Skip to main content

Advertisement

Log in

Selection for root colonising bacteria stimulating wheat growth in saline soils

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

High salinity of soils in arid and semi-arid regions results in desertification and decreased crop yield. One possibility to circumvent this problem is to use root colonising salt tolerant bacterial inoculants which can alleviate salt stress in plants. In the present work, the best five enhanced wheat root tip coloniser bacteria were selected from the rhizosphere of wheat grown in saline soil and were identified by the 16S rRNA gene sequence as Pseudomonas putida, Pseudomonas extremorientalis, Pseudomonas chlororaphis and Pseudomonas aurantiaca. The isolates tolerated salt of 5% NaCl and produced indole acetic acid under saline conditions. Four isolates proved to be very efficient in promoting a significant increase in the shoot, root and dry matter of wheat and were able to survive in saline soil. Four of the isolated strains appeared to be better competitive colonisers than reference strains and probably outcompeted with indigenous microorganisms of the rhizosphere. These results are promising for the application of selected environmentally save microbes in saline agricultural soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SE, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (1998) Sichere Biotechnologie. Eingruppierung biologischer Agenzien: Bacterien, BG Chemie, Merkblatt B 006 8/98 ZH 1/346. Jedermann-Verlag Dr. Otto Pfeffer oHG, Heidelberg, Germany

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Cur Microb 46:324–328 doi:10.1007/s00284-002-3857-8

    Article  CAS  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic (Amsterdam) 109:8–14 doi:10.1016/j.scienta.2006.02.025

    Article  CAS  Google Scholar 

  • Borneman J, Skroch PW, O’Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J, Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol 62:1935–1943

    PubMed  CAS  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    PubMed  CAS  Google Scholar 

  • Brown MRW, Foster JHS (1970) A simple diagnostic milk medium for Pseudomonas aeruginosa. J Clin Pathol 23:172–177 doi:10.1136/jcp.23.2.172

    Article  PubMed  CAS  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2–79. Phytopathology 81:954–959 doi:10.1094/Phyto-81-954

    Article  Google Scholar 

  • Bull CT, Shetty KG, Subbarao KV (2002) Interactions between Myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis 86:889–896 doi:10.1094/PDIS.2002.86.8.889

    Article  Google Scholar 

  • Burke DJ, Hamerlynck EP, Hahn D (2003) Interactions between the salt marsh grass season Spartina patens, arbuscular mycorrhizal fungi and sediment bacteria during the growing. Soil Biol Biochem 35:501–511 doi:10.1016/S0038-0717(03)00004-X

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–510 doi:10.1007/s00374-007-0232-8

    Article  CAS  Google Scholar 

  • Castric PA (1975) Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol 21:613–618

    Article  PubMed  CAS  Google Scholar 

  • Cooley MB, Pathirana S, Wu HJ, Kachroo P, Kessig DF (2003) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    Article  Google Scholar 

  • de Souza JT, De Boer P, De Waard T, Van Beek A, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172 doi:10.1128/AEM.69.12.7161-7172.2003

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, Mulders IH, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium oxysporum f.sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol Plant Microbe Interact 13:1177–1183 doi:10.1094/MPMI.2000.13.11.1177

    Article  PubMed  CAS  Google Scholar 

  • Devliegher W, Syamsul Arif MA, Verstraete W (1995) Survival and plant growth promotion of detergent-adapted Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 61:3865–3871

    PubMed  CAS  Google Scholar 

  • Diallo A, Samb P, Macauley H (2001) Water status and stomatal behaviour of cowpea, Vigna unguiculata (L) Walp, plants inoculated with two Glomus species at low soil moisture levels. Eur J Soil Biol 37:187–196 doi:10.1016/S1164-5563(01)01081-0

    Article  Google Scholar 

  • DIN ISO 38414-S (1983) Deutsche einheitsverfahren zur wasser, abwasser und schlammuntersuchung: Schlamm und sdediment. Beuth, Berlin

    Google Scholar 

  • DIN ISO 13536 (1995) Bodenbeschaffenheit: Bestimmung der potentiellen kationenaustauschkapazität und der austauschbaren kationen unter verwendung einer bei pH 8,1 gepufferten bariumchloridlösung. Beuth, Berlin

    Google Scholar 

  • DIN-ISO 10694 (1996) Bodenbeschaffenheit—bestimmung von organischem kohlenstoff und gesamtkohlenstoff nach trockener verbrennung (elementaranalyse). Beuth, Berlin

    Google Scholar 

  • DIN ISO 19683 (1997) Bodenuntersuchungsverfahren im landwirtschaftlichen wasserbau—bestimmung der korngrößenzusammensetzung nach vorbehandlung mit natriumpyrophosphat bzw. nach vorbehandlung mit wasser. Beuth, Berlin

    Google Scholar 

  • DIN-ISO 13878 (1998) Bodenbeschaffenheit—bestimmung des gesamt-stickstoffs durch trockene verbrennung (elementaranalyse). Beuth, Berlin

    Google Scholar 

  • DIN ISO 15178 (2001) Bodenbeschaffenheit—bestimmung des gesamt-schwefels durch trockene verbrennung (elementaranalyse). Beuth, Berlin

    Google Scholar 

  • Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the Syr Darya Basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial C sequestration in Central Asia. Taylor-Francis, New York, pp 88–96

    Google Scholar 

  • Egamberdiyeva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    Google Scholar 

  • FAO–UNESCO (1990) Guidelines for soil description. FAO, Rome

    Google Scholar 

  • Frankenberger JWT, Arshad M (1995) Microbial synthesis of auxins. In: Frankenberger WT, Arshad M (eds) Phytohormones in soils. Marcel Dekker, New York, pp 35–71

    Google Scholar 

  • Garcia C, Hernandez T (1996) Influence of salinity on the biological and biochemical activity of a calciorthid soil. Plant Soil 178:225–263 doi:10.1007/BF00011591

    Article  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbrof EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29:1233–1239 doi:10.1016/S0038-0717(97)00026-6

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68 doi:10.1006/jtbi.1997.0532

    Article  PubMed  CAS  Google Scholar 

  • Hankin L, Anagnostakis SL (1977) Solid media containing carboxymethylcellulose to detect Cx cellulase activity of microorganisms. J Gen Microbiol 98:109–115

    PubMed  CAS  Google Scholar 

  • Harman GE, Björkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman GE, Kubicek CP (eds) Trichoderma and gliocladium, vol. 2. Taylor & Francis, London, pp 229–265

    Google Scholar 

  • Hasnain S, Sabri AN (1996) Growth stimulation of Triticum aestivum seedlings under Cr-stress by nonrhizospheric Pseudomonas strains. Abstract book of 7th international symposium on nitrogen fixation with non-legumes. Faisalabad, Pakistan, pp 36

  • Howe TG, Ward JM (1976) The utilization of Tween 80 as carbon source by Pseudomonas. J Gen Microbiol 92:234–235

    CAS  Google Scholar 

  • Höflich G, Wiehe W, Hecht-Buchholz CH (1995) Rhizosphere colonization of different growth promoting Pseudomonas and Rhizobium bacteria. Microbiol Res 150:139–147

    Google Scholar 

  • Jablasone J, Warrinera K, Griffithsa M (2005) Interactions of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system. Int J Food Microbiol 99:7–18 doi:10.1016/j.ijfoodmicro.2004.06.011

    Article  PubMed  Google Scholar 

  • Ji P, Wilson M (2002) Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato. Appl Environ Microbiol 68:4383–4389 doi:10.1128/AEM.68.9.4383-4389.2002

    Article  PubMed  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJ (2001) Selection of a plant–bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-(PAH)-degrading bacteria. Mol Plant Microbe Interact 14:1197–1205 doi:10.1094/MPMI.2001.14.10.1197

    Article  PubMed  CAS  Google Scholar 

  • Lindberg T, Granhall U, Tomenius H (1985) Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions. Biol Fertil Soils 1:123–129 doi:10.1007/BF00301779

    Article  Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446 doi:10.1046/j.1462-2920.1999.00054.x

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomanas. Annu Rev Phytopathol 39:461–490 doi:10.1146/annurev.phyto.39.1.461

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530 doi:10.1016/j.plantsci.2003.10.025

    Article  CAS  Google Scholar 

  • Morales A, Garland JL, Lim DV (1996) Survival of potentially pathogenic human-associated bacteria in the rhizosphere of hydroponically grown wheat. FEMS Microb Ecol 20:155-162

    Google Scholar 

  • Nielsen P, Sorensen J (1997) Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumillus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192 doi:10.1111/j.1574-6941.1997.tb00370.x

    Article  CAS  Google Scholar 

  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80 doi:10.1139/cjm-47-1-77

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2, 4-diacetylphloroglucinol-producing Pseudomonas spp. In take-all decline soils. Mol Plant Microbe Interact 11:144–152 doi:10.1094/MPMI.1998.11.2.144

    Article  CAS  Google Scholar 

  • Rekha PD, Lai WA, Arun AB, Young CC (2007) effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104on plant growth under gnotobiotic condition. Bio Res Tech 98:447–451 doi:10.1016/j.biortech.2006.01.009

    Article  CAS  Google Scholar 

  • Roberts DP, Dery PD, Yucel I, Buyer JS (2000) Importance of pfk A for rapid growth of Enterobacter cloacae during colonization of crop seed. Appl Environ Microbiol 66:87–91 doi:10.1128/AEM.66.6.2555-2564.2000

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Jiang Y (1996) Gram-negative bacterial flora on the root surface of wheat (Triticum aestivum) grown under different soil conditions. Biol Fertil Soils 23:273–281 doi:10.1007/BF00335955

    Article  Google Scholar 

  • Shirokova Y, Forkutsa I, Sharafutdinova N (2000) Use of electrical conductivity instead of soluble salts for soil salinity monitoring in Central Asia. Irrig Drain Syst 14:199–205 doi:10.1023/A:1026560204665

    Article  Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    PubMed  CAS  Google Scholar 

  • Tain CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148 doi:10.1016/j.apsoil.2003.10.010

    Article  Google Scholar 

  • Tripathi AK, Verma SC, Ron EZ (2002) Molecular characterization of a salt-tolerant bacterial community in the rice rhizosphere. Res Microbiol 153:579–584 doi:10.1016/S0923-2508(02)01371-2

    Article  PubMed  CAS  Google Scholar 

  • Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B (2006) Selection of bacteria able to control Fusarium oxysporum f.sp. radicislycopersici in stonewool substrate. J Appl Microbiol 102:461–471

    Google Scholar 

  • Van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil: a review. Biol Fertil Soils 10:127–133

    Google Scholar 

  • Walsh GA, Murphy RA, Killeen GF, Headon DR, Power RF (1995) Technical note: detection and quantification of supplemental fungal β-glucanase activity in animal feed. J Anim Sci 73:1074–1076

    PubMed  Google Scholar 

  • Wessendorf J, Lingens F (1989) Effect of culture and soil conditions on survival of Pseudomonas fluorescens R1 in soil. Appl Microbiol Biotechnol 31:97–102 doi:10.1007/BF00252536

    Article  CAS  Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plants under salt stress. Annu Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Zandavalli RB, Dillenburg LR, Paulo VD (2004) Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Appl Soil Ecol 25:245–255 doi:10.1016/j.apsoil.2003.09.009

    Article  Google Scholar 

Download references

Acknowledgement

We thank Dr. Dagmar Schultz, Central Laboratory of Leibnitz Centre for Agricultural Landscape Research (ZALF), Muencheberg, Germany, for the chemical analysis of the soil samples. This study was supported by the INTAS Collaborative project with Uzbekistan 04-82-6969 and a UNESCO-L’OREAL Fellowship for “Women in Science”. We would like to acknowledge S. Validov for the help in identifying bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egamberdieva, D., Kucharova, Z. Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45, 563–571 (2009). https://doi.org/10.1007/s00374-009-0366-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-009-0366-y

Keywords

Navigation