Skip to main content

Potassium-Solubilizing Microorganisms (KSMs) and Its Effect on Plant Growth Improvement

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

All the crops require nitrogen, phosphorus, and potassium macronutrients for proper plant growth, and addition of mineral fertilizers leads to impressive crop yield increases. Excessive application of chemical fertilizers increases the cost of crop production and causes environmental pollution. Many microorganisms inhabiting soil/rhizosphere play an important role in solubilization of bound form of soil minerals and enhance the availability of nutrients in the soil for plant growth and development. These plant growth-promoting rhizobacteria, including N2-fixing, phosphate-/potassium-solubilizing bacteria, are being used as biofertilizers to minimize health hazards caused by the use of chemical fertilizers. About 90–98 % of total potassium in soil exists in unavailable mineral form. Silicate minerals such as K-feldspars and biotite are the most common minerals in the Earth’s crust and are a source of inorganic nutrients in soils to provide optimal nutrition for crops. Recently, K-solubilizing bacteria/fungi have been isolated from rhizosphere soil of different crops, which cause potassium solubilization by production of organic/inorganic acids or by production of polysaccharides. Efficient K-solubilizing bacteria have been reported to enhance potassium uptake in plants leading to plant growth stimulation under pothouse and field conditions. These K-solubilizing bacteria (KSB) could be applied as potential biofertilizers along with application of rock K materials to provide a continuous supply of available potassium for increasing the crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Akande MO, Adediran JA, Oluwatoyinbo FI, Makinde EA, Adetunji MT (2008) Suitability of poultry manure amended Sokoto rock phosphate on growth, nutrient uptake and yield of chilli pepper (Capsicum fruitscens L). Niger J Soil Sci 18:167–174

    Google Scholar 

  • Aleksandrov VG (1958) Organo-mineral fertilizers and silicate bacteria. Dokl Akad Nauk 7:43–48

    Google Scholar 

  • Aleksandrov VG, Blagodyr RN, Iiiev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiyol Zh (Kiev) 29:111–114

    CAS  Google Scholar 

  • Anonymous (2003) Agricultural statistics at a glance. Ministry of Agriculture Cooperation, New Delhi, pp 51–53

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Google Scholar 

  • Avakyan ZA, Karavaiko GI, Mel’nikova EO, Krutsko VS, Ostroushhko YI (1981) Role of microscopic fungi in weathering of rocks from a pegmatite deposit. Mikrobiologiya 50:115–120

    Google Scholar 

  • Badr MA (2006) Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. J Appl Sci Res 2:1191–1198

    Google Scholar 

  • Badr MA, Shafei AM, El-Deen Sharaf SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Bio Sci 2:5–11

    Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Balasubramaniam P, Subramanian S (2006) Assessment of soil test based potassium requirement for low land rice in udic haplustalf under the influence of silicon fertilization. Tamil Nadu Agricultural University, Tiruchirapalli, pp 621–712

    Google Scholar 

  • Barker WW, Welch SA, Welch SC, Banfield F (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Miner 83:1551–1563

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2008) Influence of potassium solubilizing microorganism (Bacillus mucilaginous) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Coinoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Min Manag 8(62A):149–150

    Article  Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific Publications, Oxford, pp 223–262

    Google Scholar 

  • Berthelin J, Belgy G (1979) Microbial degradation of phyllosilicates during simulate podzolization. Geoderma 21(4):297–310

    Article  CAS  Google Scholar 

  • Bertsch PM, Thomas GW (1985) Potassium status of temperature region soils. In: Munson RD (ed) Potassium in agriculture. ASA, CSSA and SSSP, Madison, pp 131–162

    Google Scholar 

  • Brady NC (1990) The nature and properties of soils. Macmillan, New York, pp 351–380

    Google Scholar 

  • Chandra K, Greep S, Ravindranath P, Sivathsa RSH (2005) Liquid biofertilizers. Regional center for organic farming. Hebbal, Bangalore

    Google Scholar 

  • Christophe C, Turpault MP, Freyklett P (2006) Root associated bacteria contribute to mineral weathering and to mineral nutrition in trees and budgeting analysis. Appl Environ Microbiol 72:258–1266

    Google Scholar 

  • Ciobanu I (1961) Investigation of the efficiency of bacterial fertilizers applied to cotton. Cent Exp Ingras Bact Lucrari Stiint 3:203–214

    Google Scholar 

  • Clarson D (2004) Potash biofertilizer for ecofriendly agriculture. Agro-clinic and Research Centre, Kottayam, pp 98–110

    Google Scholar 

  • Dey C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  Google Scholar 

  • Don NT, Diep CN (2014) Isolation, characterization and identification of phosphate- and potassium-solubilizing bacteria from weathered materials of granite rock mountain, that Son, an Giang province, Vietnam. Am J Life Sci 2:282–291

    Article  Google Scholar 

  • Duff RB, Webley DM (1959) 2-ketoglutaric acid and natural chelator produced by soil bacteria. Chemistry 44:1376–1377

    Google Scholar 

  • Duff RB, Webley DM, Scott RO (1963) Solubilization of minerals and related materials by 2-ketogluconic acid producing bacteria. Soil Sci 5:105–114

    Article  Google Scholar 

  • Ekin Z (2010) Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr J Biotechnol 9:3794–3800

    CAS  Google Scholar 

  • FAI (2007) Fertiliser statistics 2006–2007. The Fertilizer Association of India, New Delhi

    Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11:187–196

    Article  CAS  Google Scholar 

  • Ghosh AB, Hasan R (1980) Soil fertility map of India. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous mineral phosphates by Gram negative bacteria. In: Torriani-Gorni A, Yagil E, Silver E (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, USA, pp 197–203

    Google Scholar 

  • Groudev SN (1987) Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hazen TC, Jimenez L, Victoria GL (1991) Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microbiol Ecol 22:293–304

    Article  CAS  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Hieberk FK, Bennett PC (1992) Microbial control of silicate weathering in organic-rich groundwater. Science 258:278–281

    Article  Google Scholar 

  • Hu XF, Chen J, Guo JF (2006) Two phosphate and potassium solubilizing bacteria isolated from Tianmu mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Kalaiselvi P (1999) Influence of silicate solubilizing bacteria on dissolution of silicate and potassium in rice soil added with graded levels of potassium and rice residues. M. Sc. (Agric) thesis, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Kannan NM, Raj SA (1998) Occurrence of silicate solubilizing bacteria in rice ecosystem. Madras Agric J 85:47–50

    Google Scholar 

  • Khanwilkar SA, Ramteke JR (1993) Response of applied K in cereals in Maharashtra. Agriculture 4:84–96

    Google Scholar 

  • Khudsen D, Peterson GA, Prov PF (1982) Lithium, sodium and potassium. In: Page AL (ed) Methods of soil analysis, part (2) agronomy monograph 9, 2nd edn. ASA and SSSA, Madison

    Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomus JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Li YF (1994) The characteristics and function of silicate dissolving bacteria fertilizer. Soil Fertil 2:48–49

    Google Scholar 

  • Li FC, Li S, Yang YZ, Cheng LJ (2006) Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrol Mineral 25:440–448

    CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Tang HH (2007) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochem Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu GY (2001) Screening of silicate bacteria with potassium releasing and antagonistic activity. China J Appl Environ Biol 7:66–68

    CAS  Google Scholar 

  • Liu W, Xu X, Wu S, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg CV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Malinovskaya IM, Kosenko LV, Votselko SK, Podgorskii VS (1990) Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. Mikrobiologiya 59:49–55

    Google Scholar 

  • Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro ML (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235

    Article  CAS  Google Scholar 

  • Matilla MA, Espinosa-Urgel M, Roderiguez-Herva JJ, Ramos JL, Ramos-Gonzalez MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Vivek, Bajpai K (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Memon YM, Fergus IF, Hughes JD, Page DW (1988) Utilization of non-exchangeable soil potassium in relation to soil types, plant species and stage of growth. Aust J Soil Res 26:489–496

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. Internl Potash Inst Bern, Switzerland, pp 200–210

    Google Scholar 

  • Muntz A (1890) Sur La decomposition des rockes et al formation de la terrarable. C R Akad Sci Paris 110:1370–1372

    Google Scholar 

  • Murali G, Gupta A, Nair RV (2005) Variations in hosting beneficial plant associated microorganisms by root (wilt) diseased and field tolerant coconut palms of west coast tall variety. Curr Sci 89:1922–1927

    Google Scholar 

  • Muralikannan M (1996) Biodissolution of silicate, phosphate and potassium by silicate solubilizing bacteria in rice ecosystem. M. Sc. (Agric) thesis, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norkina SP, Pumpyansakya LV (1956) Certain properties of silicate bacteria. Crop Sci Soc Japan 28:35–40

    Google Scholar 

  • Parmar P (2010) Isolation of potassium solubilizing bacteria and their inoculation effect on growth of wheat (Triticum aestivum L. em. Thell.). M. Sc. thesis submitted to CCS Haryana Agricultural university, Hisar

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leafl 5:71–75

    Google Scholar 

  • Purushothaman A, Chandramohan D, Natarajan R (1974) Distribution of silicate dissolving bacteria in velar estuary. Curr Sci 43:282–283

    Google Scholar 

  • Raj SA (2004) Solubilization on a silicate and concurrent release of phosphorus and potassium in rice ecosystem. In: Biofertilizer technology for rice based cropping system, India, pp 372–378

    Google Scholar 

  • Rajan SSS, Watkinson JH, Sinclair AG (1996) Phosphate rock for direct application to soils. Adv Agron 57:77–159

    Article  CAS  Google Scholar 

  • Ramarethinam S, Chandra K (2005) Studies on the effect of potash solubilizing/mobilizing bacteria Frateuria aurantia on brinjal growth and yield. Pestology 11:35–39

    Google Scholar 

  • Reitmeir RF (1951) Soil potassium. In: Norman AG (ed) Advances in agronomy, American Society of Agronomy, vol III. Academic Press, Int Publ, New York, pp 113–164

    Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  CAS  PubMed  Google Scholar 

  • Rogers JR, Bennett PC, Choi WJ (1998) Feldspars as a source of nutrients for microorganisms. Amer Mineral 83:1532–1540

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaise E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    Article  CAS  Google Scholar 

  • Sharpley AN (1989) Relationship between soil potassium forms and mineralogy. Soil Sci Soc Am J 52:1023–1028

    Article  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002a) Study on the conditions of potassium release by strain NBT of silicate bacteria. Sci Agric Sin 35:673–677

    CAS  Google Scholar 

  • Sheng XF, Huang WY (2002b) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chilli and cotton. Agric Sci China 2:400–412

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2000) Competition for nodulation among rhizobia in Rhizobium-legume symbiosis. Indian J Microbiol 40:211–246

    Google Scholar 

  • Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002) Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and wilt sick soil conditions. Appl Soil Ecol 19:57–64

    Article  Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Wien/New York/Berlin, USA, pp 195–235

    Chapter  Google Scholar 

  • Sindhu SS, Dua S, Sahu G (2011) Biological control of plant diseases. In: Rana MK (ed) Modern concepts of vegetable production. Biotech Books, Daryaganj/New Delhi, pp 470–517

    Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2014a) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry. Springer, Berlin/Heidelberg, pp 175–198

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Kumari K (2014b) Rhizosphere microorganisms for improvement in soil fertility and plant growth. In: Nagpal R, Kumar A, Singh R (eds) Microbes in the service of mankind: tiny bugs with huge impact. JBC Press, New Delhi, pp 32–94

    Google Scholar 

  • Sindhu SS, Phour M, Choudhary SR, Chaudhary D (2014c) Phosphorus cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry. Springer, Berlin/Heidelberg, pp 199–237

    Chapter  Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    Article  CAS  Google Scholar 

  • Sparks DL (2000) Bioavailability of soil potassium. In: Summer ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp D–38–D–52

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy Journal, Madison, pp 201–276

    Google Scholar 

  • Sperberg JI (1958) The incidence of apatite solubilizing organisms in the rhizosphere and soil. Aust J Agric Res Econ 9:778–781

    Article  Google Scholar 

  • Styriakova I, Styriak I, Galko I, Hradil D, Bezdicka P (2003) The release of iron bearing minerals and dissolution of feldspar by heterotrophic bacteria of Bacillus species. Ceram Silicaty 47:20–26

    CAS  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3(3):350–355

    Google Scholar 

  • Supanjani, Han HS, Jung SJ, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agro Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Ullman WJ, Welch SA (2002) Organic ligands and feldspar dissolution. Geochem Soc 7:3–35

    CAS  Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA (1996) Laboratory evidence by microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  CAS  Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DJ (1994) Enhanced dissolution of silicate minerals by bacteria at near neutral pH. Microbiol Ecol 27:241–251

    Article  CAS  Google Scholar 

  • Vassilev N, Medina A, Azcon R, Vassilev M (2006) Microbial solubilization of rock phosphate as media containing agro industrial wastes and effect of the resulting products on plant growth and phosphorus uptake. Plant Soil 287:77–84

    Article  CAS  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 25:557–586

    Google Scholar 

  • Wall DH, Virginia RA (1999) Control of soil biodiversity- in sight from extreme environments. Appl Soil Ecol 13:137–150

    Article  Google Scholar 

  • Wang RR, Wang Q, He LY, Qui G, Sheng XF (2015) Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals. World J Microbiol Biotechnol 31:747–753

    Article  CAS  PubMed  Google Scholar 

  • Webley DM, Duff RB, Mitchell WA (1960) A plate method for studying the breakdown of synthetic and natural silicates by soil bacteria. Nature 188:766–767

    Article  CAS  PubMed  Google Scholar 

  • Welch SA, Ullman WJ (1993) The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim Cosmochim Acta 57:2725–2736

    Article  CAS  Google Scholar 

  • Welch SA, Vandevivere P (2009) Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiol J 12:227–238

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM-fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xiaoxi Z, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium solubilizing ability of Bacillus circulans Z1–3. Adv Sci Lett 10:173–176

    Article  CAS  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutr Fertil Sci 4:321–330

    Google Scholar 

  • Zapata F, Roy RN (2004) Use of phosphate rock for sustainable agriculture. FAO and IAEA, Rome

    Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium-solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    Article  CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizosphere soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang CJ, Tu GQ, Cheng CJ (2004) Study on potassium dissolving ability of silicate bacteria. Shaguan Coll J 26:1209–1216

    Google Scholar 

  • Zhang AM, Zhao GY, Gao TG, Wang W, Li J, Zhang SF, Zhu BC (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47

    Google Scholar 

  • Zhao F, Sheng XF, Huang Z (2008) Isolation of mineral potassium solubilizing bacterial strains from agricultural soils in Shandong province. Biodivers Sci 16:593–600

    Article  CAS  Google Scholar 

  • Zhou H, Zeng XX, Liu FF, Qiu GZ, Hu YH (2006) Screening, identification and desilication of a silicate bacterium. J Cent South Univ Technol 13:337–341

    Article  CAS  Google Scholar 

  • Zord C, Senbayram M, Peiter E (2014) Potassium in agriculture – status and perspective. J Plant Physiol 171:656–659

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Sindhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sindhu, S.S., Parmar, P., Phour, M., Sehrawat, A. (2016). Potassium-Solubilizing Microorganisms (KSMs) and Its Effect on Plant Growth Improvement. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_13

Download citation

Publish with us

Policies and ethics