Skip to main content

Advertisement

Log in

Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In the present study, attempts were made to identify the potential of bacterial strains for promoting Arachis hypogaea L. growth. Four hundred and thirty three bacteria were isolated from rhizosphere, phyllosphere and plant tissues from peanuts cultivated in the producing area of Cordoba, Argentina. From this collection, 37 epiphytic isolates and 73 endophytic isolates were selected on the basis of tricalcium phosphate solubilizing activity. These isolates were further tested for other plant growth-promoting attributes and some of them evaluated to examine the effect of inoculation on peanut growth. Siderophore production was observed in a high percentage of the isolates, especially in the root nodule endophytes. Antibiosis was evaluated against the phytopathogen fungus Sclerotinia minor and S. Sclerotiorum. Endophytes from nodules showed the highest levels of fungal growth inhibition. A low number of isolates was able to produce auxin like molecules and inoculation of peanut seedlings with these bacteria showed variability on seed germination enhancement. Isolate J49, identified to belong to genus Pantoea, was the most promising bacterium because it increases peanut plant biomass in inoculation experiments. Peanut soils in the province of Cordoba harbor bacteria with major plant growth promotion properties which represent a potential source of new strains that could be used as biological inoculants in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Millar W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Andrews J, Harris R (2000) The ecology and biogeography of microorganisms on plant surface. Ann Rev Phytopathol 38:145–180

    Article  Google Scholar 

  • Antoun H, Beuchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as growth promoting bacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Arora D, Gaur C (1979) Microbial solubilization of different inorganic phosphates. Indian J Exp Biol 17:1258–1261

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/Plant growth-promotion. En: Hillel D(ed) Encyclopedia of soils in the environment, Vol 1. Elsevier, Oxford, UK, pp 103–115

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant-growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bonadeo E, Moreno I (2006) In: Peanut crop in Córdoba: Mineral nutrition 113–123. Eds. E. M. Fernandez, O. Giayetto, Ed. Universidad Nacional de Río Cuarto.

  • Bonadeo E, Moreno I, Pedelini R (1997) 12° Jornada Nacional del Maní. Gral Carbrera-Córdoba, p 29–31

  • Bonadeo E, Moreno I, Pedelini R (1998) III Reunión Nacional de Oleaginosos. Bahía Blanca, Argentina, p 225

  • Bosch EN, Da Veiga A (2002) Pérdida de productividad de un suelo agrícola. INTA, Buenos Aires

    Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in vitro assay for indoleacetic acid production by bacteria inmobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    CAS  PubMed  Google Scholar 

  • Busso G, Civitaresi M, Geymonat A, Roig R (2004) Situación socioeconómica de la producción de maní y derivados en la región centro-sur de Córdoba. Diagnósticos y propuestas de políticas para el fortalecimiento de la cadena. Universidad Nacional de Río Cuarto. Río Cuarto, Argentina. 163pp. Eds: Universidad Nacional de Río Cuarto

  • Chabot R, Beuchamp CJ, Kloepper JW, Antoun H (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminiscent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 30:1615–1618

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing habilitéis. Appl Soil Ecology 34:33–41

    Article  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Das AC, Mukherjee D (2000) Influence of insecticides on microbial transformation of nitrogen and phosphorus in typic orchragualf soil. J Agric Food Chem 48(8):3728–3732

    Article  CAS  PubMed  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but no phosphorus uptake of canola (Brassica napus L.). Biol Fertl Soils 24:358–364

    Article  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) plant growth-promting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dudley M, Jacob T, Long SR (1987) Microcospic studies of cell division induced in alfalfa roots by Rhizobium meliloti. Planta 171:289–301

    Article  Google Scholar 

  • Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia (Bratils) 62:251–257. doi:10.2478/s11756-007-0044-1

    Article  CAS  Google Scholar 

  • Frioni L (1999) Procesos microbianos. Editorial de la Fundación de la UNRC (II), p 273

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117 Fijarme si ya no esta en texto sacarlo

    Article  CAS  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowsky reagent for indolic compounds produced by phyropathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indolacetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172:3298–3303

    CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    Article  CAS  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouchdouch Y (2008) Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) Water culture method for growing plants without soil. California Agricultural experiment Station Circular 347

  • Ibañez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst and Appl Microbiol 32:49–55

    Article  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Jayaswal R, Fernández M, Schroeder R (1990) Isolation and characterization of Pseudomonas strain that restricts growth of various phytopatogenic fungi. Appl Environ Microbiol 56:1053–1058

    CAS  PubMed  Google Scholar 

  • Kamesky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain ICI4 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrys cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    Article  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon source. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Kloepper JW, Hume DJ, Scher FM, Singleton C, Tipping B, Laliberte M, Frawley K, Kutchaw T, Simonson C, Lifshitz R, Zalesua I, Lee L (1988) Plant growth promoting bacteria on canola (rape seed). Plant Dis 72:42–46

    Article  Google Scholar 

  • Kuklinsky-Sobral J, Araújo W, Mendes R, Geraldi I, Pizzirani-Kleiner A, Azevedo J (2004) Isolation and characterization of soybean associated bacteri and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Lucy M, Ree E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Review article published in Antonie van Leeuweenhoek 86:1–25, 2004 © 2004 Kluwer Academic Publishers, Printed in the Netherlands

    Google Scholar 

  • Machuca A, Napoleao D, Milagres AMF (2001) Detection of metal chelating compounds from wood-rotting fungi Trametes versicolor and Wolfiporia cocos. World J Microbiol Biotechnol 17:687–690

    Article  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological medium growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Podile AR, Kishore GK (2006) In: Plant-Associated Bacteria: Plant growth-promoting rhizobacteria, Part 2: 195–230

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339 Fijarme si ya no esta en texto sacarlo

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potencial applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. doi:10.1007/s11104-006-9056-9 © Springer 2006

    Google Scholar 

  • Schwyn B, Neilands J (1987) Universal chemical assay for detection and determination of siderophores. Analitical Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Severina I (2006) Informe análisis de muestras de suelo manisero, Gral Cabrera, Proyecto Agricultura sustentable

  • Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technol 97:204–210

    Article  CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, New York

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Taurian T, Aguilar OM, Fabra A (2002) Characterization of nodulating peanut rhizobia isolated from a native soil population in Córdoba, Argentina. Symbiosis 33:59–72

    CAS  Google Scholar 

  • Taurian T, Ibañez F, Fabra A, Aguilar OM (2006) Genetic diversity of rhizobia nodulating Arachis hypogaea L. in Central Argentinian Soils. Plant Soil 282:41–52

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potential and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. IBP Handbook N°15. Blackwell, Oxford

    Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plant inoculated with phosphate solubilizing fungi. Adv Agron 69:99–238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECYT-UNRC), CONICET and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) M.L. T. And M. S. Anzuay have doctoral fellowships from CONICET, F.I. has a posdoctoral fellowship from CONICET, A.F., J.A. and T.T. are members of research career of CONICET, Argentina.

Fungi used in this work were gently provided by Dra. Marinelli (UNRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Taurian.

Additional information

Responsible Editor: Peter A.H. Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taurian, T., Anzuay, M.S., Angelini, J.G. et al. Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329, 421–431 (2010). https://doi.org/10.1007/s11104-009-0168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0168-x

Keywords

Navigation