Skip to main content

Potassium-Solubilizing Microorganisms: Mechanism and Their Role in Potassium Solubilization and Uptake

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

K is the third most important plant macronutrient after nitrogen and phosphorus. It is absorbed from soil primarily in the form of K+ and is required in the plants for early growth, production, and modification of proteins, maintenance of water use efficiency, stand persistence, longevity, etc. The total K content in soil exceeds 20,000 ppm which is primarily divided into unavailable, slowly available, and readily available fractions of which readily available fractions constitute only 1–2 % of the total K available in the soil. To mobilize and utilize these large reserves, a viable strategy is the identification and utilization of K-solubilizing microorganisms (KSMs). Soil microbes playing a key role in K cycling have been known since a long time now; therefore, identification of KSMs and their utilization are of prime importance to reduce the fertilizer usage and the effects caused by effective fertilizer usage. Although many bacteria like Acidithiobacillus, Burkholderia, and Pseudomonas have been identified as the potential K solubilizers, a clear cut mechanism has not been reported. However, most solubilization activities of bacteria and fungi have been attributed to the activities like acid hydrolysis of K from minerals present in the soil, chelation by production of some organic acids, etc. Therefore, the content presented in this manuscript explores the applicability of these KSMs, their mode of action, and their percent contribution in K solubilization and availability to the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett 486:93–98

    Article  CAS  PubMed  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89:3736–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anonymous (2002) Potassium status of soils in India. Better Crop Int 16(2). 3–5, Nov 2002

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2012) Screening of potassium solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet 9:627–630

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Collection of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeo Chem 19:129–147

    Google Scholar 

  • Assad ML, Avansini SH, Rosa MM, Carvalho JRP, Ceccato-Antonini SR (2010) The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Can J Microbiol 56:598–605

    Article  CAS  Google Scholar 

  • Badar MA (2006) Efficiency of K feldspar combined with organic material and silicate dissolving bacteria on tomato yield. J Applied Sci Res 2:1191–1198

    Google Scholar 

  • Banuelos MA, Garciadeblas B, Cubero B, Navarro AR (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–794

    Article  PubMed  PubMed Central  Google Scholar 

  • Bin L, Bin W, Mu P, Liu C, Teng HH (2010) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Google Scholar 

  • Banuelos MA, Klein RD, Alexander-Bowman SJ, Navarro AR (1995) A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J 14:3021–3027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basak BB, Biswas DR (2012) Modification of waste mica for alternative source of potassium: evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). Lambert Academic Publishing, Saarbrücken. ISBN 978-3-659-29842-4

    Google Scholar 

  • Basset M, Conejero G, Lepetit M, Foucroy P, Sentenac H (1995) Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana. Plant Mol Biol 29:947–958

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zioni A, Vaadia Y, Lips SH (1970) Correlations between nitrate reduction, protein synthesis and malate accumulation. Physiol Plant 23:1039–1047

    Article  CAS  Google Scholar 

  • Bihler H, Gaber RF, Slayman CL, Bertl A (1999) The presumed potassium carrier Trk2p in Saccharomyces cerevisiae determines an H+-dependent, K+-independent current. FEBS Lett 447:115–120

    Article  CAS  PubMed  Google Scholar 

  • Biswas DR, Basak BB (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare) grown under two Alfisols. Plant Soil Environ J 317:235–255

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 137:637–650

    Article  CAS  Google Scholar 

  • Busch W, Saier MH (2002) The transporter classification (TC) system. Crit Rev Biochem Mol Biol 37:287–337

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257

    Article  CAS  Google Scholar 

  • Cheeseman JM, Hanson JB (1980) Does active K1 influx to roots occur? Plant Sci Lett 18:81–84

    Article  CAS  Google Scholar 

  • Cheeseman JM, Hanson JB (1979) Energy-linked potassium influx as related to cell potential in corn roots. Plant Physiol 64:842–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Lian B, Liu CQ (2008) Bacillus mucilaginosus on weathering of phosphorite and primary analysis of bacterial proteins during weathering. Chin J Geochem 27:209–216

    Article  CAS  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31:239–298

    Article  CAS  Google Scholar 

  • Czempinski K, Frachisse JM, Maurel C, Barbier-Brygoo H, Mueller-Roeber B (2002) Vacuolar membrane localization of the Arabidopsis ‘two-pore’ K+ channel KCO1. Plant J 29:809–820

    Article  CAS  PubMed  Google Scholar 

  • Czempinski K, Gaedeke N, Zimmermann S, Mueller-Roeber B (1999) Molecular mechanisms and regulation of plant ion channels. J Exp Bot 50:955–966

    Article  CAS  Google Scholar 

  • Daram P, Urbach S, Gaymard F, Sentenac H, Cherel I (1997) Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. EMBO J 16:3455–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeken R, Sanders C, Ache P, Hedrich R (2000) Developmental and light-dependent regulation of a phloem-localised K+ channel of Arabidopsis thaliana. Plant J 23:285–290

    Article  CAS  PubMed  Google Scholar 

  • Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127:1012–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light-dependent stomatal opening. J Exp Bot 52:1959–1967

    Article  CAS  PubMed  Google Scholar 

  • Dolan L, Davies J (2004) Cell expansion in roots. Curr Opin Plant Biol 7:33–39

    Article  CAS  PubMed  Google Scholar 

  • Doupnik CA, Davidson N, Lester HA (1995) The inward rectifier potassium channel family. Curr Opin Neurobiol 5:268–277

    Article  CAS  PubMed  Google Scholar 

  • Durell SR, Guy HR (1999) Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys J 77:789–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrhardt T, Zimmermann S, Mueller-Reober B (1997) Association of plant K+ in channels is mediated by conserved C termini and does not affect subunit assembly. FEBS Lett 409:166–170

    Article  CAS  PubMed  Google Scholar 

  • FAO (2012) World fertilizer trends and outlook to 2018. Food and Agriculture Organization of the United Nations, Rome, pp 1–45

    Google Scholar 

  • Fu HH, Luan S (1998) AtKuP1: a dual affinity K+ transporter from Arabidopsis. Plant Cell 10:63–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann W, Schroeder JI (1994) Inward-rectifying K+ channels in root hairs of wheat – a mechanism for aluminum-sensitive low-affinity K+ uptake and membrane potential control. Plant Physiol 105:1399–1408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    Article  CAS  PubMed  Google Scholar 

  • Girgis MGZ (2006) Response of wheat to inoculation with phosphate and potassium mobilizers and organic amendment. Ann Agric Sci Ain Shams Univ Cairo 51:85–100

    Google Scholar 

  • Goldstein MAH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Haas EM (2011) Role of potassium in maintaining health. http://hkpp.org/patients/potassium-health

  • Haro R, Navarro AR (2002) Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1564:114–122

    Article  CAS  PubMed  Google Scholar 

  • Haro R, Sainz L, Rubio F, Navarro AR (1999) Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31:511–220

    Article  CAS  PubMed  Google Scholar 

  • Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B (2000) Functional characterization of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying KC channel SKT1 after expression in Xenopus oocytes. Planta 210:723–731

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811

    Article  CAS  PubMed  Google Scholar 

  • Holzmueller EJ, Jose S, Jenkins MA (2007) Influence of calcium, potassium, and magnesium on Cornus florida L. density and resistance to dogwood anthracnose. Plant Soil 290:189–199

    Article  CAS  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    Article  CAS  PubMed  Google Scholar 

  • Hoth S, Geiger D, Becker D, Hedrich R (2001) The pore of plant K+ channels is involved in voltage and pH sensing: domain-swapping between different K+ channel alpha-subunits. Plant Cell 13:943–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoth S, Hedrich R (1999) Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1. J Biol Chem 274:11599–11603

    Article  CAS  PubMed  Google Scholar 

  • Humble GD, Hsiao TC (1969) Specific requirement of potassium for light-activated opening of stomata in epidermal strips. Plant Physiol 44:230–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichida AM, Pei ZM, Baizabal-Aguirre VM, Turner KJ, Schroeder JI (1997) Expression of a Cs+-resistant guard cell K+ channel confers Cs+-resistant, light induced stomatal opening in transgenic Arabidopsis. Plant Cell 9:1843–1857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508:463–469

    Article  CAS  PubMed  Google Scholar 

  • Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20:91–123

    Article  CAS  PubMed  Google Scholar 

  • Johansson I, Wulfetange K, Poree F, Michard E, Gajdanowicz P, Lacombe B, Sentenac H, Thibaud JB, Mueller-Roeber B, Blatt MR, Dreyer I (2006) External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J 46:269–281

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, Van-Hees PAW (2003) Organic acid behavior in soils misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus A, Jhonston AE (2002) Assessing soil potassium, can we do better? 9th international congress of soil science, Faisalabad, Pakistan 18–20 March 2002

    Google Scholar 

  • Kronzucker HJ, Szczerba MW, Britto DT (2003) Cytosolic potassium homeostasis revisited: 42K-tracer analysis in Hordeum vulgare L. reveals set-point variations in [K+]. Planta 217:540–546

    Article  CAS  PubMed  Google Scholar 

  • Kucey RMN (1988) Effect of Penicillium biloji on the solubility and uptake of P and micronutrients from soil by wheat. Can J Soil 68:261–267

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Lacombe B, Becker D, Hedrich R, De-Salle R, Hollmann M (2001) The identity of plant glutamate receptors. Science 292:1486–1487

    Article  CAS  PubMed  Google Scholar 

  • Leigh RA, Wyn Jones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97:1–13

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1989) Interaction between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110

    Article  CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sinica 22:179

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 70:87–98

    Article  CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2010) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lian BA (1998) A study on how silicate bacteria GY92 dissolves potassium from illite. Acta Mineral Sin 18:234–238

    CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Liu W, Xu X, Wu S, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1994) Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci U S A 91:9272–9276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Moran N (2007) Osmoregulation of leaf motor cells. FEBS Lett 581:2337–2347

    Article  CAS  PubMed  Google Scholar 

  • Moshelion M, Becker D, Czempinski K, Mueller-Roeber B, Attali B (2002) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouline K, Very AA, Gaymard F, Boucherez J, Pilot G (2002) Pollen tube development and competitive ability are impaired by disruption of a shaker K+ channel in Arabidopsis. Genes Dev 16:339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muentz A (1890) Surla decomposition desroches etla formation de la terre arable. C R Acad Sci 110:1370–1372

    Google Scholar 

  • Navarro AR (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    Article  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production-losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339–346

    Article  CAS  PubMed  Google Scholar 

  • Perrenoud S (1990) Potassium and plant health, 2nd edn. International Potash Institute, Bern, pp 8–10

    Google Scholar 

  • Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci U S A 96:12186–12191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    Article  CAS  PubMed  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Optimization of medium components for potassium solubilizing fungus Aspergillus terreus (KSF 1) by response surface methodology. Indian J Fundam Appl Life Sci 2:50–54

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int J Agric Sci 3:181–188

    Google Scholar 

  • Prajapati KB, Modi HA (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIBTech J Microbiol 1:8–14

    Google Scholar 

  • Quintero FJ, Blatt MR (1997) A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett 415:206–211

    Article  CAS  PubMed  Google Scholar 

  • Raj SA (2004) Solubilization of silicate and concurrent release of phosphorus and potassium in rice ecosystem. In: Book chapter – Conference Paper Biofertilizers Technology, Coimbatore, India, pp 372–378

    Google Scholar 

  • Rajawat MVS, Singh S, Singh G, Saxena AK (2012) Isolation and characterization of K solubilizing bacteria isolated from different rhizospheric soil. In: Proceeding of 53rd annual conference of Association of Microbiologists of India 2012, p 124

    Google Scholar 

  • Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M (2002) AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx. Proc Natl Acad Sci U S A 99:4079–4084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Article  CAS  Google Scholar 

  • Rosa-Magri MM, Avansani SH, Lopes-Assad MS, Tornisielo SM, Antonini SR (2012) Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 55:577–582

    Article  Google Scholar 

  • Rubio F, Santa-Maria GE, Navarro AR (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34–43

    Article  CAS  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci U S A 98:14150–14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21:118–124

    Google Scholar 

  • Sarwar M (2012) Effects of potassium fertilization on population build up of rice stem borers (lepidopteron pests) and rice (Oryza sativa L.) yield. J Cereals Oilseeds 3:6–9

    Article  CAS  Google Scholar 

  • Schleyer M, Bakker EP (1993) Nucleotide sequence and 3′-end deletion studies indicate that the K+-uptake protein Kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J Bacteriol 175:6925–6931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Singh S, Pandey A, Kumar B, Palni LMS (2010) Enhancement in growth and quality parameters of tea [Camellia sinensis (L.) O. Kuntze] through inoculation with arbuscular mycorrhizal fungi in an acid soil. Biol Fertil Soils 46:427–433

    Article  Google Scholar 

  • Srinivasrao CH, Satyanarayana T, Venkateswarulu B (2011) Potassium mining in Indian agriculture: input and output balance. Karnataka J Agric Sci 24:20–28

    Google Scholar 

  • Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ (2001) Expression and stress dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125:604–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suelter CH (1970) Enzymes activated by monovalent cations. Science 168:789–795

    Article  CAS  PubMed  Google Scholar 

  • Sugumaran P, Janartham B (2007) Solubilization of potassium minerals by bacteria and their effect on plant growth. World J Agric Sci 3:350–355

    Google Scholar 

  • Szczerba MW, Britto DT, Kronzucker HJ (2006) Rapid, futile K+ cycling and pool-size dynamics define low-affinity potassium transport in barley. Plant Physiol 141:1494–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293

    Article  CAS  PubMed  Google Scholar 

  • Tholema N, Bakker EP, Suzuki A, Nakamura T (1999) Change to alanine of one out of four selectivity filter glycines in KtrB causes a two orders of magnitude decrease in the affinities for both K+ and Na+ of the Na+ dependent K+ uptake system KtrAB from Vibrio alginolyticus. FEBS Lett 450:217–220

    Article  CAS  PubMed  Google Scholar 

  • Trchounian A, Kobayashi H (1999) Kup is the major K+ uptake system in Escherichia coli upon hyper-osmotic stress at a low pH. FEBS Lett 447:144–148

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker NA, Sanders D, Maathuis FJ (1996) High-affinity potassium uptake in plants. Science 273:977–979

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams J, Smith SG (2001) Correcting potassium deficiency can reduce rice stem diseases. Better Crops 85:7–9

    Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Zakharyan E, Trchounian A (2001) K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux. FEMS Microbiol Lett 204:61–64

    Article  CAS  PubMed  Google Scholar 

  • Zarjani JK, Aliasgarzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of some potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    Article  CAS  Google Scholar 

  • Zhang A, Zhao G, Gao T, Wang W, Li J, Zhang S (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Shankhdhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sharma, A., Shankhdhar, D., Shankhdhar, S.C. (2016). Potassium-Solubilizing Microorganisms: Mechanism and Their Role in Potassium Solubilization and Uptake. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_15

Download citation

Publish with us

Policies and ethics