Scholar 

  126. Shaharoona B, Arshad M, Zahir ZA (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    CAS  Google Scholar 

  127. Shan XC, Goodwin PH (2006) Silencing an ACC oxidase gene affects the susceptible host response of Nicotiana benthamiana to infection by Colletotrichum orbiculare. Plant Cell Rep 25:241–247

    CAS  Google Scholar 

  128. Sheehy RE, Honma M, Yamada M, Sasaki T, Martineau B, Hiatt WR (1991) Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase. J Bacteriol 173:5260–5265

    CAS  Google Scholar 

  129. Shinozaki K, Yamaguchi-Shinozaki K (1999) Molecular responses to drought stress. In: Shinozaki K, Shinozaki YK (ed) Molecular responses to cold, drought, heat and salt stress in higher plants. RG Landes, Austin, pp 11–28

  130. Sikorski J, Jahr H, Wackernagel W (2001) The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Environ Microbiol 3:176–186

    CAS  Google Scholar 

  131. Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100:577–582

    CAS  Google Scholar 

  132. Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick BR (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708

    CAS  Google Scholar 

  133. Stiens M, Schneiker S, Keller M, Kuhn S, Pühler A, Schlüter A (2006) Sequence analysis of the 144-kilobase accessory plasmid psmesm11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 72:3662–3672

    CAS  Google Scholar 

  134. Strzelczyk E, Kampert M, Pachlewski R (1994) The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine. Mycorrhiza 4:193–196

    CAS  Google Scholar 

  135. Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    CAS  Google Scholar 

  136. Tamot` BK, Pauls KP, Glick BR (2003) Regulation of expression of the prb-1b/ACC deaminase gene by UV-B in transgenic tomatoes. J Plant Biochem Biotechnol 12:25–29

    CAS  Google Scholar 

  137. Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71

    CAS  Google Scholar 

  138. Tuomainen J, Betz C, Kangasjarvi J, Ernst D, Yin ZH, Langebartels C, Sandermann H Jr (1997) Ozone induction of ethylene emission in tomato plants: Regulation by differential transcript accumulation for the biosynthetic enzymes. Plant J 12:1151–1162

    CAS  Google Scholar 

  139. Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    CAS  Google Scholar 

  140. Vahala J, Ruonala R, Keinanen M, Tuominen H, Kangasjarvi J (2003) Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiol 132:185–195

    CAS  Google Scholar 

  141. Wang C, Ramette A, Punjasamarnwong P, Zala M, Natsch A, Moenne-Loccoz Y, Defago G (2001) Cosmopolitan distribution of phlD-containing dicotyledonous crop associated biological control Pseudomonads of worldwide origin. FEMS Microbiol Ecol 37:105–116

    CAS  Google Scholar 

  142. Wang CKE, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    CAS  Google Scholar 

  143. Wang CY (1987) Changes of polyamines and ethylene in cucumber seedlings in response to chilling stress. Physiol Plantarum 69:253–257

    CAS  Google Scholar 

  144. Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–151

    Google Scholar 

  145. Whipp JM (1990) Carbon utilization. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97

    Google Scholar 

  146. Wilhite DA (2000) Drought as a natural hazard. In: Wilhite DA (ed) Drought: a global assessment. Routledge, London, pp 3–18

    Google Scholar 

  147. Woltering EJ, van Doorn WG (1988) Role of ethylene in senescence of petals—morphological and taxonomical relationships. J Expl Bot 39:1605–1616

    CAS  Google Scholar 

  148. Yuquan X, Rong S, Zhixing L (1999) Quickly screening a strain of Pseudomonas B8 with both ACC deaminase activity and antagonism against Fusarium oxysporum. http://www.wanfangdata.com.cn/qikan/periodical.articles/shjtdxxb/shjt99/shjt9902/990223.htm (Accessed at June 11, 2007)

  149. Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support for this study was provided by Higher Education Commission (HEC), Islamabad, Pakistan. We are also thankful to Dr. Maria L.W. Sels for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arshad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleem, M., Arshad, M., Hussain, S. et al. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34, 635–648 (2007). https://doi.org/10.1007/s10295-007-0240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-007-0240-6

Keywords

Navigation