Skip to main content
Log in

Phosphate-Solubilizing and Plant-Growth-Promoting Pseudomonas aeruginosa PS1 Improves Greengram Performance in Quizalafop-p-ethyl and Clodinafop Amended Soil

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The quizalafop-p-ethyl- and clodinafop-tolerant phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 isolated from the rhizospheric soils of mustard was used to determine its phosphate-solubilizing activity and other plant-growth-promoting traits both in the presence and absence of technical grade quizalafop-p-ethyl and clodinafop under in vitro conditions. Quizalafop-p-ethyl (at 40, 80, and 120 ppb) and clodinafop (at 400, 800, and 1200 ppb) reduced the P-solubilizing activity, synthesis of indole-3-acetic acid, and siderophores progressively with increasing concentrations of each herbicide. Hydrogen cyanide and ammonia synthesisized by this strain, however, did not change. Furthermore, the effects of three concentrations each of quizalafop-p-ethyl [40 (recommended dose), 80, and 120 ppb] and clodinafop [400 (recommended dose), 800, and 1200 ppb] were evaluated on plant-growth-promoting Pseudomonas aeruginosa strain PS1 inoculated greengram plants, grown in sandy clay loam soil. Generally, all of the concentrations of both quizalafop-p-ethyl and clodinafop showed phytotoxicity and severely affected the growth, symbiosis, grain yield, and nutrient uptake by greengram plants. The toxicity of quizalafop-p-ethyl and clodinafop enhanced gradually with the increase in the dose rate of herbicides. Quizalafop-p-ethyl was more toxic than clodinafop. In contrast, herbicide-tolerant P. aeruginosa strain PS1 when used with herbicides increased the measured parameters at all concentrations. Both quizalafop-p-ethyl at 120 ppb and clodinafop at 400 ppb increased total chlorophyll content, leghemoglobin, root N, shoot N, root P, shoot P, seed yield, and seed protein, relative to the uninoculated control. The study suggests that the phytotoxicity of herbicides to legumes could be reduced by applying the growth-promoting herbicide-tolerant strain of Pseudomonas aeruginosa PS1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahemad M, Khan MS (2009) Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards rhizobium pea symbiosis. Bull Environ Contam Toxicol doi:10.1007/s00128-009-9692-x

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Anderson A, Baldock JA, Rogers SL, Bellotti W, Gill G (2004) Influence of chlorsulfuron on rhizobial growth, nodule formation, and nitrogen fixation with chickpea. Aust J Agric Res 55:1059–1070

    Article  CAS  Google Scholar 

  • Araujo ASF, Monteiro RTR, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804

    Article  CAS  Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    CAS  Google Scholar 

  • Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular-weight organic acid on the solubilization of phosphates. Biol Fertil Soils 18:311–319

    Article  CAS  Google Scholar 

  • Brick JM, Bostock RM, Silversone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Google Scholar 

  • Cork DJ, Krueger JP (1992) Pesticide biodegradation. Encycl Microbiol 3:357–361

    Google Scholar 

  • Costerton JW (1985) The role of bacterial exopolysaccharides in nature and disease. Dev Ind Microbiol 26:249–261

    CAS  Google Scholar 

  • Cvijanovic GT, Milosevic NA, Simic M, Lalevic BT, Prijic LM (2004) The microbiological activity in the rhizospheric soil under the soybean crop after the application of herbicides. Acta Herbol 13:251–260

    Google Scholar 

  • D’Halluin K, Botterman J, De Greef W (1990) Engineering of herbicide-resistant alfalfa and evaluation under field conditions. Crop Sci 30:866–871

    Google Scholar 

  • Dastgheib F, Rolston MP, Archie WJ (2003) Chemical control of brome grasses (Bromus spp.) in cereals. N Z Plant Prot 56:227–232

    CAS  Google Scholar 

  • Devi KK, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Eberbach PL, Douglas LA (1989) Herbicide effects on the growth and nodulation potential of Rhizbium trifolii with Trifolium subterraneum L. Plant Soil 119:15–23

    Article  CAS  Google Scholar 

  • Eberbach PL, Douglas LA (1991) Effect of herbicide residues in a sandy loam on the growth, nodulation and nitrogenase activity (C2H2/C2H4) of Trifolium subterraneum. Plant Soil 131:67–76

    CAS  Google Scholar 

  • Eliason R, Schoenau JJ, Szmigielski AM, Laverty WM (2004) Phytotoxicity and persistence of flucarbazone-sodium in soil. Weed Sci 52:857–862

    Article  CAS  Google Scholar 

  • Evans J, Seidel J, O’Connor GE, Watt J, Sutherland M (1991) Using omethoate insecticide and legume inoculant on seed. Aust J Exp Agric 31:71–76

    Article  CAS  Google Scholar 

  • Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA (2007) Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. PNAS 104:10282–10287

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, New York

    Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  Google Scholar 

  • Geelhoed JS, Van Riemsdijk WH, Findenegg GR (1999) Simulation of the effect of citrate exudation from roots on the plant availability of phosphate adsorbed on goethite. Eur J Soil Sci 50:379–390

    Article  CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Gordon S, Weber RP (1951) The colorimetric estimation of IAA. Plant Physiol 26:192–195

    Article  CAS  Google Scholar 

  • Guo Y, Zheng H, Yang Y, Wang H (2007) Characterization of Pseudomonas corrugata strain P94 isolated from soil in Beijing as a potential biocontrol agent. Curr Microbiol 55:247–253

    Article  CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  CAS  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilisation of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  CAS  Google Scholar 

  • Iswaran V, Marwah TS (1980) A modified rapid Kjeldahl method for determination of total nitrogen in agricultural and biological materials. Geobios 7:281–282

    Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice-Hall of India, New Delhi, pp 134–144

    Google Scholar 

  • Jones DL (1998) Organic acid in the rhizosphere: a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, Van Hees PAW (2003) Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2:141–152

    Google Scholar 

  • Karadeniz A, Topcuoğlu SF, İnan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    Article  CAS  Google Scholar 

  • Khan MS, Chaudhry P, Wani PA, Zaidi A (2006a) Biotoxic effects of the herbicides on growth, seed yield, and grain protein of greengram. J Appl Sci Environ Manag 10:141–146

    Google Scholar 

  • Khan MS, Zaidi A, Rizvi PQ (2006b) Biotoxic effects of herbicides on growth, nodulation, nitrogenase activity, and seed production in chickpeas. Commun Soil Sci Plant Anal 37:1783–1793

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture: a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • King JE (1932) The colorimetric determination of phosphorus. Biochem J 26:292–295

    CAS  Google Scholar 

  • Koopman DJ, Tow PG, Reeves TG, Gibson AH (1995) Soil acidification, chlorsulfuron application and Rhizobium meliloti as factors in lucerne yield decline. Soil Biol Biochem 27:673–677

    Article  CAS  Google Scholar 

  • Linu MS, Stephen J, Jisha MS (2009) Phosphate solubilizing Gluconacetobacter sp., Burkholderia sp. and their potential interaction with cowpea (Vigna unguiculata (L.) Walp.). Int J Agric Sci 4:79–87

    CAS  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Article  Google Scholar 

  • Mallik M, Tesfai K (1985) Pesticidal effect on soybean—rhizobia symbiosis. Plant Soil 85:33–41

    Article  CAS  Google Scholar 

  • Mårtensson AM, Nilsson AK (1989) Effects of chlorsulfuron on Rhizobium grown in pure culture and in symbiosis with alfalfa (Medicago sativa) and red clover (Trifolium pratense). Weed Sci 37:445–450

    Google Scholar 

  • Martinez-Toledo MV, Salmeron VR, Belen PC, Jesus G (2005) Studies on the effects of the herbicide simazine on microflora of four agricultural soils-short communication. Environ Toxicol Chem 15:1115–1118

    Article  Google Scholar 

  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    Article  CAS  Google Scholar 

  • Mody BR, Bindra MO, Modi VV (1989) Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch Microbiol 1:2–5

    Google Scholar 

  • Neiland JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Article  Google Scholar 

  • Panda S, Sahu SK (2004) Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaete) following application of three pesticides to soil. Chemosphere 55:283–290

    Article  CAS  Google Scholar 

  • Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777

    CAS  Google Scholar 

  • Reeves MW, Pine L, Neilands JB, Balows A (1983) Absence of siderophore activity in Legionella species grown in iron-deficient media. J Bacteriol 154:324–329

    CAS  Google Scholar 

  • Remans R, Beebe S, Blair M et al (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Sadasivam S, Manikam A (1992) Biochemical methods for agricultural sciences. Wiley Eastern Limited, New Delhi

    Google Scholar 

  • Sannino F, Gianfreda L (2001) Pesticide influence on soil enzymatic activities. Chemosphere 45:417–425

    Article  CAS  Google Scholar 

  • Schwab AP, Banks MK (1994) Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, DC, pp 132–141

    Chapter  Google Scholar 

  • Sharma V, Kumar V, Archana G, Naresh Kumar G (2005) Substrate specificity of glucose dehydrogenase (GDH) of Enterobacter asburiae PSI3 and rock phosphate solubilization with GDH substrates as C sources. Can J Microbiol 51:477–482

    Article  CAS  Google Scholar 

  • Singh G, Wright D (2002) Effects of herbicides on nodulation and growth of two varieties of peas (Pisum sativum). Acta Agron Hung 50:337–348

    Article  CAS  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  CAS  Google Scholar 

  • Sprout SL, Nelson LM, Germida JJ (1992) Influence of metribuzin on the Rhizobium leguminosarum—lentil (Lens culinaris) symbiosis. Can J Microbiol 38:343–349

    CAS  Google Scholar 

  • Sridevi M, Yadav NCS, Mallaiah KV (2008) Production of indole-acetic-acid by Rhizobium isolates from Crotalaria species. Res J Microbiol 3:276–281

    Article  CAS  Google Scholar 

  • Strandberg M, Scott-Fordsmand JJ (2004) Effects of pendimethalin at lower trophic levels: a review. Ecotoxicol Environ Saf 57:190–201

    Article  CAS  Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2002) Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol Biochem 34:703–710

    Article  Google Scholar 

  • Tank N, Saraf M (2003) Phosphate solubilization, exopolysaccharide production and indole acetic acid secretion by rhizobacteria isolated from Trigonella foenum-graecum. Indian J Microbiol 43:37–40

    Google Scholar 

  • Tiwari VN, Pathak AN, Lehri LK (1993) Rock phosphate-super phosphate in wheat in relation to inoculation with phosphate solubilizing organisms and organic waste. Indian J Agric Res 27:137–145

    Google Scholar 

  • van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant 1[W]. Plant Physiol 140:1494–1506

    Article  CAS  Google Scholar 

  • Wani PA, Zaidi A, Khan AA, Khan MS (2005) Effect of phorate on phosphate solubilization and indole acetic acid (IAA) releasing potentials of rhizospheric microorganisms. Annu Plant Prot Sci 13:139–144

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  CAS  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:1–7

    Article  CAS  Google Scholar 

  • Yang C, Lee C (2008) Enrichment, isolation, and characterization of 4-chlorophenol-degrading bacterium Rhizobium sp. 4-CP-20. Biodegradation 19:329–336

    Article  CAS  Google Scholar 

  • Yi Y, Huang W, Ge Y (2007) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    Article  CAS  Google Scholar 

  • Zablotowicz RM, Reddy KN (2004) Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview. J Environ Qual 33:825–831

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS (2007) Stimulatory effects of dual inoculation with phosphate solubilizing microorganisms and arbuscular mycorrhizal fungus on chickpea. Aus J Exp Agric 47:1016–1022

    Article  CAS  Google Scholar 

  • Zawoznik MS, Tomaro ML (2005) Effect of chlorimuron-ethyl on Bradyrhizobium japonicum and its symbiosis with soybean. Pest Manag Sci 61:1003–1008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saghir Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahemad, M., Khan, M.S. Phosphate-Solubilizing and Plant-Growth-Promoting Pseudomonas aeruginosa PS1 Improves Greengram Performance in Quizalafop-p-ethyl and Clodinafop Amended Soil. Arch Environ Contam Toxicol 58, 361–372 (2010). https://doi.org/10.1007/s00244-009-9382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9382-z

Keywords

Navigation