Skip to main content
Log in

Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects

  • Mini Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmed S, Riaz S, Jamil A (2009) Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 84(1):19–35. doi:10.1007/s00253-009-2079-4

    Article  CAS  Google Scholar 

  2. Sa-Pereira P, Paveia H, Costa-Ferreira M, Aires-Barros M (2003) A new look at xylanases: an overview of purification strategies. Mol Biotechnol 24(3):257–281

    Article  CAS  Google Scholar 

  3. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  Google Scholar 

  4. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9. doi:10.1186/1475-2859-6-9

    Article  CAS  Google Scholar 

  5. Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145. doi:10.1007/10_2007_065

    CAS  Google Scholar 

  6. Juturu V, Wu JC (2012) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30(6):1219–1227. doi:10.1016/j.biotechadv.2011.11.006

    Article  CAS  Google Scholar 

  7. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2014) Microbial growth and control. In: Brock biology of microorganisms, Global edition, 14th edn. Pearson, Essex, pp 182–192

    Google Scholar 

  8. Elleuche S, Schroder C, Sahm K, Antranikian G (2014) Extremozymes–biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123. doi:10.1016/j.copbio.2014.04.003

    Article  CAS  Google Scholar 

  9. Çalık P, Ata Ö, Güneş H, Massahi A, Boy E, Keskin A, Öztürk S, Zerze GH, Özdamar TH (2015) Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochem Eng J 95:20–36. doi:10.1016/j.bej.2014.12.003

    Article  CAS  Google Scholar 

  10. Celik E, Çalık P (2012) Production of recombinant proteins by yeast cells. Biotechnol Adv 30(5):1108–1118. doi:10.1016/j.biotechadv.2011.09.011

    Article  CAS  Google Scholar 

  11. Vogl T, Glieder A (2013) Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol 30(4):385–404. doi:10.1016/j.nbt.2012.11.010

    Article  CAS  Google Scholar 

  12. Massahi A, Çalık P (2015) In-silico determination of Pichia pastoris signal peptides for extracellular recombinant protein production. J Theor Biol 364:179–188. doi:10.1016/j.jtbi.2014.08.048

    Article  CAS  Google Scholar 

  13. Chen X, Cao Y, Ding Y, Lu W, Li D (2007) Cloning, functional expression and characterization of Aspergillus sulphureus beta-mannanase in Pichia pastoris. J Biotechnol 128(3):452–461. doi:10.1016/j.jbiotec.2006.11.003

    Article  CAS  Google Scholar 

  14. Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301–5317. doi:10.1007/s00253-014-5732-5

    Article  CAS  Google Scholar 

  15. Çalık P, Orman MA, Celik E, Halloran SM, Çalık G, Ozdamar TH (2008) Expression system for synthesis and purification of recombinant human growth hormone in Pichia pastoris and structural analysis by MALDI-ToF mass spectrometry. Biotechnol Prog 24(1):221–226. doi:10.1021/bp070294t

    Article  CAS  Google Scholar 

  16. Hua C, Yan Q, Jiang Z, Li Y, Katrolia P (2010) High-level expression of a specific beta-1,3-1,4-glucanase from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris. Appl Microbiol Biotechnol 88(2):509–518. doi:10.1007/s00253-010-2759-0

    Article  CAS  Google Scholar 

  17. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23. doi:10.1016/j.femsre.2004.06.005

    Article  CAS  Google Scholar 

  18. Chavez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 123(4):413–433. doi:10.1016/j.jbiotec.2005.12.036

    Article  CAS  Google Scholar 

  19. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591. doi:10.1007/s00253-005-1904-7

    Article  CAS  Google Scholar 

  20. Zhang J, Siika-Aho M, Puranen T, Tang M, Tenkanen M, Viikari L (2011) Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 4:12. doi:10.1186/1754-6834-4-12

    Article  CAS  Google Scholar 

  21. Zhang HM, Wang JQ, Wu MC, Gao SJ, Li JF, Yang YJ (2014) Optimized expression, purification and characterization of a family 11 xylanase (AuXyn11A) from Aspergillus usamii E001 in Pichia pastoris. J Sci Food Agric 94(4):699–706. doi:10.1002/jsfa.6309

    Article  CAS  Google Scholar 

  22. Jia H, Fan G, Yan Q, Liu Y, Yan Y, Jiang Z (2012) High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. J Mol Catal B Enzym 78:72–77. doi:10.1016/j.molcatb.2012.02.009

    Article  CAS  Google Scholar 

  23. Luo H, Li J, Yang J, Wang H, Yang Y, Huang H, Shi P, Yuan T, Fan Y, Yao B (2009) A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 13(5):849–857. doi:10.1007/s00792-009-0272-0

    Article  CAS  Google Scholar 

  24. Lafond M, Tauzin A, Desseaux V, Bonnin E, el Ajandouz H, Giardina T (2011) GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production. Microb Cell Fact 10:20. doi:10.1186/1475-2859-10-20

    Article  CAS  Google Scholar 

  25. Du Y, Shi P, Huang H, Zhang X, Luo H, Wang Y, Yao B (2013) Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresour Technol 130:161–167. doi:10.1016/j.biortech.2012.12.067

    Article  CAS  Google Scholar 

  26. Wang J, Tan Z, Wu M, Li J, Wu J (2014) Improving the thermostability of a mesophilic family 10 xylanase, AuXyn10A, from Aspergillus usamii by in silico design. J Ind Microbiol Biotechnol 41(8):1217–1225. doi:10.1007/s10295-014-1463-y

    Article  CAS  Google Scholar 

  27. Yang X, Shi P, Huang H, Luo H, Wang Y, Zhang W, Yao B (2014) Two xylose-tolerant GH43 bifunctional beta-xylosidase/alpha-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem 148:381–387. doi:10.1016/j.foodchem.2013.10.062

    Article  CAS  Google Scholar 

  28. Yin X, Gong YY, Wang JQ, Tang CD, Wu MC (2013) Cloning and expression of a family 10 xylanase gene (Aoxyn10) from Aspergillus oryzae in Pichia pastoris. J Gen Appl Microbiol 59(6):405–415

    Article  CAS  Google Scholar 

  29. Zhao L, Meng K, Bai Y, Shi P, Huang H, Luo H, Wang Y, Yang P, Song W, Yao B (2013) Two family 11 xylanases from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing industry. J Agric Food Chem 61(28):6880–6889. doi:10.1021/jf4001296

    Article  CAS  Google Scholar 

  30. Anbarasan S, Janis J, Paloheimo M, Laitaoja M, Vuolanto M, Karimaki J, Vainiotalo P, Leisola M, Turunen O (2010) Effect of glycosylation and additional domains on the thermostability of a family 10 xylanase produced by Thermopolyspora flexuosa. Appl Environ Microbiol 76(1):356–360. doi:10.1128/aem.00357-09

    Article  CAS  Google Scholar 

  31. Fan G, Katrolia P, Jia H, Yang S, Yan Q, Jiang Z (2012) High-level expression of a xylanase gene from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris. Biotechnol Lett 34(11):2043–2048. doi:10.1007/s10529-012-0995-3

    Article  CAS  Google Scholar 

  32. Wang Q, Du W, Weng XY, Liu MQ, Wang JK, Liu JX (2015) Recombination of thermo-alkalistable, high xylooligosaccharides producing endo-xylanase from Thermobifida fusca and expression in Pichia pastoris. Appl Biochem Biotechnol 175(3):1318–1329. doi:10.1007/s12010-014-1355-7

    Article  CAS  Google Scholar 

  33. Zhang H, Li J, Wang J, Yang Y, Wu M (2014) Determinants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods. Biotechnol Biofuels 7(1):3. doi:10.1186/1754-6834-7-3

    Article  CAS  Google Scholar 

  34. Yin X, Yao Y, Wu MC, Zhu TD, Zeng Y, Pang QF (2014) A unique disulfide bridge of the thermophilic xylanase SyXyn11 plays a key role in its thermostability. Biochemistry (Mosc) 79(6):531–537. doi:10.1134/S0006297914060066

    Article  CAS  Google Scholar 

  35. Wang K, Luo H, Tian J, Turunen O, Huang H, Shi P, Hua H, Wang C, Wang S, Yao B (2014) Thermostability improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Appl Environ Microbiol 80(7):2158–2165. doi:10.1128/AEM.03458-13

    Article  CAS  Google Scholar 

  36. Li J, Zhang H, Wu M, Wang C, Dong Y, Zhu L, Zhang P (2014) Expression and characterization of hyperthermotolerant xylanases, SyXyn11P and SyXyn11E, in Pichia pastoris and Escherichia coli. Appl Biochem Biotechnol 172(7):3476–3487. doi:10.1007/s12010-014-0786-5

    Article  CAS  Google Scholar 

  37. Fonseca-Maldonado R, Ribeiro LF, Furtado GP, Arruda LM, Meleiro LP, Alponti JS, Botelho-Machado C, Vieira DS, Bonneil E, Furriel RdPM, Thibault P, Ward RJ (2014) Synergistic action of co-expressed xylanase/laccase mixtures against milled sugar cane bagasse. Process Biochem 49(7):1152–1161. doi:10.1016/j.procbio.2014.03.027

    Article  CAS  Google Scholar 

  38. Zhao L, Meng K, Shi P, Bai Y, Luo H, Huang H, Wang Y, Yang P, Yao B (2013) A novel thermophilic xylanase from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing and other industries. Process Biochem 48(12):1879–1885. doi:10.1016/j.procbio.2013.08.020

    Article  CAS  Google Scholar 

  39. Yin X, Li JF, Wang JQ, Tang CD, Wu MC (2013) Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation. J Sci Food Agric 93(12):3016–3023. doi:10.1002/jsfa.6134

    Article  CAS  Google Scholar 

  40. Jiang X, Lin J, Liang S, Zhang M (2013) High-efficient expression and pilot scale fermentation of Streptomyces xylanase from a constitutive Pichia pastoris vector. Food Biotechnol 27(1):54–65. doi:10.1080/08905436.2012.755693

    Article  CAS  Google Scholar 

  41. Wang Q, Zhao LL, Sun JY, Liu JX, Weng XY (2012) Enhancing catalytic activity of a hybrid xylanase through single substitution of Leu to Pro near the active site. World J Microbiol Biotechnol 28(3):929–935. doi:10.1007/s11274-011-0890-4

    Article  CAS  Google Scholar 

  42. Shi P, Qiu Z, Bai Y, Yuan T, Huang H, Pan X, Yang P, Zhang W, Yao B (2012) A new xylanase from Streptomyces megasporus DSM 41476 with high yield of xylobiose. World J Microbiol Biotechnol 28(2):687–692. doi:10.1007/s11274-011-0863-7

    Article  CAS  Google Scholar 

  43. Zhao N, Guo R-f Yu, H-w Ke X-j, Y-m Jia, Bai Y (2011) Expression and Characterization of a thermostable xylanase gene xynA from a themophilic fungus in Pichia pastoris. Agri Sci China 10(3):343–350. doi:10.1016/s1671-2927(11)60013-8

    Article  CAS  Google Scholar 

  44. Sriyapai T, Somyoonsap P, Matsui K, Kawai F, Chansiri K (2011) Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. J Biosci Bioeng 111(5):528–536. doi:10.1016/j.jbiosc.2010.12.024

    Article  CAS  Google Scholar 

  45. Ghaffar A, Khan SA, Mukhtar Z, Rajoka MI, Latif F (2011) Heterologous expression of a gene for thermostable xylanase from Chaetomium thermophilum in Pichia pastoris GS115. Mol Biol Rep 38(5):3227–3233. doi:10.1007/s11033-010-9996-2

    Article  CAS  Google Scholar 

  46. Zhang G, Mao L, Zhao Y, Xue Y, Ma Y (2010) Characterization of a thermostable xylanase from an alkaliphilic Bacillus sp. Biotechnol Lett 32(12):1915–1920. doi:10.1007/s10529-010-0372-z

    Article  CAS  Google Scholar 

  47. Qiu Z, Shi P, Luo H, Bai Y, Yuan T, Yang P, Liu S, Yao B (2010) A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme Microb Technol 46(6):506–512. doi:10.1016/j.enzmictec.2010.02.003

    Article  CAS  Google Scholar 

  48. Jun H, Bing Y, Keying Z, Daiwen C (2009) Functional characterization of a recombinant thermostable xylanase from Pichia pastoris: a hybrid enzyme being suitable for xylooligosaccharides production. Biochem Eng J 48(1):87–92. doi:10.1016/j.bej.2009.08.010

    Article  CAS  Google Scholar 

  49. Jeya M, Thiagarajan S, Lee JK, Gunasekaran P (2009) Cloning and expression of GH11 xylanase gene from Aspergillus fumigatus MKU1 in Pichia pastoris. J Biosci Bioeng 108(1):24–29. doi:10.1016/j.jbiosc.2009.02.003

    Article  CAS  Google Scholar 

  50. Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B (2009) Cloning, expression, and characterization of a new Streptomyces sp. S27 xylanase for which xylobiose is the main hydrolysis product. Appl Biochem Biotechnol 159(2):521–531. doi:10.1007/s12010-008-8411-0

    Article  CAS  Google Scholar 

  51. He J, Yu B, Zhang K, Ding X, Chen D (2009) Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol 9:56. doi:10.1186/1472-6750-9-56

    Article  CAS  Google Scholar 

  52. Yang HM, Yao B, Meng K, Wang YR, Bai YG, Wu NF (2007) Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant. J Ind Microbiol Biotechnol 34(3):213–218. doi:10.1007/s10295-006-0188-y

    Article  CAS  Google Scholar 

  53. Liu MQ, Liu GF (2008) Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Protein Expr Purif 57(2):101–107. doi:10.1016/j.pep.2007.10.020

    Article  CAS  Google Scholar 

  54. Sun J-Y, Liu M-Q, Weng X-Y, Qian L-C, Gu S-H (2007) Expression of recombinant Thermomonospora fusca xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Food Chem 104(3):1055–1064. doi:10.1016/j.foodchem.2007.01.028

    Article  CAS  Google Scholar 

  55. Cheng Y-F, Yang C-H, Liu W-H (2005) Cloning and expression of Thermobifida xylanase gene in the methylotrophic yeast Pichia pastoris. Enzyme Microbiol Technol 37(5):541–546. doi:10.1016/j.enzmictec.2005.04.006

    Article  CAS  Google Scholar 

  56. Damaso MCT, Almeida MS, Kurtenbach E, Martins OB, Pereira N, Andrade CMMC, Albano RM (2003) Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl Environ Microbiol 69(10):6064–6072. doi:10.1128/aem.69.10.6064-6072.2003

    Article  CAS  Google Scholar 

  57. Li YY, Zhong KX, Hu AH, Liu DN, Chen LZ, Xu SD (2015) High-level expression and characterization of a thermostable xylanase mutant from Trichoderma reesei in Pichia pastoris. Protein Expr Purif 108:90–96. doi:10.1016/j.pep.2014.11.014

    Article  CAS  Google Scholar 

  58. Kim HM, Jung S, Lee KH, Song Y, Bae HJ (2015) Improving lignocellulose degradation using xylanase-cellulase fusion protein with a glycine-serine linker. Int J Biol Macromol 73:215–221. doi:10.1016/j.ijbiomac.2014.11.025

    Article  CAS  Google Scholar 

  59. Li XR, Xu H, Xie J, Yi QF, Li W, Qiao DR, Cao Y, Cao Y (2014) Thermostable sites and catalytic characterization of xylanase XYNB of Aspergillus niger SCTCC 400264. J Microbiol Biotechnol 24(4):483–488

    Article  CAS  Google Scholar 

  60. Lafond M, Guais O, Maestracci M, Bonnin E, Giardina T (2014) Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino)xylans. Appl Microbiol Biotechnol 98(14):6339–6352. doi:10.1007/s00253-014-5606-x

    Article  CAS  Google Scholar 

  61. Kim HM, Lee KH, Kim KH, Lee DS, Nguyen QA, Bae HJ (2014) Efficient function and characterization of GH10 xylanase (Xyl10 g) from Gloeophyllum trabeum in lignocellulose degradation. J Biotechnol 172:38–45. doi:10.1016/j.jbiotec.2013.12.013

    Article  CAS  Google Scholar 

  62. Driss D, Zouari-Ellouzi S, Chaari F, Kallel F, Ghazala I, Bouaziz F, Ghorbel R, Chaabouni SE (2014) Production and in vitro evaluation of xylooligosaccharides generated from corncobs using immobilized Penicillium occitanis xylanase. J Mol Catal B Enzym 102:146–153. doi:10.1016/j.molcatb.2014.02.004

    Article  CAS  Google Scholar 

  63. Zheng J, Guo N, Wu L, Tian J, Zhou H (2013) Characterization and constitutive expression of a novel endo-1,4-beta-d-xylanohydrolase from Aspergillus niger in Pichia pastoris. Biotechnol Lett 35(9):1433–1440. doi:10.1007/s10529-013-1220-8

    Article  CAS  Google Scholar 

  64. Liu MQ, Dai XJ, Liu GF, Wang Q (2013) Obtaining cellulose binding and hydrolyzing activity of a family 11 hybrid xylanase by fusion with xylan binding domain. Protein Expr Purif 88(1):85–92. doi:10.1016/j.pep.2012.11.014

    Article  CAS  Google Scholar 

  65. Gao SJ, Wang JQ, Wu MC, Zhang HM, Yin X, Li JF (2013) Engineering hyperthermostability into a mesophilic family 11 xylanase from Aspergillus oryzae by in silico design of N-terminus substitution. Biotechnol Bioeng 110(4):1028–1038. doi:10.1002/bit.24768

    Article  CAS  Google Scholar 

  66. Zhang H, Wu M, Li J, Gao S, Yang Y (2012) Cloning and expression of a novel xylanase gene (Auxyn11D) from Aspergillus usamii E001 in Pichia pastoris. Appl Biochem Biotechnol 167(8):2198–2211. doi:10.1007/s12010-012-9757-x

    Article  CAS  Google Scholar 

  67. Zhang F, Shi P, Bai Y, Luo H, Yuan T, Huang H, Yang P, Miao L, Yao B (2011) An acid and highly thermostable xylanase from Phialophora sp. G5. Appl Microbiol Biotechnol 89(6):1851–1858. doi:10.1007/s00253-010-3016-2

    Article  CAS  Google Scholar 

  68. Huy ND, Kim SW, Park SM (2011) Heterologous expression of endo-1,4-beta-xylanase C from Phanerochaete chrysosporium in Pichia pastoris. J Biosci Bioeng 111(6):654–657. doi:10.1016/j.jbiosc.2011.02.010

    Article  CAS  Google Scholar 

  69. Cai H, Shi P, Bai Y, Huang H, Yuan T, Yang P, Luo H, Meng K, Yao B (2011) A novel thermoacidophilic family 10 xylanase from Penicillium pinophilum C1. Process Biochem 46(12):2341–2346. doi:10.1016/j.procbio.2011.09.018

    Article  CAS  Google Scholar 

  70. Luo H, Yang J, Li J, Shi P, Huang H, Bai Y, Fan Y, Yao B (2010) Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Appl Microbiol Biotechnol 86(6):1829–1839. doi:10.1007/s00253-009-2410-0

    Article  CAS  Google Scholar 

  71. Luo H, Wang Y, Li J, Wang H, Yang J, Yang Y, Huang H, Fan Y, Yao B (2009) Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme and Microbial Technology 45(2):126–133. doi:10.1016/j.enzmictec.2009.05.002

    Article  CAS  Google Scholar 

  72. Al Balaa B, Brijs K, Gebruers K, Vandenhaute J, Wouters J, Housen I (2009) Xylanase XYL1p from Scytalidium acidophilum: site-directed mutagenesis and acidophilic adaptation. Bioresour Technol 100(24):6465–6471. doi:10.1016/j.biortech.2009.06.111

    Article  CAS  Google Scholar 

  73. Ruanglek V, Sriprang R, Ratanaphan N, Tirawongsaroj P, Chantasigh D, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2007) Cloning, expression, characterization, and high cell-density production of recombinant endo-1,4-β-xylanase from Aspergillus niger in Pichia pastoris. Enzyme Microb Technol 41(1–2):19–25. doi:10.1016/j.enzmictec.2006.11.019

    Article  CAS  Google Scholar 

  74. Chantasingh D, Pootanakit K, Champreda V, Kanokratana P, Eurwilaichitr L (2006) Cloning, expression, and characterization of a xylanase 10 from Aspergillus terreus (BCC129) in Pichia pastoris. Protein Expr Purif 46(1):143–149. doi:10.1016/j.pep.2005.09.013

    Article  CAS  Google Scholar 

  75. Sun JY, Liu MQ, Xu YL, Xu ZR, Pan L, Gao H (2005) Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Protein Expr Purif 42(1):122–130. doi:10.1016/j.pep.2005.03.009

    Article  CAS  Google Scholar 

  76. Al Balaa B, Wouters J, Dogne S, Rossini C, Schaus JM, Depiereux E, Vandenhaute J, Housen I (2006) Identification, cloning, and expression of the Scytalidium acidophilum XYL1 gene encoding for an acidophilic xylanase. Biosci Biotechnol Biochem 70(1):269–272. doi:10.1271/bbb.70.269

    Article  CAS  Google Scholar 

  77. Tanaka H, Nakamura T, Hayashi S, Ohta K (2005) Purification and properties of an extracellular endo-1,4-beta-xylanase from Penicillium citrinum and characterization of the encoding gene. J Biosci Bioeng 100(6):623–630. doi:10.1263/jbb.100.623

    Article  CAS  Google Scholar 

  78. Han H, You S, Zhu B, Fu X, Sun B, Qiu J, Yu C, Chen L, Peng R, Yao Q (2015) Characterization and high expression of recombinant Ustilago maydis xylanase in Pichia pastoris. Biotechnol Lett 37(3):697–703. doi:10.1007/s10529-014-1716-x

    Article  CAS  Google Scholar 

  79. Karaoglan M, Yildiz H, Inan M (2014) Screening of signal sequences for extracellular production of Aspergillus niger xylanase in Pichia pastoris. Biochem Eng J 92:16–21. doi:10.1016/j.bej.2014.07.005

    Article  CAS  Google Scholar 

  80. Gao H, Yan P, Zhang B, Shan A (2014) Expression of Aspergillus niger IA-001 Endo-beta-1,4-xylanase in Pichia pastoris and analysis of the enzymic characterization. Appl Biochem Biotechnol 173(8):2028–2041. doi:10.1007/s12010-014-1000-5

    Article  CAS  Google Scholar 

  81. Fang W, Gao H, Cao Y, Shan A (2014) Cloning and expression of a xylanase xynB from Aspergillus niger IA-001 in Pichia pastoris. J Basic Microbiol 54(Suppl 1):S190–S199. doi:10.1002/jobm.201300078

    Article  CAS  Google Scholar 

  82. Song Y, Lee YG, Choi IS, Lee KH, Cho EJ, Bae HJ (2013) Heterologous expression of endo-1,4-beta-xylanase A from Schizophyllum commune in Pichia pastoris and functional characterization of the recombinant enzyme. Enzyme Microb Technol 52(3):170–176. doi:10.1016/j.enzmictec.2012.12.012

    Article  CAS  Google Scholar 

  83. Li F, Yang S, Zhao L, Li Q, Pei J (2012) Synonymous condon usage bias and overexpression of a synthetic xynB gene from Aspergillus niger NL-1 IN Pichia pastoris. BioResources 7(2):2330–2343

    CAS  Google Scholar 

  84. Driss D, Bhiri F, Ghorbel R, Chaabouni SE (2012) Cloning and constitutive expression of His-tagged xylanase GH 11 from Penicillium occitanis Pol6 in Pichia pastoris X33: purification and characterization. Protein Expr Purif 83(1):8–14. doi:10.1016/j.pep.2012.02.012

    Article  CAS  Google Scholar 

  85. Zhou C, Wang Y, Liu Z, Fu G, Li D, Gua W, Feng H, Wang W (2011) Acidic xylanase II From Aspergillus usamii: efficient expression in Pichia pastoris and mutational analysis. Afr J Biotechnol 10(55):11631–11639. doi:10.5897/AJB11.1457

    CAS  Google Scholar 

  86. Ouyang J, Wang S, Wang Y, Li X, Chen M, Yong Q, Yu S (2011) Production of a Trichoderma reesei QM9414 xylanase in Pichia pastoris and its application in biobleaching of wheat straw pulp. World J Microbiol Biotechnol 27(4):751–758. doi:10.1007/s11274-010-0512-6

    Article  CAS  Google Scholar 

  87. Li Y, Zhang B, Chen X, Chen Y, Cao Y (2010) Improvement of Aspergillus sulphureus endo-beta-1,4-xylanase expression in Pichia pastoris by codon optimization and analysis of the enzymic characterization. Appl Biochem Biotechnol 160(5):1321–1331. doi:10.1007/s12010-009-8621-0

    Article  CAS  Google Scholar 

  88. Zhou C, Wang Y, Wu M, Wang W, Li D (2009) Heterologous expression of xylanase II from Aspergillus usamii in Pichia pastoris. Food Technol Biotechnol 47(1):90–95

    CAS  Google Scholar 

  89. Liu MQ, Weng XY, Sun JY (2006) Expression of recombinant Aspergillus niger xylanase A in Pichia pastoris and its action on xylan. Protein Expr Purif 48(2):292–299. doi:10.1016/j.pep.2006.04.007

    Article  CAS  Google Scholar 

  90. Korona B, Korona D, Bielecki S (2006) Efficient expression and secretion of two co-produced xylanases from Aspergillus niger in Pichia pastoris directed by their native signal peptides and the Saccharomyces cerevisiae α-mating factor. Enzyme and Microbial Technology 39(4):683–689. doi:10.1016/j.enzmictec.2005.12.003

    Article  CAS  Google Scholar 

  91. Deng P, Li D, Cao Y, Lu W, Wang C (2006) Cloning of a gene encoding an acidophilic endo-β-1,4-xylanase obtained from Aspergillus niger CGMCC1067 and constitutive expression in Pichia pastoris. Enzyme Microb Technol 39(5):1096–1102. doi:10.1016/j.enzmictec.2006.02.014

    Article  CAS  Google Scholar 

  92. Lee CC, Wong DWS, Robertson GH (2005) Cloning and characterization of the Xyn11A gene from Lentinula edodes. Protein J 24(1):21–26. doi:10.1007/s10930-004-0602-0

    Article  CAS  Google Scholar 

  93. Tanaka H, Okuno T, Moriyama S, Muguruma M, Ohta K (2004) Acidophilic xylanase from Aureobasidium pullulans: efficient expression and secretion in Pichia pastoris and mutational analysis. J Biosci Bioeng 98(5):338–343. doi:10.1016/s1389-1723(04)00292-0

    Article  CAS  Google Scholar 

  94. Berrin JG, Williamson G, Puigserver A, Chaix JC, McLauchlan WR, Juge N (2000) High-level production of recombinant fungal endo-beta-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 19(1):179–187. doi:10.1006/prep.2000.1229

    Article  CAS  Google Scholar 

  95. Kumar V, Satyanarayana T (2015) Generation of xylooligosaccharides from microwave irradiated agroresidues using recombinant thermo-alkali-stable endoxylanase of the polyextremophilic bacterium Bacillus halodurans expressed in Pichia pastoris. Bioresour Technol 179:382–389. doi:10.1016/j.biortech.2014.12.049

    Article  CAS  Google Scholar 

  96. Lin XQ, Han SY, Zhang N, Hu H, Zheng SP, Ye YR, Lin Y (2013) Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzyme Microb Technol 52(2):91–98. doi:10.1016/j.enzmictec.2012.10.011

    Article  CAS  Google Scholar 

  97. Zhang G-M, Hu Y, Zhuang Y-H, Ma L-X, Zhang X-E (2006) Molecular cloning and heterologous expression of an alkaline xylanase from Bacillus pumilus HBP8 in Pichia pastoris. Biocatal Biotransform 24(5):371–379. doi:10.1080/10242420600768771

    Article  CAS  Google Scholar 

  98. Liu Q, Wang Y, Luo H, Wang L, Shi P, Huang H, Yang P, Yao B (2015) Isolation of a novel cold-active family 11 xylanase from the filamentous fungus Bispora antennata and deletion of its N-terminal amino acids on thermostability. Appl Biochem Biotechnol 175(2):925–936. doi:10.1007/s12010-014-1344-x

    Article  CAS  Google Scholar 

  99. Wu YB, Ravindran V, Thomas DG, Birtles MJ, Hendriks WH (2004) Influence of method of whole wheat inclusion and xylanase supplementation on the performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers. Br Poult Sci 45(3):385–394. doi:10.1080/00071660410001730888

    Article  CAS  Google Scholar 

  100. Barrera M, Cervantes M, Sauer WC, Araiza AB, Torrentera N, Cervantes M (2004) Ileal amino acid digestibility and performance of growing pigs fed wheat-based diets supplemented with xylanase. J Anim Sci 82(7):1997–2003

    CAS  Google Scholar 

  101. Beauchemin KA, Rode LM, Karren D (1999) Use of feed enzymes in feedlot finishing diets. Can J Animal Sci 79(2):243–246. doi:10.4141/A98-124

    Article  Google Scholar 

  102. Shi P, Du Y, Yang H, Huang H, Zhang X, Wang Y, Yao B (2015) Molecular characterization of a new alkaline-tolerant xylanase from Humicola insolens Y1. Biomed Res Int 2015:149504. doi:10.1155/2015/149504

    Google Scholar 

  103. Chen X, Xu S, Zhu M, Cui L, Zhu H, Liang Y, Zhang Z (2010) Site-directed mutagenesis of an Aspergillus niger xylanase B and its expression, purification and enzymatic characterization in Pichia pastoris. Process Biochem 45(1):75–80. doi:10.1016/j.procbio.2009.08.009

    Article  CAS  Google Scholar 

  104. Chen Y-L, Tang T-Y, Cheng K-J (2001) Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can J Microbiol 47(12):1088–1094. doi:10.1139/cjm-47-12-1088

    Article  CAS  Google Scholar 

  105. Cheng YS, Chen CC, Huang CH, Ko TP, Luo W, Huang JW, Liu JR, Guo RT (2014) Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum: insights into the molecular basis of a thermophilic enzyme. J Biol Chem 289(16):11020–11028. doi:10.1074/jbc.M114.550905

    Article  CAS  Google Scholar 

  106. Fonseca-Maldonado R, Vieira DS, Alponti JS, Bonneil E, Thibault P, Ward RJ (2013) Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase. J Biol Chem 288(35):25522–25534. doi:10.1074/jbc.M113.485953

    Article  CAS  Google Scholar 

  107. Wang JQ, Yin X, Wu MC, Zhang HM, Gao SJ, Wei JT, Tang CD, Li JF (2013) Expression of a family 10 xylanase gene from Aspergillus usamii E001 in Pichia pastoris and characterization of the recombinant enzyme. J Ind Microbiol Biotechnol 40(1):75–83. doi:10.1007/s10295-012-1201-2

    Article  CAS  Google Scholar 

  108. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27(4):197–216. doi:10.1080/07388550701775919

    Article  CAS  Google Scholar 

  109. van Zyl WH, Rose SH, Trollope K, Görgens JF (2010) Fungal β-mannanases: mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem 45(8):1203–1213. doi:10.1016/j.procbio.2010.05.011

    Article  CAS  Google Scholar 

  110. Piscitelli A, Pezzella C, Giardina P, Faraco V, Sannia G (2010) Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1(4):252–262

    Article  Google Scholar 

  111. Shraddha Shekher R, Sehgal S, Kamthania M, Kumar A (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 2011:217861. doi:10.4061/2011/217861

    Article  CAS  Google Scholar 

  112. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–203. doi:10.1016/j.rser.2014.01.077

    Article  CAS  Google Scholar 

  113. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696. doi:10.4061/2011/280696

    Article  CAS  Google Scholar 

  114. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391. doi:10.1007/s10295-008-0327-8

    Article  CAS  Google Scholar 

  115. Ghangas GS, Hu YJ, Wilson DB (1989) Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J Bacteriol 171(6):2963–2969

    CAS  Google Scholar 

  116. Zhang M, Jiang Z, Yang S, Hua C, Li L (2010) Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase. Bioresour Technol 101(2):688–695. doi:10.1016/j.biortech.2009.08.055

    Article  CAS  Google Scholar 

  117. Wang C, Luo H, Niu C, Shi P, Huang H, Meng K, Bai Y, Wang K, Hua H, Yao B (2015) Biochemical characterization of a thermophilic beta-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Appl Microbiol Biotechnol 99(3):1217–1228. doi:10.1007/s00253-014-5979-x

    Article  CAS  Google Scholar 

  118. Gilbert HJ, Stalbrand H, Brumer H (2008) How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 11(3):338–348. doi:10.1016/j.pbi.2008.03.004

    Article  CAS  Google Scholar 

  119. Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79(2):165–178. doi:10.1007/s00253-008-1423-4

    Article  CAS  Google Scholar 

  120. Huang JW, Chen CC, Huang CH, Huang TY, Wu TH, Cheng YS, Ko TP, Lin CY, Liu JR (1844) Guo RT (2014) Improving the specific activity of beta-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochim Biophys Acta 3:663–669. doi:10.1016/j.bbapap.2014.01.011

    Google Scholar 

  121. Yang H, Shi P, Lu H, Wang H, Luo H, Huang H, Yang P, Yao B (2015) A thermophilic beta-mannanase from Neosartorya fischeri P1 with broad pH stability and significant hydrolysis ability of various mannan polymers. Food Chem 173:283–289. doi:10.1016/j.foodchem.2014.10.022

    Article  CAS  Google Scholar 

  122. Tang C-D, Guo J, Li J-F, Wei X-H, Hu D, Gao S-J, Yin X, Wu M-C (2014) Enhancing expression level of an acidophilic β-mannanase in Pichia pastoris by double vector system. Ann Microbiol 64(2):561–569. doi:10.1007/s13213-013-0689-7

    Article  CAS  Google Scholar 

  123. Lu H, Luo H, Shi P, Huang H, Meng K, Yang P, Yao B (2014) A novel thermophilic endo-beta-1,4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region. Appl Microbiol Biotechnol 98(5):2155–2163. doi:10.1007/s00253-013-5112-6

    Article  CAS  Google Scholar 

  124. Liao H, Li S, Zheng H, Wei Z, Liu D, Raza W, Shen Q, Xu Y (2014) A new acidophilic thermostable endo-1,4-beta-mannanase from Penicillium oxalicum GZ-2: cloning, characterization and functional expression in Pichia pastoris. BMC Biotechnol 14:90. doi:10.1186/s12896-014-0090-z

    Article  CAS  Google Scholar 

  125. Lu H, Zhang H, Shi P, Luo H, Wang Y, Yang P, Yao B (2013) A family 5 beta-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl Microbiol Biotechnol 97(18):8121–8128. doi:10.1007/s00253-012-4656-1

    Article  CAS  Google Scholar 

  126. Luo H, Wang K, Huang H, Shi P, Yang P, Yao B (2012) Gene cloning, expression, and biochemical characterization of an alkali-tolerant beta-mannanase from Humicola insolens Y1. J Ind Microbiol Biotechnol 39(4):547–555. doi:10.1007/s10295-011-1067-8

    Article  CAS  Google Scholar 

  127. Li JF, Zhao SG, Tang CD, Wang JQ, Wu MC (2012) Cloning and functional expression of an acidophilic beta-mannanase gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris. J Agric Food Chem 60(3):765–773. doi:10.1021/jf2041565

    Article  CAS  Google Scholar 

  128. Cai H, Shi P, Huang H, Luo H, Bai Y, Yang P, Meng K, Yao B (2011) An acidic β-mannanase from Penicillium sp. C6: gene cloning and over-expression in Pichia pastoris. World J Microbiol Biotechnol 27(12):2813–2819. doi:10.1007/s11274-011-0759-6

    Article  CAS  Google Scholar 

  129. Do BC, Dang TT, Berrin JG, Haltrich D, To KA, Sigoillot JC, Yamabhai M (2009) Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01. Microb Cell Fact 8:59. doi:10.1186/1475-2859-8-59

    Article  CAS  Google Scholar 

  130. Tang CD, Li JF, Wei XH, Min R, Gao SJ, Wang JQ, Yin X, Wu MC (2013) Fusing a carbohydrate-binding module into the Aspergillus usamii beta-mannanase to improve its thermostability and cellulose-binding capacity by in silico design. PLoS One 8(5):e64766. doi:10.1371/journal.pone.0064766

    Article  CAS  Google Scholar 

  131. Wang Y, Shi P, Luo H, Bai Y, Huang H, Yang P, Xiong H, Yao B (2012) Cloning, over-expression and characterization of an alkali-tolerant endo-beta-1,4-mannanase from Penicillium freii F63. J Biosci Bioeng 113(6):710–714. doi:10.1016/j.jbiosc.2012.02.005

    Article  CAS  Google Scholar 

  132. Lim JL, Bakar FDA, Yusof HM, Murad AMA (2012) Cloning and expression of a Trichoderma longibrachiatum β-mannanase gene in Pichia pastoris. Afr J Biotechnol 11(7):1705–1718. doi:10.5897/ajb11.2046

    CAS  Google Scholar 

  133. Cai H, Shi P, Luo H, Bai Y, Huang H, Yang P, Yao B (2011) Acidic beta-mannanase from Penicillium pinophilum C1: cloning, characterization and assessment of its potential for animal feed application. J Biosci Bioeng 112(6):551–557. doi:10.1016/j.jbiosc.2011.08.018

    Article  CAS  Google Scholar 

  134. Zhao J, Shi P, Luo H, Yang P, Zhao H, Bai Y, Huang H, Wang H, Yao B (2010) An acidophilic and acid-stable beta-mannanase from Phialophora sp. p13 with high mannan hydrolysis activity under simulated gastric conditions. J Agric Food Chem 58(5):3184–3190. doi:10.1021/jf904367r

    Article  CAS  Google Scholar 

  135. Luo H, Wang Y, Wang H, Yang J, Yang Y, Huang H, Yang P, Bai Y, Shi P, Fan Y, Yao B (2009) A novel highly acidic beta-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol 82(3):453–461. doi:10.1007/s00253-008-1766-x

    Article  CAS  Google Scholar 

  136. Duruksu G, Ozturk B, Biely P, Bakir U, Ogel ZB (2009) Cloning, expression and characterization of endo-beta-1,4-mannanase from Aspergillus fumigatus in Aspergillus sojae and Pichia pastoris. Biotechnol Prog 25(1):271–276. doi:10.1002/btpr.104

    Article  CAS  Google Scholar 

  137. Zhu T, Sun H, Li P, Xue Y, Li Y, Ma Y (2014) Constitutive expression of alkaline β-mannanase in recombinant Pichia pastoris. Process Biochem 49(12):2025–2029. doi:10.1016/j.procbio.2014.08.014

    Article  CAS  Google Scholar 

  138. Zhu T, You L, Gong F, Xie M, Xue Y, Li Y, Ma Y (2011) Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline beta-mannanase in Pichia pastoris. Enzyme Microb Technol 49(4):407–412. doi:10.1016/j.enzmictec.2011.06.022

    Article  CAS  Google Scholar 

  139. He X, Liu N, Li W, Zhang Z, Zhang B, Ma Y (2008) Inducible and constitutive expression of a novel thermostable alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzyme Microb Technol 43(1):13–18. doi:10.1016/j.enzmictec.2008.03.011

    Article  CAS  Google Scholar 

  140. Zhao W, Zheng J, Zhou HB (2011) A thermotolerant and cold-active mannan endo-1,4-beta-mannosidase from Aspergillus niger CBS 513.88: constitutive overexpression and high-density fermentation in Pichia pastoris. Bioresour Technol 102(16):7538–7547. doi:10.1016/j.biortech.2011.04.070

    Article  CAS  Google Scholar 

  141. Mizutani K, Fernandes VO, Karita S, Luis AS, Sakka M, Kimura T, Jackson A, Zhang X, Fontes CM, Gilbert HJ, Sakka K (2012) Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase. Appl Environ Microbiol 78(14):4781–4787. doi:10.1128/aem.07457-11

    Article  CAS  Google Scholar 

  142. Huang W-T, Tai R, Hseu R-S, Huang C-T (2011) Overexpression and characterization of a thermostable, pH-stable and organic solvent-tolerant Ganoderma fornicatum laccase in Pichia pastoris. Process Biochem 46(7):1469–1474. doi:10.1016/j.procbio.2011.03.020

    Article  CAS  Google Scholar 

  143. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242. doi:10.1111/j.1574-4976.2005.00010.x

    Article  CAS  Google Scholar 

  144. Colao MC, Lupino S, Garzillo AM, Buonocore V, Ruzzi M (2006) Heterologous expression of lcc1 gene from Trametes trogii in Pichia pastoris and characterization of the recombinant enzyme. Microb Cell Fact 5:31. doi:10.1186/1475-2859-5-31

    Article  CAS  Google Scholar 

  145. Hong Y, Xiao Y, Zhou H, Fang W, Zhang M, Wang J, Wu L, Yu Z (2006) Expression of a laccase cDNA from Trametes sp. AH28-2 in Pichia pastoris and mutagenesis of transformants by nitrogen ion implantation. FEMS Microbiol Lett 258(1):96–101. doi:10.1111/j.1574-6968.2006.00209.x

    Article  CAS  Google Scholar 

  146. Liu W, Chao Y, Liu S, Bao H, Qian S (2003) Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignosus and expression in Pichia pastoris. Appl Microbiol Biotechnol 63(2):174–181. doi:10.1007/s00253-003-1398-0

    Article  CAS  Google Scholar 

  147. Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179(3):145–150. doi:10.1007/s00203-002-0510-7

    CAS  Google Scholar 

  148. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60(6):551–565

    Article  CAS  Google Scholar 

  149. Lu L, Wang TN, Xu TF, Wang JY, Wang CL, Zhao M (2013) Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresour Technol 134:81–86. doi:10.1016/j.biortech.2013.02.015

    Article  CAS  Google Scholar 

  150. Wang T-N, Lu L, Wang J-Y, Xu T-F, Li J, Zhao M (2015) Enhanced expression of an industry applicable CotA laccase from Bacillus subtilis in Pichia pastoris by non-repressing carbon sources together with pH adjustment: recombinant enzyme characterization and dye decolorization. Process Biochem 50(1):97–103. doi:10.1016/j.procbio.2014.10.009

    Article  CAS  Google Scholar 

  151. Zhuo R, He F, Zhang X, Yang Y (2015) Characterization of a yeast recombinant laccase rLAC-EN3-1 and its application in decolorizing synthetic dye with the coexistence of metal ions and organic solvents. Biochem Eng J 93:63–72. doi:10.1016/j.bej.2014.09.004

    Article  CAS  Google Scholar 

  152. You LF, Liu ZM, Lin JF, Guo LQ, Huang XL, Yang HX (2014) Molecular cloning of a laccase gene from Ganoderma lucidum and heterologous expression in Pichia pastoris. J Basic Microbiol 54(Suppl 1):S134–S141. doi:10.1002/jobm.201200808

    Article  CAS  Google Scholar 

  153. Zhou YP, Chen QH, Xiao YN, Ke DS, Tian CE (2014) Gene cloning and characterization of a novel laccase from the tropical white-rot fungus Ganoderma weberianum TZC-1. Appl Biochem Microbiol 50(5):500–507. doi:10.1134/s0003683814050147

    Article  CAS  Google Scholar 

  154. Zheng M, Chi Y, Yi H, Shao S (2014) Decolorization of Alizarin red and other synthetic dyes by a recombinant laccase from Pichia pastoris. Biotechnol Lett 36(1):39–45. doi:10.1007/s10529-013-1323-2

    Article  CAS  Google Scholar 

  155. Tian YS, Xu H, Peng RH, Yao QH, Wang RT (2014) Heterologous expression and characterization of laccase 2 from capable of decolourizing different recalcitrant dyes. Biotechnol Biotechnol Equip 28(2):248–258. doi:10.1080/13102818.2014.913402

    Article  CAS  Google Scholar 

  156. Gu C, Zheng F, Long L, Wang J, Ding S (2014) Engineering the expression and characterization of two novel laccase isoenzymes from Coprinus comatus in Pichia pastoris by fusing an additional ten amino acids tag at N-terminus. PLoS One 9(4):e93912. doi:10.1371/journal.pone.0093912

    Article  CAS  Google Scholar 

  157. Li Q, Ge L, Cai J, Pei J, Xie J, Zhao L (2014) Comparison of two laccases from Trametes versicolor for application in the decolorization of dyes. J Microbiol Biotechnol 24(4):545–555

    Article  CAS  Google Scholar 

  158. Li JF, Hong YZ, Xiao YZ, Xu YH, Fang W (2007) High production of laccase B from Trametes sp. in Pichia pastoris. World J Microbiol Biotechnol 23(5):741–745. doi:10.1007/s11274-006-9286-2

    Article  CAS  Google Scholar 

  159. Hu M, Zhou X, Shi Y, Lin J, Irfan M, Tao Y (2014) Essential role of the N- and C-terminals of laccase from Pleurotus florida on the laccase activity and stability. Appl Biochem Biotechnol 174(5):2007–2017. doi:10.1007/s12010-014-1147-0

    Article  CAS  Google Scholar 

  160. Hilden K, Makela MR, Lundell T, Kuuskeri J, Chernykh A, Golovleva L, Archer DB, Hatakka A (2013) Heterologous expression and structural characterization of two low pH laccases from a biopulping white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 97(4):1589–1599. doi:10.1007/s00253-012-4011-6

    Article  CAS  Google Scholar 

  161. Garg N, Bieler N, Kenzom T, Chhabra M, Ansorge-Schumacher M, Mishra S (2012) Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnol 12:75. doi:10.1186/1472-6750-12-75

    Article  CAS  Google Scholar 

  162. Lu L, Zhao M, Liang SC, Zhao LY, Li DB, Zhang BB (2009) Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris. J Appl Microbiol 107(4):1149–1156. doi:10.1111/j.1365-2672.2009.04291.x

    Article  CAS  Google Scholar 

  163. Wong KS, Cheung MK, Au CH, Kwan HS (2013) A novel Lentinula edodes laccase and its comparative enzymology suggest guaiacol-based laccase engineering for bioremediation. PLoS One 8(6):e66426. doi:10.1371/journal.pone.0066426

    Article  CAS  Google Scholar 

  164. Soden DM, O’Callaghan J, Dobson AD (2002) Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 148(Pt 12):4003–4014

    Article  CAS  Google Scholar 

  165. Durand F, Gounel S, Mano N (2013) Purification and characterization of a new laccase from the filamentous fungus Podospora anserina. Protein Expr Purif 88(1):61–66. doi:10.1016/j.pep.2012.11.016

    Article  CAS  Google Scholar 

  166. Bao W, Peng R, Zhang Z, Tian Y, Zhao W, Xue Y, Gao J, Yao Q (2012) Expression, characterization and 2,4,6-trichlorophenol degradation of laccase from Monilinia fructigena. Mol Biol Rep 39(4):3871–3877. doi:10.1007/s11033-011-1166-7

    Article  CAS  Google Scholar 

  167. Kittl R, Mueangtoom K, Gonaus C, Khazaneh ST, Sygmund C, Haltrich D, Ludwig R (2012) A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. J Biotechnol 157(2):304–314. doi:10.1016/j.jbiotec.2011.11.021

    Article  CAS  Google Scholar 

  168. Li Q, Pei J, Zhao L, Xie J, Cao F, Wang G (2014) Overexpression and characterization of laccase from Trametes versicolor in Pichia pastoris. Appl Biochem Microbiol 50(2):140–147. doi:10.1134/s0003683814020124

    Article  CAS  Google Scholar 

  169. Lin Y, Zhang Z, Tian Y, Zhao W, Zhu B, Xu Z, Peng R, Yao Q (2013) Purification and characterization of a novel laccase from Coprinus cinereus and decolorization of different chemically dyes. Mol Biol Rep 40(2):1487–1494. doi:10.1007/s11033-012-2191-x

    Article  CAS  Google Scholar 

  170. Bao S, Teng Z, Ding S (2013) Heterologous expression and characterization of a novel laccase isoenzyme with dyes decolorization potential from Coprinus comatus. Mol Biol Rep 40(2):1927–1936. doi:10.1007/s11033-012-2249-9

    Article  CAS  Google Scholar 

  171. Sun J, Peng RH, Xiong AS, Tian Y, Zhao W, Xu H, Liu DT, Chen JM, Yao QH (2012) Secretory expression and characterization of a soluble laccase from the Ganoderma lucidum strain 7071-9 in Pichia pastoris. Mol Biol Rep 39(4):3807–3814. doi:10.1007/s11033-011-1158-7

    Article  CAS  Google Scholar 

  172. Koschorreck K, Richter SM, Swierczek A, Beifuss U, Schmid RD, Urlacher VB (2008) Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs. Arch Biochem Biophys 474(1):213–219. doi:10.1016/j.abb.2008.03.009

    Article  CAS  Google Scholar 

  173. Romano I, Calandrelli V, Dipasquale L, Nicolaus B, Lama L (2007) Purification and characterization of Pycnoporus sanguineus MUCL38531 laccase expressed in methylotrophic yeast Pichia pastoris. J Biotechnol 131(2):S120. doi:10.1016/j.jbiotec.2007.07.210

    Article  Google Scholar 

  174. Wang B, Wang L, Lin Y, Han Q, Han J, Gao J, Tian Y, Zhao W, Peng R, Yao Q (2014) Purification and characterization of a laccase from Coprinopsis cinerea in Pichia pastoris. World J Microbiol Biotechnol 30(4):1199–1206. doi:10.1007/s11274-013-1540-9

    Article  CAS  Google Scholar 

  175. Li Q, Xie J, Zhao L, Xue Q, Pei J (2013) Optimization of fermentation conditions for laccase production by recombinant Pichia pastoris GS115-LCCA using response surface methodology and its application to dye decolorization. BioResources 8(3):4072–4087

    Google Scholar 

  176. Yang SS, Liu ZW, Yi XP, Zhang AL, Zhang TY, Luo JX, Zhang ZH, Shen JC, Yin HX, Chen LP (2012) Isolation of laccase gene from Bacillus subtilis and analysis of its physicochemical properties. Gene 491(1):49–52. doi:10.1016/j.gene.2011.09.006

    Article  CAS  Google Scholar 

  177. Wong KS, Huang Q, Au CH, Wang J, Kwan HS (2012) Biodegradation of dyes and polyaromatic hydrocarbons by two allelic forms of Lentinula edodes laccase expressed from Pichia pastoris. Bioresour Technol 104:157–164. doi:10.1016/j.biortech.2011.10.097

    Article  CAS  Google Scholar 

  178. Pardo I, Camarero S (2015) Laccase engineering by rational and evolutionary design. Cell Mol Life Sci 72(5):897–910. doi:10.1007/s00018-014-1824-8

    Article  CAS  Google Scholar 

  179. Bai Y, Wang J, Zhang Z, Shi P, Luo H, Huang H, Luo C, Yao B (2010) Expression of an extremely acidic beta-1,4-glucanase from thermoacidophilic Alicyclobacillus sp. A4 in Pichia pastoris is improved by truncating the gene sequence. Microb Cell Fact 9:33. doi:10.1186/1475-2859-9-33

    Article  CAS  Google Scholar 

  180. Wu M, Wang J, Zhang H, Tang C, Gao J, Tan Z (2011) Cloning and sequence analysis of an acidophilic xylanase (XynI) gene from Aspergillus usamii E001. World J Microbiol Biotechnol 27(4):831–839. doi:10.1007/s11274-010-0525-1

    Article  CAS  Google Scholar 

  181. Zhao J, Shi P, Yuan T, Huang H, Li Z, Meng K, Yang P, Yao B (2012) Purification, gene cloning and characterization of an acidic beta-1,4-glucanase from Phialophora sp. G5 with potential applications in the brewing and feed industries. J Biosci Bioeng 114(4):379–384. doi:10.1016/j.jbiosc.2012.04.021

    Article  CAS  Google Scholar 

  182. Ramani G, Meera B, Vanitha C, Rajendhran J, Gunasekaran P (2015) Molecular cloning and expression of thermostable glucose-tolerant beta-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. J Ind Microbiol Biotechnol 42(4):553–565. doi:10.1007/s10295-014-1549-6

    Article  CAS  Google Scholar 

  183. Wang K, Luo H, Bai Y, Shi P, Huang H, Xue X, Yao B (2014) A thermophilic endo-1,4-beta-glucanase from Talaromyces emersonii CBS394.64 with broad substrate specificity and great application potentials. Appl Microbiol Biotechnol 98(16):7051–7060. doi:10.1007/s00253-014-5680-0

    Article  CAS  Google Scholar 

  184. Pham TH, Quyen DT, Nghiem NM, Vu TD (2011) Cloning, expression, purification, and properties of an endoglucanase gene (glycosyl hydrolase family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris. J Microbiol Biotechnol 21(10):1012–1020. doi:10.4014/jmb.1104.04030

    Article  CAS  Google Scholar 

  185. Zi-Zhong T, Zhen-Fang W, Hui C, Xin L, Xue-yi H, Qi W (2013) Characterization of novel EGs reconstructed from Bacillus subtilis endoglucanase. Appl Biochem Biotechnol 169(6):1764–1773. doi:10.1007/s12010-013-0111-8

    Article  CAS  Google Scholar 

  186. Lindenmuth BE, McDonald KA (2011) Production and characterization of Acidothermus cellulolyticus endoglucanase in Pichia pastoris. Protein Expr Purif 77(2):153–158. doi:10.1016/j.pep.2011.01.006

    Article  CAS  Google Scholar 

  187. Huang H, Yang P, Luo H, Tang H, Shao N, Yuan T, Wang Y, Bai Y, Yao B (2008) High-level expression of a truncated 1,3-1,4-beta-d-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl Microbiol Biotechnol 78(1):95–103. doi:10.1007/s00253-007-1290-4

    Article  CAS  Google Scholar 

  188. Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, Henrissat B, Record E, Heiss-Blanquet S (2013) Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl Environ Microbiol 79(14):4220–4229. doi:10.1128/AEM.00327-13

    Article  CAS  Google Scholar 

  189. Rubini MR, Dillon AJ, Kyaw CM, Faria FP, Pocas-Fonseca MJ, Silva-Pereira I (2010) Cloning, characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. J Appl Microbiol 108(4):1187–1198. doi:10.1111/j.1365-2672.2009.04528.x

    Article  CAS  Google Scholar 

  190. Wonganu B, Pootanakit K, Boonyapakron K, Champreda V, Tanapongpipat S, Eurwilaichitr L (2008) Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expr Purif 58(1):78–86. doi:10.1016/j.pep.2007.10.022

    Article  CAS  Google Scholar 

  191. Wang K, Luo H, Shi P, Huang H, Bai Y, Yao B (2014) A highly-active endo-1,3-1,4-β-glucanase from thermophilic Talaromyces emersonii CBS394.64 with application potential in the brewing and feed industries. Process Biochem 49(9):1448–1456. doi:10.1016/j.procbio.2014.06.003

    Article  CAS  Google Scholar 

  192. Karnaouri AC, Topakas E, Christakopoulos P (2014) Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction. Appl Microbiol Biotechnol 98(1):231–242. doi:10.1007/s00253-013-4895-9

    Article  CAS  Google Scholar 

  193. Zhao J, Shi P, Li Z, Yang P, Luo H, Bai Y, Wang Y, Yao B (2012) Two neutral thermostable cellulases from Phialophora sp. G5 act synergistically in the hydrolysis of filter paper. Bioresour Technol 121:404–410. doi:10.1016/j.biortech.2012.07.027

    Article  CAS  Google Scholar 

  194. Srikrishnan S, Randall A, Baldi P, Da Silva NA (2012) Rationally selected single-site mutants of the Thermoascus aurantiacus endoglucanase increase hydrolytic activity on cellulosic substrates. Biotechnol Bioeng 109(6):1595–1599. doi:10.1002/bit.24414

    Article  CAS  Google Scholar 

  195. Shi H, Yin X, Wu M, Tang C, Zhang H, Li J (2012) Cloning and bioinformatics analysis of an endoglucanase gene (Aucel12A) from Aspergillus usamii and its functional expression in Pichia pastoris. J Ind Microbiol Biotechnol 39(2):347–357. doi:10.1007/s10295-011-1039-z

    Article  CAS  Google Scholar 

  196. Kim HM, Lee YG, Patel DH, Lee KH, Lee DS, Bae HJ (2012) Characteristics of bifunctional acidic endoglucanase (Cel5B) from Gloeophyllum trabeum. J Ind Microbiol Biotechnol 39(7):1081–1089. doi:10.1007/s10295-012-1110-4

    Article  CAS  Google Scholar 

  197. Generoso WC, Malago-Jr W, Pereira N Jr, Henrique-Silva F (2012) Recombinant expression and characterization of an endoglucanase III (cel12a) from Trichoderma harzianum (Hypocreaceae) in the yeast Pichia pastoris. Genet Mol Res 11(2):1544–1557. doi:10.4238/2012.May.21.11

    Article  CAS  Google Scholar 

  198. Liu D, Zhang R, Yang X, Xu Y, Tang Z, Tian W, Shen Q (2011) Expression, purification and characterization of two thermostable endoglucanases cloned from a lignocellulosic decomposing fungi Aspergillus fumigatus Z5 isolated from compost. Protein Expr Purif 79(2):176–186. doi:10.1016/j.pep.2011.06.008

    Article  CAS  Google Scholar 

  199. Liu G, Wei X, Qin Y, Qu Y (2010) Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. J Gen Appl Microbiol 56(3):223–229

    Article  CAS  Google Scholar 

  200. Luo H, Yang J, Yang P, Li J, Huang H, Shi P, Bai Y, Wang Y, Fan Y, Yao B (2010) Gene cloning and expression of a new acidic family 7 endo-beta-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1. Appl Microbiol Biotechnol 85(4):1015–1023. doi:10.1007/s00253-009-2119-0

    Article  CAS  Google Scholar 

  201. Zhao XH, Wei DZ, Wang W (2014) Cloning, expression, sequence analysis, and partial characterization of two alkaline beta-1, 4-endoglucanases of Phaeosphaeria sp. LH21 from deep-sea mud. Appl Biochem Biotechnol 173(6):1295–1302. doi:10.1007/s12010-014-0924-0

    Article  CAS  Google Scholar 

  202. Li J, Tang C, Shi H, Wu M (2011) Cloning and optimized expression of a neutral endoglucanase gene (ncel5A) from Volvariella volvacea WX32 in Pichia pastoris. J Biosci Bioeng 111(5):537–540. doi:10.1016/j.jbiosc.2011.01.002

    Article  CAS  Google Scholar 

  203. Shibuya H, Kikuchi T (2008) Purification and characterization of recombinant endoglucanases from the pine wood nematode Bursaphelenchus xylophilus. Biosci Biotechnol Biochem 72(5):1325–1332. doi:10.1271/bbb.70819

    Article  CAS  Google Scholar 

  204. Zhao XH, Wang W, Wang FQ, Wei DZ (2012) A comparative study of beta-1, 4-endoglucanase (possessing beta-1, 4-exoglucanase activity) from Bacillus subtilis LH expressed in Pichia pastoris GS115 and Escherichia coli Rosetta (DE3). Bioresour Technol 110:539–545. doi:10.1016/j.biortech.2011.12.086

    Article  CAS  Google Scholar 

  205. S-j Ding, Ge W, Buswell JA (2002) Secretion, purification and characterisation of a recombinant Volvariella volvacea endoglucanase expressed in the yeast Pichia pastoris. Enzyme Microb Technol 31(5):621–626. doi:10.1016/S0141-0229(02)00168-0

    Article  Google Scholar 

  206. Bayram Akcapinar G, Venturini A, Martelli PL, Casadio R, Sezerman UO (2015) Modulating the thermostability of Endoglucanase I from Trichoderma reesei using computational approaches. Protein Eng Des Sel 28(5):127–135. doi:10.1093/protein/gzv012

    Article  CAS  Google Scholar 

  207. Akbarzadeh A, Ranaei Siadat SO, Motallebi M, Zamani MR, Barshan Tashnizi M, Moshtaghi S (2014) Characterization and high level expression of acidic endoglucanase in Pichia pastoris. Appl Biochem Biotechnol 172(4):2253–2265. doi:10.1007/s12010-013-0672-6

    Article  CAS  Google Scholar 

  208. Boonvitthya N, Bozonnet S, Burapatana V, O’Donohue MJ, Chulalaksananukul W (2013) Comparison of the heterologous expression of Trichoderma reesei endoglucanase II and cellobiohydrolase II in the yeasts Pichia pastoris and Yarrowia lipolytica. Mol Biotechnol 54(2):158–169. doi:10.1007/s12033-012-9557-0

    Article  CAS  Google Scholar 

  209. Zhao J, Shi P, Huang H, Li Z, Yuan T, Yang P, Luo H, Bai Y, Yao B (2012) A novel thermoacidophilic and thermostable endo-beta-1,4-glucanase from Phialophora sp. G5: its thermostability influenced by a distinct beta-sheet and the carbohydrate-binding module. Appl Microbiol Biotechnol 95(4):947–955. doi:10.1007/s00253-011-3807-0

    Article  CAS  Google Scholar 

  210. Samanta S, Basu A, Halder UC, Sen SK (2012) Characterization of Trichoderma reesei endoglucanase II expressed heterologously in Pichia pastoris for better biofinishing and biostoning. J Microbiol 50(3):518–525. doi:10.1007/s12275-012-1207-5

    Article  CAS  Google Scholar 

  211. Li CH, Wang HR, Yan TR (2012) Cloning, purification, and characterization of a heat- and alkaline-stable endoglucanase B from Aspergillus niger BCRC31494. Molecules 17(8):9774–9789. doi:10.3390/molecules17089774

    Article  CAS  Google Scholar 

  212. Bayram Akcapinar G, Gul O, Sezerman UO (2012) From in silico to in vitro: modelling and production of Trichoderma reesei endoglucanase 1 and its mutant in Pichia pastoris. J Biotechnol 159(1–2):61–68. doi:10.1016/j.jbiotec.2012.01.001

    Article  CAS  Google Scholar 

  213. Shumiao Z, Huang J, Zhang C, Deng L, Hu N, Liang Y (2010) High-level expression of an Aspergillus niger endo-beta-1,4-glucanase in Pichia pastoris through gene codon optimization and synthesis. J Microbiol Biotechnol 20(3):467–473

    Google Scholar 

  214. Quay DHX, Bakar FDA, Rabu A, Said M, Illias RM, Mahadi NM, Hassan O, Murad AMA (2011) Overexpression, purification and characterization of the Aspergillus niger endoglucanase, EglA, in Pichia pastoris. Afr J Biotechnol 10(11):2101–2111. doi:10.5897/AJB10.1046

    CAS  Google Scholar 

  215. Akcapinar GB, Gul O, Sezerman U (2011) Effect of codon optimization on the expression of Trichoderma reesei endoglucanase 1 in Pichia pastoris. Biotechnol Prog 27(5):1257–1263. doi:10.1002/btpr.663

    Article  CAS  Google Scholar 

  216. Sinclair G, Choy FY (2002) Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr Purif 26(1):96–105

    Article  CAS  Google Scholar 

  217. Wang XJ, Peng YJ, Zhang LQ, Li AN, Li DC (2012) Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl Microbiol Biotechnol 95(6):1469–1478. doi:10.1007/s00253-011-3799-9

    Article  CAS  Google Scholar 

  218. Gavlighi HA, Meyer AS, Mikkelsen JD (2013) Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal. Biotechnol Lett 35(2):205–212. doi:10.1007/s10529-012-1067-4

    Article  CAS  Google Scholar 

  219. Oliveira GS, Ulhoa CJ, Silveira MH, Andreaus J, Silva-Pereira I, Pocas-Fonseca MJ, Faria FP (2013) An alkaline thermostable recombinant Humicola grisea var. thermoidea cellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates. World J Microbiol Biotechnol 29(1):19–26. doi:10.1007/s11274-012-1153-8

    Article  CAS  Google Scholar 

  220. Boer H, Teeri TT, Koivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69(5):486–494

    Article  CAS  Google Scholar 

  221. Toda H, Nagahata N, Amano Y, Nozaki K, Kanda T, Okazaki M, Shimosaka M (2008) Gene cloning of cellobiohydrolase II from the white rot fungus Irpex lacteus MC-2 and its expression in Pichia pastoris. Biosci Biotechnol Biochem 72(12):3142–3147. doi:10.1271/bbb.80316

    Article  CAS  Google Scholar 

  222. Zhao L, Zhou T, Li X, Fan S, You L (2013) Expression and characterization of GH3 β-glucosidase from Aspergillus niger NL-1 with high specific activity, glucose inhibition and solvent tolerance. Microbiology 82(3):356–363. doi:10.1134/s0026261713030181

    Article  CAS  Google Scholar 

  223. Yang X, Ma R, Shi P, Huang H, Bai Y, Wang Y, Yang P, Fan Y, Yao B (2014) Molecular characterization of a highly-active thermophilic beta-glucosidase from Neosartorya fischeri P1 and its application in the hydrolysis of soybean isoflavone glycosides. PLoS One 9(9):e106785. doi:10.1371/journal.pone.0106785

    Article  CAS  Google Scholar 

  224. Yang S, Hua C, Yan Q, Li Y, Jiang Z (2013) Biochemical properties of a novel glycoside hydrolase family 1 beta-glucosidase (PtBglu1) from Paecilomyces thermophila expressed in Pichia pastoris. Carbohydr Polym 92(1):784–791. doi:10.1016/j.carbpol.2012.09.086

    Article  CAS  Google Scholar 

  225. Chen P, Fu X, Ng TB, Ye XY (2011) Expression of a secretory beta-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization. Biotechnol Lett 33(12):2475–2479. doi:10.1007/s10529-011-0724-3

    Article  CAS  Google Scholar 

  226. Ji HW, Cha CJ (2010) Identification and functional analysis of a gene encoding beta-glucosidase from the brown-rot basidiomycete Fomitopsis palustris. J Microbiol 48(6):808–813. doi:10.1007/s12275-010-0482-2

    Article  CAS  Google Scholar 

  227. Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr Purif 67(2):61–69. doi:10.1016/j.pep.2008.05.022

    Article  CAS  Google Scholar 

  228. Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M (2012) Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant beta-glucosidase from the termite Nasutitermes takasagoensis. Appl Environ Microbiol 78(12):4288–4293. doi:10.1128/AEM.07718-11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.G.E. was awarded scholarship by Scientific and Technical Research Council of Turkey (TÜBİTAK-BİDEB). Leave Grant provided by Biotechnology Research Center, Central Institute of Field Crops Research (Turkey) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pınar Çalık.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gündüz Ergün, B., Çalık, P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 39, 1–36 (2016). https://doi.org/10.1007/s00449-015-1476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1476-6

Keywords

Navigation