Skip to main content

Advertisement

Log in

Research on potassium in agriculture: needs and prospects

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

This review highlights future needs for research on potassium (K) in agriculture. Current basic knowledge of K in soils and plant physiology and nutrition is discussed which is followed by sections dealing specifically with future needs for basic and applied research on K in soils, plants, crop nutrition and human and animal nutrition. The section on soils is devoted mainly to the concept of K availability. The current almost universal use of exchangeable K measurements obtained by chemical extraction of dried soil for making fertilizer recommendations is questioned in view of other dominant controlling factors which influence K acquisition from soils by plants. The need to take account of the living root which determines spatial K availability is emphasized. Modelling of K acquisition by field crops is discussed. The part played by K in most plant physiological processes is now well understood including the important role of K in retranslocation of photoassimilates needed for good crop quality. However, basic research is still needed to establish the role of K from molecular level to field management in plant stress situations in which K either acts alone or in combination with specific micronutrients. The emerging role of K in a number of biotic and abiotic stress situations is discussed including those of diseases and pests, frost, heat/drought, and salinity. Breeding crops which are highly efficient in uptake and internal use of K can be counterproductive because of the high demand for K needed to mitigate stress situations in farmers’ fields. The same is true for the need of high K contents in human and animal diets where a high K/Na ratio is desirable. The application of these research findings to practical agriculture is of great importance. The very rapid progress which is being made in elucidating the role of K particularly in relation to stress signalling by use of modern molecular biological approaches is indicative of the need for more interaction between molecular biologists and agronomists for the benefit of agricultural practice. The huge existing body of scientific knowledge of practical value of K in soils and plants presents a major challenge to improving the dissemination of this information on a global scale for use of farmers. To meet this challenge closer cooperation between scientists, the agrochemical industry, extension services and farmers is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abogadallah GM, Serag MM, Quick WP (2010) Fine and course regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress. Physiol Plant 138:60–73

    Article  CAS  PubMed  Google Scholar 

  • Allen DJ, Ort DR (2001) Impact of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci 6:36–42

    Article  CAS  PubMed  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  CAS  PubMed  Google Scholar 

  • Andres E (1988) KALIPROG – an information system for including site specific factors into fertilizing recommendations. In: Magstl A et al (eds) Proceedings 9. Jahrestagung der Gesellschaft für Informatik in der Land-, Forst- und Ernährungswissenschaft (GIL), Münster 28.-29. Sept. 1988. Ulmer Verlag, Stuttgart, pp 223–239

    Google Scholar 

  • Andres E, Orlovius K (1989) Auf den Standort kommet es an. Ratgeber für die Landwirtschaft, Heft Nr. 7, Kali und Salz AG, Kassel, Germany, pp 1–49

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    Article  CAS  PubMed  Google Scholar 

  • Arzet HR (1972) Variation of potassium and magnesium contents in some private feeding stuffs in the past 100 years. Landwirtsch Forsch 25:266–271

    CAS  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  CAS  PubMed  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, New York, p 434

    Google Scholar 

  • Barber SA, Mackay AD (1985) Sensitivity analysis of the parameters of a mechanistic mathematical model affected by changing soil moisture. Agron J 77:528–531

    Article  Google Scholar 

  • Barré P, Velde B, Catel N, Abbadie L (2007) Soil-plant potassium transfer: impact of plant activity on clay minerals as seen from X-ray diffraction. Plant Soil 292:137–146

    Article  CAS  Google Scholar 

  • Bates TR, Lynch J (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250

    Article  CAS  Google Scholar 

  • Batey T, McKenzie DC (2006) Soil compaction: identification directly in the field. Soil Use Manag 2:83–86

    Article  Google Scholar 

  • Bergmann W (1992) Nutritional disorders of plants. VCH Publishers Inc., Florida

    Google Scholar 

  • Blank O-H (2009) Is there a need for the use of chloride-free mineral fertilizers for currant as a common berry fruit? Ph.D. thesis Agric Faculty, University Hohenheim, Stuttgart, Germany, pp 1–165

  • Bunje G (1979) Untersuchungen zum Einfluss der Mangan- und Kupferversorgung auf die Kälteresistenz von Winterweizen, Hafer und Mais anhand von Gefäßversuchen. Inaug Diss Agrarw Fak Univ Kiel Germany

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Cakmak I, Engels C (1999) Role of minerals in photosynthesis and yield formation. In: Rengel Z (ed) Mineral nutrition of crops—fundamental mechanisms and implications. The Haworth Press, New York, pp 141–168

    Google Scholar 

  • Cakmak I, Schjoerring JK (2008) Special topics in potassium and magnesium research. Physiol Plant 133:623

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257

    Article  CAS  Google Scholar 

  • Cassman KG (1998) Agronomic management of potassium in the 21st century: can plant physiology help? In: Oosterhuis DM, Berkowitz GA (eds) Frontiers in potassium nutrition: new perspectives on the effects of potassium on physiology of plants. Potash and Phosphate Institute, Norcross, pp 165–174

    Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim B-K, Lee S-C, Kudia J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK 23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gabelman WH (1995) Isolation of tomato strains varying in potassium acquisition using a sand-zeolite culture system. Plant Soil 176:65–70

    Article  CAS  Google Scholar 

  • Claassen N (1994) Nährstoffaufnahme höherer Pflanzen aus dem Boden. Ergebnis von Verfügbarkeit und aneigungsvermögen. Habilitatsionsschrift, Universität Göttingen, SeverinVerlag, Göttingen

    Google Scholar 

  • Damon PM, Rengel Z (2007) Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Aust J Agric Res 58:816–823

    Article  CAS  Google Scholar 

  • Demingé C, Sabboh H, Rémésy C, Meneton P (2004) Protective effects of high dietary potassium: nutritional and metabolic aspects. J Nutr 134:2903–2906

    Google Scholar 

  • Dessougi HI, Claassen N, Steingrobe B (2002) Potassium efficiency mechanisms of wheat barley and sugar beet grown on a K fixing soil under controlled conditions. J Plant Nutr Soil Sci 165:732–737

    Article  Google Scholar 

  • Dobermann A, Sta Cruz PC, Cassman CG (1996) Potassium balance and potassium supplying power in intensive irrigated rice systems. In: Potassium in Asia. Balanced fertilization to increase and sustain agricultural production. International Potash Institute, Basel Switzerland, pp 199–234

  • Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth and seminal root system, and the shoot, in barley. New Phytol 75:479–490

    Article  CAS  Google Scholar 

  • Egilla JN, Davies FT, Drew MC (2001) Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv.Leprachaun: plant growth, leaf macro-and micronutrient content and root longevity. Plant Soil 229:213–224

    Article  CAS  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Inc publishers, Sunderland, p 400

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema HH, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol Biochem 40:659–668

    Article  CAS  Google Scholar 

  • Fusseder A, Kraus M (1986) Individuelle Wurzelkonkurrenz und Ausnutzung der immobilen Makronährstoffe im Wurzelraum von Mais. Flora 178:11–18

    Google Scholar 

  • Gill SS, Gill PPS (2006) Extension as an effective tool to disseminate research to farmers: Success and shortcomings. In: Benbi DK, Brar MS, Bansal SK (eds) Balanced fertilization for sustaining crop productivity. Proceedings of the Intern. Symposium 22–25 Nov. 2006, Agricultural Univ. Ludhiana India, Intern. Potash Institute Horgen, Switzerland, pp 549–553

  • Grant CA, Bailey LD, Therrien MC (1996) Effect of N, P, and KCl fertilizers on grain yield and Cd concentration in malting barley. Fertil Res 45:153–161

    Article  Google Scholar 

  • Greenwood DJ, Karpinets TV (1997a) Dynamic model for the effects of K—fertilizer on crop growth, K-uptake and soil-K in arable cropping. 1. Description of the model. Soil Use Manag 13:178–183

    Article  Google Scholar 

  • Greenwood DJ, Karpinets TV (1997b) Dynamic model for the effects of K fertilizer on crop growth, K-uptake and the soil –K in arable cropping. 2 Field test of the model. Soil Use Manag 13:184–189

    Article  Google Scholar 

  • Grewal JS, Singh SN (1980) Effect of potassium nutrition on frost damage and yield of potato plants on alluvial soils of the Punjab (India). Plant Soil 57:105–110

    Article  CAS  Google Scholar 

  • Gunes DL, Welch RM (1989) Plant content of magnesium, calcium and potassium in relation to ruminant nutrition. J Anim Sci 67:3485–3494

    Google Scholar 

  • Hakerlerler H, Oktay M, Eryüce N, Yagmur B (1997) Effect of potassium sources on the chilling tolerance of some vegetable seedlings grown in hotbeds. In: Johnston AE (ed) Food security in the WANA region, the essential need for balanced fertilization. International Potash Institute, Basel, pp 317–327

    Google Scholar 

  • Halford NG (2009) New insights on the effects of heat stress on crops. J Exp Bot 60:4215–4216

    Article  CAS  PubMed  Google Scholar 

  • Hampe T, Marschner H (1982) Effect of sodium on morphology, water relations and net photosynthesis in sugar beet leaves. Z Pflanzenphysiol 108:151–162

    CAS  Google Scholar 

  • Hasan R (2002) Potassium status of soils in India. Better Crops Intern 16:3–5

    Google Scholar 

  • He FJ, MacGregor GA (2008) Beneficial effects of potassium on human health. Physiol Plant 133:725–735

    Article  CAS  PubMed  Google Scholar 

  • Heenan DP, Campbell LC (1981) Influence of potassium and manganese on growth and uptake of magnesium by soybeans (Glycine max (L.) Merr. cv. Bragg). Plant Soil 61:447–456

    Article  CAS  Google Scholar 

  • Hermann L, Hebel A, Stahr K (1994) Influence of microvariability in sandy Sahelian soils on millet growth. Z Pflanzenernaehr Bodenkd 157:111–115

    Article  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P (2002) Potassium. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker Inc., New York

    Google Scholar 

  • Huber DM, Arny DC (1985) Interactions of potassium with plant disease. In: Munson RD (ed) Potassium in agriculture Amer Soc Agron., Madison USA, pp 467–488

  • Huh GH, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649–659

    Article  CAS  PubMed  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • IPI-OUAT-IPNI Intern Symposium (2009) Potassium. In: Brar MS (ed) Role and benefits in improving nutrient management for food production, quality and reduced environmental damage. Symposium proceedings, Orissa University of Agriculture and Technology, Bhubaneswar, India, 5.–7. November 2009, Intern. Potash Institute, Horgen, Switzerland, in press

  • IPI-PAU Intern Symposium (2006) Balanced fertilization for sustaining crop productivity. Symposium proceedings, Punjab Agricultural University, Ludhiana, India, 22.–25. Nov. 2006. In: Benbi DK, Brar MS, Bansal SK (eds), vol.I: invited speakers, 559 pp, vol. II: extended abstracts of poster sessions, 30pp; Intern. Potash Institute, Horgen, Switzerland

  • Irget ME, Aksoy U, Okur B, Ogun AR, Tepicik M (2008) Effect of calcium based fertilizatiion on dried fig (Ficus carica L. cv Sanlop) yield and quality. Sci Hortic 113:308–313

    Article  CAS  Google Scholar 

  • Jeschke WD, Kirkby EA, Peuke AD, Pate JS, Hartung W (1997) Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor oil bean (Ricinus communis L.). J Exp Bot 48:75–91

    Article  CAS  Google Scholar 

  • Johnston AE, Poulton BPB, PR DCJ (1998) Assessment of some spatially variable soil factors limiting crop yields. Proc 419 Intern Fert Soc York UK

  • Jones RD, Hancock JT, Morice AH (2000) NADPH oxidase: a universal oxygen sensor. Free Radic Biol Med 29:416–424

    Article  CAS  PubMed  Google Scholar 

  • Jung J-Y, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 91:607–621

    Article  CAS  Google Scholar 

  • Jungk A (2001) Root hairs in the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129

    Article  CAS  Google Scholar 

  • Jungk A, Claassen N (1997) Ion diffusion in the soil-root system. Adv Agron 61:53–110

    Article  CAS  Google Scholar 

  • Kafkafi U, Bernstein N (1996) Root growth under salinity stress. In: Eshel A, Waisel Y, Kafakai U (eds) Plant roots. The hidden half, 2nd edn. Marcel Dekker Inc, New York, pp 435–449

    Google Scholar 

  • Kant S, Kafkafi U (2002) Potassium and abiotic stresses in plants. In: Pasricha NS, Bansal SK (eds) Potassium for sustainable crop production. Potash Institute of India, Gurgaon, pp 233–251

    Google Scholar 

  • Kaya C, Kirnak H, Higgs D (2001) Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. J Plant Nutr 24:357–367

    Article  CAS  Google Scholar 

  • Kiraly Z (1976) Plant disease resistance as influenced by biochemical effects of nutrients in fertilizers. Proc. 12th Collq International Potash Institute, Bern, pp 33–46

  • Kirkby EA, Römheld V (2004) Micronutrients in plant physiology: functions, uptake and mobility. Proc 543, Intern Fert Soc York UK

  • Kirkby EA, Armstrong MJ, Milford GFJ (1987) The absorption and the physiological roles of P and K in the sugar beet plant with reference to the functions of Na and Mg. Proceedings of the 50th Winter Congress of the International Institute for Sugar Beet Research, Brussels, 1–23

  • Kirkby EA, LeBot J, Adomowicz S, Römheld V (2009) Nitrogen in physiology—an agronomic perspective and implications for the use of different nitrogen forms. Proc 653 Intern Fert Soc York, UK

  • Kolar JS, Grewal HS (1994) Effect of split application of potassium on growth, yield and potassium accumulation by soybean. Fertil Res 39:217–222

    Article  Google Scholar 

  • Krauss A (2003a) The International Potash Institute in retrospect and prospect. In: Johnston AE (ed) Proceedings of the IPI Golden, Jubilee Congress1952–2002, 8–10 Oct. 2002, volume 1: Invited papers “Feed the soil to feed the people. The role of potash in sustainable agriculture”. Basel, Switzerland, International Potash Institute, Basel Switzerland. pp 11–22

  • Krauss B (2003b) Acquiring and putting knowledge into practice—the role of IPI. In: Johnston AE (ed) Proceedings of the IPI Golden Jubilee Congress 1952–2002, 8–10 Oct. 2002 Basel, Switzerland, Intern. Potash Institute, Basel Switzerland, pp 363–369

  • Kuhlmann H, Barraclough PB (1987) Comparison between the seminal and nodal root systems of winter wheat in their activity for N and K uptake. Z Pflanzenernaehr Bodenkd 150:24–30

    Article  Google Scholar 

  • Kuhlmann H, Wehrmann L (1984) Testing different methods of soil analysis for their applicability for the determination of K fertilizer requirement of loess soils. Z Pflanzenernaehr Bodenkd 147:334–348

    Article  CAS  Google Scholar 

  • Kumar N, Kavino M, Kumar AR (2006) Balanced fertilization for sustainable yield and quality in tropical fruit crops. In: Benbi DK et al (eds) Balanced Fertilization for Sustaining Crop Productivity. Internat Potash Institute, Horgen, pp 387–405

    Google Scholar 

  • Leigh RA (2001) Potassium homeostasis and membrane transport. J Plant Nutr Soil Sci 164:193–198

    Article  CAS  Google Scholar 

  • Leigh RA, Johnston AE (1983) Concentrations of potassium in the dry matter and tissue water of field-grown spring barley and their relationships to grain yield. J Agric Sci 101:675–685

    Article  Google Scholar 

  • Leigh RA, Wyn Jones RG (1984) A hypothesis relating critical potassium concentration for the growth and distribution of this ion in the plant cell. New Phytol 97:1–13

    Article  CAS  Google Scholar 

  • Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) Ethylene response factor 1 integrates signals from ethylene and jasmonate pathways in plant defence. Plant Cell 15:165–178

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant Soil 269:45–56

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral plant nutrition of higher plants, 2nd edn. Academic, p 889

  • Marschner H, Cakmak I (1989) High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris L.) plants. J Plant Physiol 134:308–315

    CAS  Google Scholar 

  • Mayer J (1997) Ist die Kaliumversorgung gesichert? Ökol Landbau 101:30–33

    Google Scholar 

  • McLean EO, Watson ME (1985) Soil measurements of plant available potassium. In: Munson RD (ed) Potassium in agriculture. CSSA SSSA, Madison, pp 277–308

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Acad. Publishers, Dordrecht, p 849

    Google Scholar 

  • Mengel K, Rahmatullah X, Dou H (1998) Release of potassium from the silt and sand fraction of loess derived soils. Soil Sci 163:805–813

    Article  CAS  Google Scholar 

  • Milford GFJ, Johnston AE (2007) Potassium and nitrogen interactions in crop production. Proc 615 Intern Fert Soc York UK

  • Milford GFJ, Jarvis PJ, Jones J, Barraclough PB (2008) An agronomic and physiological re-evaluation of the potassium and sodium requirements and fertiliser recommendations for sugar beet. J Agric Sci 146:1–15

    Article  Google Scholar 

  • Nabti E, Sahnoune M, Adjrad S, van Dommelen A, Ghoui M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7:354–360

    Article  CAS  Google Scholar 

  • Norvell WA, Wu J, Hopkins DG, Welch RM (2000) Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Sci Soc Am J 64:2162–2168

    Article  CAS  Google Scholar 

  • Öborn I, Andrist-Rangel Y, Askeaard M, Grant CA, Watson CA, Edwards AC (2005) Critical aspects of potassium management in agricultural systems. Soil Use Manag 21:102–112

    Google Scholar 

  • Ozkutlu F, Ozturk L, Erdem H, McLaughlin M, Cakmak I (2007) Leaf-applied sodium chloride promotes cadmium accumulation indurum wheat grain. Plant Soil 290:323–331

    Article  CAS  Google Scholar 

  • Perrenoud S (1990) Potassium and plant health. IPI-Research Topics No. 3, 2nd edn. International Potash Institute, Basel, p 365

    Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681

    Article  CAS  PubMed  Google Scholar 

  • Prabhu AS, Fageria NK, Huber DM, Rodrigues FA (2007) Potassium and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. The American Phytopathological Soc Press, Saint Paul, pp 57–78

    Google Scholar 

  • Prasad R (2009) Potassium fertilization recommendations for crops need rethinking. Indian J Fert 5:31–33

    CAS  Google Scholar 

  • Preston RL, Linsner JR (1985) Potassium in animal nutrition. In: Munson RD (ed) Potassium in agriculture. ASA-CSSA-SSSA, Madison, pp 595–617

    Google Scholar 

  • Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant 133:624–636

    Article  CAS  PubMed  Google Scholar 

  • Römheld V, Kirkby EA (2007) Magnesium functions in crop nutrition and yield. Proc 616 Intern Fert Soc York UK

  • Römheld V, Neumann G (2006) The rhizosphere: contribution of the soil-root interface to sustainable soil systems. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC Press, Taylor and Francis, Oxford, pp 92–107

    Google Scholar 

  • Rubio JS, García-Sánchez F, Rubio F, García AL, Martínez V (2010) The importance of K+ in ameliorating the negative effects of salt stress on peppers. Europ J Hort Sci 75:33–41

    CAS  Google Scholar 

  • Samal D, Kovar JL, Steingrobe B, Sadana US, Bhadoria PS, Claassen N (2010) Potassium uptake efficiency and dynamics in the rhizosphere in maize (Zea mays L.), wheat (Triticum aestivum L.) and sugar beet (Beta vulgaris L.) evaluated with a mechanistic model. Plant Soil 332:105–121

    Article  CAS  Google Scholar 

  • Schachtman DP, Shin R (2006) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    Article  CAS  Google Scholar 

  • Scheel D (1998) Resistance response physiology and signal transduction. Curr Opin Plant Biol 1:305–310

    Article  CAS  PubMed  Google Scholar 

  • Seggewiss B, Jungk A (1988) Influence of potassium dynamics at the soil-root interface on magnesium uptake of plants. Z Pflanzenernaehr Bodenkd 151:91–96

    Article  CAS  Google Scholar 

  • Sen Gupta A, Berkowitz GA, Pier PA (1989) Maintenance of photosynthesis at low leaf water potential in wheat. Role of potassium status and irrigation history. Plant Physiol 89:1358–1365

    Article  Google Scholar 

  • Serfass RE, Manatt MW (1985) Potassium in human nutrition. In: Munson RD (ed) Potassium in agriculture. ASA-CSSA-SSSA, Madison, pp 577–594

    Google Scholar 

  • Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Exp Bot 60:709–712

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and salt stress. Phys Plant 133:651–669

    Article  CAS  Google Scholar 

  • Shabala S, Demidichik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl induced loss from Arabidopsis root and leaf cells by controlling plasma membrane K permeable channels. Plant Phys 141:1653–1665

    Article  CAS  Google Scholar 

  • Sharma RC, Sud KC (2001) Potassium management for yield and quality of potato. In: Pasricha NS, Bansal SK (eds) Proceedings of an Intentional Symposium on the role of potassium in nutrient management for sustainable crop production in India. International Potash Institute, Basel, pp 363–381

    Google Scholar 

  • Sharpley AN (1990) Reaction of fertilizer potassium in soils of different mineralogy. Soil Sci 149:44–51

    Article  CAS  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101:8827–8832

    Article  CAS  PubMed  Google Scholar 

  • Smil V (1999) Crop residues: agriculture’s largest harvest. Biosience 49:299–308

    Article  Google Scholar 

  • Smolders E, McLaughlin MJ (1996) Effect of Cl on Cd uptake by Swiss chard in nutrient solution. Plant Soil 179:57–64

    Article  CAS  Google Scholar 

  • Springob G, Richter J (1998) Measuring interlayer potassium release rate from soil materials II. A percolation procedure to study the influence of the variable “solute K” in the <1.10 micro M range. Z Pflanzenernaehr Bodenkd 161:323–329

    CAS  Google Scholar 

  • Steingrobe B, Claassen N (2000) Potassium dynamics in the rhizosphere and K efficiency of crops. J Plant Nutr Soil Sci 163:101–106

    Article  CAS  Google Scholar 

  • Syers JK (2003) Potassium in soils: current concepts. In: Johnston AE (ed) Proceedings of the IPI Golden Jubilee Congress 1952–2002 held at Basel Switzerland 8–10 Oct 2002. Feed the soil to feed the people. The role of potash in sustainable agriculture. International Potash Institute, Basel, pp 301–310

    Google Scholar 

  • Thiel G, Wolf AH (1997) Operation of K+ channels in stomatal movement. Trends Plant Sci 2:339–345

    Article  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere, 2nd edn. Oxford University Press Inc, p 444

  • Trehan SP, Sharma RC (2002) Potassium uptake efficiency of young plants of three potato cultivars as related to root and shoot parameters. Commun Soil Sci Plant Anal 33:1813–1823

    Article  CAS  Google Scholar 

  • Trehan SP, El DH, Classen N (2005) Potassium efficiency of 10 potato cultivars as related to their capacity to use non exchangeable soil K by chemical mobilization. Commun Soil Sci Plant Anal 36:1809–1822

    Article  CAS  Google Scholar 

  • Umar S, Diva I, Anjum NA, Igbal M (2008) Potassium nutrition reduces cadmium accumulation and oxidative burst in mustard (Brassica campestris L.) IPI e-ifc No 16

  • von Liebig J (1876) Die Chemie in ihrer Anwendung auf Agrikultur und Physiologie, 9th edn. In: Zöller PH (ed) on behalf of the author Friedrich Vieweg und Sohn, Braunschweig, Germany; Reprinted 1995 by Agrimedia GmbH

  • Wang Y, Wu W-H (2010) Plant sensing and signaling in response to K+ deficiency. Mol Plant 3:280–287

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Karley AJ (2010) Potassium. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, plant cell monographs 17. Springer, Berlin, pp 199–224

    Chapter  Google Scholar 

  • Wilkinson S, Clephan AL, Davies WJ (2001) Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126:1566–1578

    Article  CAS  PubMed  Google Scholar 

  • Wulff F, Schulz V, Jungk A, Claassen N (1998) Potassium fertilization on sandy soils in relation to soil test, crop yield and K-leaching. Z Pflanzenernaehr Bodenkd 161:591–599

    CAS  Google Scholar 

  • Yadov DV (2006) Potassium nutrition of sugarcane. In: Benbi DK et al (eds) Balanced fertilization for sustaining crop productivity. Internat Potash Institute, Horgen, pp 275–288

    Google Scholar 

  • Yan X, Wu P, Ling H, Xu G, Xu F, Zhang Q (2006) Plant nutriomics in China: an overview. Ann Bot 98:473–482

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defence responses. Genes Dev 11:1621–1639

    Article  CAS  PubMed  Google Scholar 

  • Yang XE Liu, JX WWM, Li H, Luo AC (2004) Potassium internal use efficincy relative to growth vigor, potassium distribution and carbohydrate allocation in rice genotypes. J Plant Nutr 27:837–852

    Article  CAS  Google Scholar 

  • Yang H, Dobermann A, Cassman KG, Walters DT (2006) Features, applications, and limitations of the hybrid-maize simulation model. Agron J 98:737–748

    Article  Google Scholar 

  • Yoshida K (2001) An economic evaluation of the multifunctional roles of agriculture and rural areas in Japan. FFTC Technical Bulletin 154, Taipeh, Taiwan

  • Zhao Z-Q, Zhu Y-G, Li H-Y, Smith SE, Smith FA (2003) Effects of forms and rates of potassium fertilizers on cadmium uptake of two cultivars of spring wheat (Triticum aestivum L.). Environ Int 29:973–978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Römheld.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Römheld, V., Kirkby, E.A. Research on potassium in agriculture: needs and prospects. Plant Soil 335, 155–180 (2010). https://doi.org/10.1007/s11104-010-0520-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0520-1

Keywords

Navigation