Skip to main content

Advertisement

Log in

Transforming lignin into value-added products: Perspectives on lignin chemistry, lignin-based biocomposites, and pathways for augmenting ligninolytic enzyme production

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Lignin is a promising biopolymer abundantly used in industrially valued biobased products. But the resilient nature of lignin reinforces difficulties during its depolymerization, leading to distinct challenges in manufacturing value-added products. This review aims to provide information on lignin chemistry that imparts thoughtful insights on development of lignin-based biocomposites and hybrid materials that are both economical and environment convivial products. Biological approaches on ligninolytic microorganisms that are also attractive pathways for conversion of lignin into value-added products are elaborated. Further, this review also emphasizes on the recent metagenomics, system biology, and in silico approaches on enhancing the ligninase production from microbial sources and their utilization for the synthesis of lignin-based materials. Finally, updates on the patented lignin biocomposites and hybrid materials have been showcased. It is expected that the review will address the present necessity of waste management issues associated with agro-wastes and simultaneously provide understanding for the technology-based approaches that can be utilized for manufacturing feasible industrially value-added products from lignin as a biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Dai S, Niu D (2017) Comprehensive evaluation of the sustainable development of power grid enterprises based on the model of fuzzy group ideal point method and combination weighting method with improved group order relation method and entropy weight method. Sustainability 9(10):1900. https://doi.org/10.3390/su9101900

    Article  Google Scholar 

  2. Yang R, Huang X, Zhao G, Liu Z, Wang G (2023) Ni@ rGO into nickel foam for composite polyethylene glycol and erythritol phase change materials. J Chem Eng 451:138900. https://doi.org/10.1016/j.cej.2022.138900

    Article  CAS  Google Scholar 

  3. Bajwa DS, Pourhashem G, Ullah AH, Bajwa SG (2019) A concise review of current lignin production, applications, products and their environmental impact. Ind Crops Prod 139:111526

    Article  CAS  Google Scholar 

  4. Ge S, Ouyang H, Ye H, Shi Y, Sheng Y, Peng W (2023) High-performance and environmentally friendly acrylonitrile butadiene styrene/wood composite for versatile applications in furniture and construction. Adv Compos Hybrid Mater 6(1):44. https://doi.org/10.1007/s42114-023-00628-1

    Article  CAS  Google Scholar 

  5. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, Shi SQ, Nie X, Qiu Y, Li D, Wu Q (2020) Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl Mater Interfaces 12(27):30824–30832. https://doi.org/10.1021/acsami.0c07448

    Article  CAS  PubMed  Google Scholar 

  6. Ridho MR, Agustiany EA, Rahmi DM, Madyaratri EW, Ghozali M, Restu WK, Falah F, Rahandi Lubis MA, Syamani FA, Nurhamiyah Y, Hidayati S (2022) Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Adv Mater Sci Eng 2022:1–33. https://doi.org/10.1155/2022/1363481

    Article  CAS  Google Scholar 

  7. Spiridon I, Leluk K, Resmerita AM, Darie RN (2015) Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Compos B Eng 69:342–349. https://doi.org/10.1016/j.compositesb.2014.10.006

    Article  CAS  Google Scholar 

  8. Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sust Energ Rev 49:871–906. https://doi.org/10.1016/j.rser.2015.04.091

    Article  CAS  Google Scholar 

  9. Chio C, Sain M, Qin W (2019) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sust Energ Rev 107:232–249. https://doi.org/10.1016/j.rser.2019.03.008

    Article  CAS  Google Scholar 

  10. Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS ONE 8(9):e73827. https://doi.org/10.1371/journal.pone.0073827

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang M, Choe D, Kim K, Cho BK, Cho S (2020) Synthetic biology approaches in the development of engineered therapeutic microbes. Int J Mol Sci 21(22):8744. https://doi.org/10.3390/ijms21228744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fisher AK, Freedman BG, Bevan DR, Senger RS (2014) A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput Struct Biotechnol J 11(18):91–99. https://doi.org/10.1016/j.csbj.2014.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li X, Liu S, Zhang L, Issaian A, Hill RC, Espinosa S, Shi S, Cui Y, Kappel K, Das R, Hansen KC (2019) A unified mechanism for intron and exon definition and back-splicing. Nature 573(7774):375–380. https://doi.org/10.1038/s41586-019-1523-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chauhan PS (2020) Lignin nanoparticles: eco-friendly and versatile tool for new era. Bioresour Technol Rep 9:100374. https://doi.org/10.1016/j.biteb.2019.100374

    Article  Google Scholar 

  15. Lourenço A, Pereira H (2018) Compositional variability of lignin in biomass. InTech open, Brazil, pp 65–98. https://doi.org/10.5772/intechopen.71208

    Book  Google Scholar 

  16. Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, Chang SW, Kumar G (2019) A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol 271:462–472. https://doi.org/10.1016/j.biortech.2018.09.070

    Article  CAS  PubMed  Google Scholar 

  17. Del Río JC, Marques G, Rencoret J, Martínez ÁT, Gutiérrez A (2007) Occurrence of naturally acetylated lignin units. J Agric Food Chem 55(14):5461–5468. https://doi.org/10.1021/jf0705264

    Article  CAS  PubMed  Google Scholar 

  18. Rencoret J, Gutiérrez A, Marques G, Del Río JC, Tobimatsu Y, Lam PY, Pérez-Boada M, Ruiz-Dueñas FJ, Barrasa JM, Martínez AT (2021) New insights on structures forming the lignin-like fractions of ancestral plants. Front Plant Sci 12:740923. https://doi.org/10.3389/fpls.2021.740923

    Article  PubMed  PubMed Central  Google Scholar 

  19. Esteves B, Gominho J, Rodrigues JC, Miranda I, Pereira H (2005) Pulping yield and delignification kinetics of heartwood and sapwood of maritime pine. J Wood Chem Technol 25(4):217–230. https://doi.org/10.1080/02773810500366656

    Article  CAS  Google Scholar 

  20. Alves A, Schwanninger M, Pereira H, Rodrigues J (2006) Calibration of NIR to assess lignin composition (H/G ratio) in maritime pine wood using analytical pyrolysis as the reference method. Holzforschung 60(1):29–31. https://doi.org/10.1515/HF.2006.006

    Article  CAS  Google Scholar 

  21. Huang F, Singh PM, Ragauskas AJ (2011) Characterization of milled wood lignin (MWL) in loblolly pine stem wood, residue, and bark. J Agric Food Chem 59(24):12910–12916. https://doi.org/10.1021/jf202701b

    Article  CAS  PubMed  Google Scholar 

  22. Rencoret J, Marques G, Gutierrez A, Nieto L, Santos JI, Jimenez-Barbero J, Martínez ÁT, del Río JC (2009) HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state 10th EWLP 25–28: 2008. Holzforschung 63(6):691–698. https://doi.org/10.1515/HF.2009.070

    Article  CAS  Google Scholar 

  23. Miranda I, Gominho J, Mirra I, Pereira H (2012) Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind Crops Prod 36(1):395–400. https://doi.org/10.1016/j.indcrop.2011.10.035

    Article  CAS  Google Scholar 

  24. Lourenco A, Rencoret J, Chemetova C, Gominho J, Gutierrez A, Del Rio JC, Pereira H (2016) Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L. Front Plant Sci 7:1612. https://doi.org/10.3389/fpls.2016.01612

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang HH, Xu LL, Tong ZK, Lin EP, Liu QP, Cheng LJ, Zhu MY (2012) De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genom 13(1):1–14. https://doi.org/10.1186/1471-2164-13-41

    Article  CAS  Google Scholar 

  26. Del Rio JC, Rencoret J, Marques G, Gutiérrez A, Ibarra D, Santos JI, Jiménez-Barbero J, Zhang L, Martínez AT (2008) Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. J Agric Food Chem 56(20):9525–9534. https://doi.org/10.1021/jf800806h

    Article  CAS  PubMed  Google Scholar 

  27. Del Rio JC, Rencoret J, Marques G, Li J, Gellerstedt G, Jiménez-Barbero J, Gutiérrez MÁT, ANA, (2009) Structural characterization of the lignin from jute (Corchorus capsularis) fibers. J Agric Food Chem 57(21):10271–10281. https://doi.org/10.1021/jf900815x

    Article  CAS  PubMed  Google Scholar 

  28. Fagerstedt KV, Saranpää P, Tapanila T, Immanen J, Alonso Serra JA, Nieminen K (2015) Determining the composition of lignins in different tissues of silver birch. Plants 4(2):183–195. https://doi.org/10.3390/plants4020183

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pinto PC, Evtuguin DV, Pascoal Neto C (2005) Chemical composition and structural features of the macromolecular components of plantation Acacia mangium wood. J Agric Food Chem 53(20):7856–7862. https://doi.org/10.1021/jf058081b.30

    Article  CAS  PubMed  Google Scholar 

  30. Gominho J, Fernandez J, Pereira H (2001) Cynara cardunculus L.—a new fibre crop for pulp and paper production. Ind Crops Prod 13(1):1–10. https://doi.org/10.1016/S0926-6690(00)00044-3

    Article  Google Scholar 

  31. Yan C, Yin M, Zhang N, Jin Q, Fang Z, Lin Y, Cai Y (2014) Stone cell distribution and lignin structure in various pear varieties. Sci Hortic 174:142–150. https://doi.org/10.1016/j.scienta.2014.05.018

    Article  CAS  Google Scholar 

  32. Belyy VA, Karmanov AP, Kocheva LS, Nekrasova PS, Kaneva MV, Lobov AN, Spirikhin LV (2019) Comparative study of chemical and topological structure of macromolecules of lignins of birch (Betula verrucosa) and apple (Malus domestica) wood. Int J Biol Macromol 128:40–48. https://doi.org/10.1016/j.ijbiomac.2019.01.095

    Article  CAS  PubMed  Google Scholar 

  33. Amoah M, Assan F, Dadzie PK (2020) Aboveground biomass, carbon storage and fuel values of Bambusa vulgaris, Oxynanteria abbyssinica and Bambusa vulgaris var. vitata plantations in the Bobiri forest reserve of Ghana. J Sustain For 39(2):113–136. https://doi.org/10.1080/10549811.2019.1608452

    Article  Google Scholar 

  34. Majumdar S, Priyadarshinee R, Kumar A, Mandal T, Mandal DD (2019) Exploring Planococcus sp. TRC1, a bacterial isolate, for carotenoid pigment production and detoxification of paper mill effluent in immobilized fluidized bed reactor. J Clean Prod 211:1389–1402. https://doi.org/10.1016/j.jclepro.2018.11.157

    Article  CAS  Google Scholar 

  35. Numata K, Morisaki K (2015) Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii. ACS Sustain Chem Eng 3(4):569–573. https://doi.org/10.1021/acssuschemeng.5b00031

    Article  CAS  Google Scholar 

  36. Palazzolo MA, Kurina-Sanz M (2016) Microbial utilization of lignin: available biotechnologies for its degradation and valorization. World J Microbiol Biotechnol 32(10):1–9. https://doi.org/10.1007/s11274-016-2128-y

    Article  CAS  Google Scholar 

  37. Vyas P, Kumar A, Singh S (2018) Biomass breakdown: a review on pretreatment, instrumentations and methods. Front Biosci 10(815):10–2741. https://doi.org/10.2741/E815

    Article  Google Scholar 

  38. Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175. https://doi.org/10.3109/07388550903524243

    Article  CAS  PubMed  Google Scholar 

  39. Asgher M, Asad MJ, Legge RL (2006) Enhanced lignin peroxidase synthesis by Phanerochaete chrysosporium in solid state bioprocessing of a lignocellulosic substrate. World J Microbiol Biotechnol 22:449–453. https://doi.org/10.1007/s11274-005-9055-7

    Article  CAS  Google Scholar 

  40. Singh R, Shedbalkar UU, Nadhe SB, Wadhwani SA, Chopade BA (2017) Lignin peroxidase mediated silver nanoparticle synthesis in Acinetobacter sp. AMB Express 7:1–10. https://doi.org/10.1186/s13568-017-0528-5

    Article  CAS  Google Scholar 

  41. Sharma R, Singh VP, Singh D, Yusuf F, Kumar A, Vishwakarma RA, Chaubey A (2016) Optimization of nonribosomal peptides production by a psychrotrophic fungus: Trichoderma velutinum ACR-P1. Appl Microbiol Biotechnol 100:9091–9102. https://doi.org/10.1007/s00253-016-7622-5

    Article  CAS  PubMed  Google Scholar 

  42. Song YJ (2009) Characterization of aromatic hydrocarbon degrading bacteria isolated from pine litter. Microbiol Biotechnol Lett 37:333–339. https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE09073190. Accessed 28 Dec 2009

  43. Suman SK, Dhawaria M, Tripathi D, Raturi V, Adhikari DK, Kanaujia PK (2016) Investigation of lignin biodegradation by Trabulsiella sp. isolated from termite gut. Int biodeterior biodegrad 112:12–17. https://doi.org/10.1016/j.ibiod.2016.04.036

    Article  CAS  Google Scholar 

  44. Kumar V, Chandra R (2018) Characterisation of manganese peroxidase and laccase producing bacteria capable for degradation of sucrose glutamic acid-Maillard reaction products at different nutritional and environmental conditions. World J Microbiol Biotechnol 34(2):32. https://doi.org/10.1007/s11274-018-2416-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liers C, Bobeth C, Pecyna M, Ullrich R, Hofrichter M (2010) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85(6):1869–1879. https://doi.org/10.1007/s00253-012-4521-2

    Article  CAS  PubMed  Google Scholar 

  46. de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  47. Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M (2008) Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl Microbiol Biotechnol 79:597–603. https://doi.org/10.1007/s00253-008-1475-5

    Article  CAS  PubMed  Google Scholar 

  48. Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9:415–425. https://doi.org/10.1007/s00792-005-0458-z

    Article  CAS  PubMed  Google Scholar 

  49. Okano K, Iida Y, Samsuri M, Prasetya B, Usagawa T, Watanabe T (2006) Comparison of in vitro digestibility and chemical composition among sugarcane bagasses treated by four white-rot fungi. Anim Sci J 77(3):308–313. https://doi.org/10.1111/j.1740-0929.2006.00353.x

    Article  CAS  Google Scholar 

  50. Paliwal R, Rawat AP, Rawat M, Rai JPN (2012) Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol 167(7):1865–1889. https://doi.org/10.1007/s12010-012-9735-3

    Article  CAS  PubMed  Google Scholar 

  51. Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curre opinion in chem biol 19:1–7. https://doi.org/10.1016/j.cbpa.2013.11.015

    Article  CAS  Google Scholar 

  52. Chen Z, Wan C (2017) Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sust Energ Rev 73:610–621. https://doi.org/10.1016/j.rser.2017.01.166

    Article  CAS  Google Scholar 

  53. Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Lidén G, Gorwa-Grauslund MF (2016) Biological valorization of low molecular weight lignin. Biotechnol Adv 34(8):1318–1346. https://doi.org/10.1016/j.biotechadv.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  54. Collins PJ, Field JA, Teunissen P, Dobson AD (1997) Stabilization of lignin peroxidases in white rot fungi by tryptophan. Appl Environ Microbiol 63(7):2543–2548. https://doi.org/10.1128/aem.63.7.2543-2548.1997

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Inoue S, Igarashi Y, Yoneda Y, Kawai S, Okamura H, Nishida T (2015) Elimination and detoxification of fungicide miconazole and antidepressant sertraline by manganese peroxidase-dependent lipid peroxidation system. International biodeterior biodegrad 100:79–84. https://doi.org/10.1016/j.ibiod.2015.02.017

    Article  CAS  Google Scholar 

  56. Ishak N, Kassim ASM, Aripin AM, Sharifah SM, Oluwatosin AF (2019) A review on lignin and biodelignification. J Engg Health Sci 3(1):41–72. http://www.unimel.edu.my/journal/index.php/JEHS/article/view/586. ISSN: 2600-8378. Accessed 2019

  57. Rath S, Paul M, Thatoi H (2022) Molecular modeling, docking and dynamic studies of fungal DyPs to determine substrate specificity for an efficient lignin biodegradation towards bioethanol production. Bioresour Technol Rep 18:101036. https://doi.org/10.1016/j.biteb.2022.101036

    Article  CAS  Google Scholar 

  58. Vignali E, Tonin F, Pollegioni L, Rosini E (2018) Characterization and use of a bacterial lignin peroxidase with an improved manganese-oxidative activity. Appl Microbiol Biotechnol 102(24):10579–10588. https://doi.org/10.1007/s00253-018-9409-3

    Article  CAS  PubMed  Google Scholar 

  59. Liers C, Pecyna MJ, Kellner H, Worrich A, Zorn H, Steffen KT, Hofrichter M, Ullrich R (2013) Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood-and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97(13):5839–5849. https://doi.org/10.1007/s00253-012-4521-2

    Article  CAS  PubMed  Google Scholar 

  60. Hilgers R, Vincken JP, Gruppen H, Kabel MA (2018) Laccase/mediator systems: their reactivity toward phenolic lignin structures. ACS Sustain Chem Eng 6(2):2037–2046. https://doi.org/10.1021/acssuschemeng.7b03451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Camarero S, Bocchini P, Galletti GC, Martınez MJ, Martınez AT (2001) Compositional changes of wheat lignin by a fungal peroxidase analyzed by pyrolysis-GC-MS. J Analy Appl Pyroly 58:413–423. https://doi.org/10.1016/S0165-2370(00)00115-7

    Article  Google Scholar 

  62. Tamboli DP, Telke AA, Dawkar VV, Jadhav SB, Govindwar SP (2011) Purification and characterization of bacterial aryl alcohol oxidase from Sphingobacterium sp. ATM and its uses in textile dye decolorization. Biotechnol Bioprocess Eng 16(4):661–668. https://doi.org/10.1007/s12257-011-0031-9

    Article  CAS  Google Scholar 

  63. Mathieu Y, Piumi F, Valli R, Aramburu JC, Ferreira P, Faulds CB, Record E (2016) Activities of secreted aryl alcohol quinone oxidoreductases from Pycnoporus cinnabarinus provide insights into fungal degradation of plant biomass. Appli environ microbiol 82(8):2411–2423. https://doi.org/10.1128/AEM.03761-15

    Article  ADS  CAS  Google Scholar 

  64. Yamada Y, Wang J, Kawagishi H, Hirai H (2014) Improvement of ligninolytic properties by recombinant expression of glyoxal oxidase gene in hyper lignin-degrading fungus Phanerochaete sordida YK-624. Biosci Biotechnol Biochem 78(12):2128–2133. https://doi.org/10.1080/09168451.2014.946398

    Article  CAS  PubMed  Google Scholar 

  65. Daou M, Faulds CB (2017) Glyoxal oxidases: their nature and properties. World J Microbiol Biotechnol 33(5):1–11. https://doi.org/10.1007/s11274-017-2254-1

    Article  CAS  Google Scholar 

  66. Majeke BMB (2021) The enzymatic valorisation of technical lignins from different sources to phenols. Stellenbosch University, Stellenbosch (Dissertation. Accessed March 2021)

    Google Scholar 

  67. Xu R, Zhang K, Liu P, Han H, Zhao S, Kakade A, Khan A, Du D, Li X (2018) Lignin depolymerization and utilization by bacteria. Bioresour Technol 269:557–566. https://doi.org/10.1016/j.biortech.2018.08.118

    Article  CAS  PubMed  Google Scholar 

  68. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115(21):11559–11624. https://doi.org/10.1021/acs.chemrev.5b00155

    Article  CAS  PubMed  Google Scholar 

  69. Chan JM, Bauer S, Sorek H, Sreekumar S, Wang K, Toste FD (2013) Studies on the vanadium-catalyzed nonoxidative depolymerization of Miscanthus giganteus-derived lignin. Acs Catal 3(6):1369–1377. https://doi.org/10.1021/cs400333q

    Article  CAS  Google Scholar 

  70. Díaz-Urrutia C, Chen WC, Crites CO, Daccache J, Korobkov I, Baker RT (2015) Towards lignin valorisation: comparing homogeneous catalysts for the aerobic oxidation and depolymerisation of organosolv lignin. RSC Adv 5(86):70502–70511. https://doi.org/10.1039/C5RA15694G

    Article  ADS  Google Scholar 

  71. Ouyang X, Ruan T, Qiu X (2016) Effect of solvent on hydrothermal oxidation depolymerization of lignin for the production of monophenolic compounds. Fuel Process Technol 144:181–185. https://doi.org/10.1016/j.fuproc.2015.12.019

    Article  CAS  Google Scholar 

  72. Werhan H, Mir JM, Voitl T, Rudolf von Rohr P (2011) Acidic oxidation of kraft lignin into aromatic monomers catalyzed by transition metal salts. Holzforschung 65(5):703–709. https://doi.org/10.1515/hf.2011.071

    Article  CAS  Google Scholar 

  73. Deng Q, Han P, Xu J, Zou JJ, Wang L, Zhang X (2015) Highly controllable and selective hydroxyalkylation/alkylation of 2-methylfuran with cyclohexanone for synthesis of high-density biofuel. Chem Eng Sci 138:239–243. https://doi.org/10.1016/j.ces.2015.08.025

    Article  CAS  Google Scholar 

  74. Gu X, Kanghua C, Ming H, Shi Y, Li Z (2012) La-modified SBA-15/H2O2 systems for the microwave assisted oxidation of organosolv beech wood lignin. Maderas Cienc tecnol 14(1):31–41. https://doi.org/10.4067/S0718-221X2012000100003

    Article  CAS  Google Scholar 

  75. Luo H, Abu-Omar MM (2017) Chemicals from lignin. Encyclopedia of sustain technol 3:573–585. https://doi.org/10.1016/B978-0-12-409548-9.10235-0

    Article  Google Scholar 

  76. Naron DR, Collard FX, Tyhoda L, Görgens JF (2019) Influence of impregnated catalyst on the phenols production from pyrolysis of hardwood, softwood, and herbaceous lignins. Ind Crops Prod 131:348–356. https://doi.org/10.1016/j.indcrop.2019.02.001

    Article  CAS  Google Scholar 

  77. Kong W, Fu X, Wang L, Alhujaily A, Zhang J, Ma F, Zhang X, Yu H (2017) A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol Biofuels 10(1):1–15. https://doi.org/10.1186/s13068-017-0906-x

    Article  CAS  Google Scholar 

  78. Shuai L, Amiri MT, Questell-Santiago YM, Héroguel F, Li Y, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher JS (2016) Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354(6310):329–333

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Lan W, Amiri MT, Hunston CM, Luterbacher JS (2018) Protection group effects during α, γ-diol lignin stabilization promote high-selectivity monomer production. Angew Chem Int Ed 130(5):1370–1374. https://doi.org/10.1002/ange.201710838̣

    Article  ADS  Google Scholar 

  80. Rahimi A, Ulbrich A, Coon JJ, Stahl SS (2014) Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515(7526):249–252. https://doi.org/10.1038/nature13867

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Wang H, Pu Y, Ragauskas A, Yang B (2019) From lignin to valuable products–strategies, challenges, and prospects. Bioresour Technol 271:449–461. https://doi.org/10.1016/j.biortech.2018.09.072

    Article  CAS  PubMed  Google Scholar 

  82. Liao Y, Koelewijn SF, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T, Navare K, Nicolaï T, Van Aelst K, Maesen M, Matsushima H (2020) A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 367(6484):1385–1390. https://doi.org/10.1126/science.aau1567

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Meng D, Gong C, Sukumaran RK, Dionysiou DD, Huang Z, Li R, Liu Y, Ji Y, Gu P, Fan X, Li Q (2021) Production of polyhydroxyalkanoates from propylene oxide saponification wastewater residual sludge using volatile fatty acids and bacterial community succession. Bioresour Technol 329:124912. https://doi.org/10.1016/j.biortech.2021.124912

    Article  CAS  PubMed  Google Scholar 

  84. Liu ZH, Hao N, Wang YY, Dou C, Lin F, Shen R, Bura R, Hodge DB, Dale BE, Ragauskas AJ, Yang B (2021) Transforming biorefinery designs with ‘plug-in processes of lignin’to enable economic waste valorization. Nat Commun 12(1):1–13. https://doi.org/10.1038/s41467-021-23920-4

    Article  ADS  CAS  Google Scholar 

  85. Naik N, Shivamurthy B, Thimmappa BH, Jaladi G, Samanth K, Shetty N (2022) Recent advances in green composites and their applications. Eng Sci 21:779. https://doi.org/10.30919/es8e779

    Article  CAS  Google Scholar 

  86. More AP (2022) Flax fiber–based polymer composites: a review. Adv Compos Hybrid Mater 5(1):1–20. https://doi.org/10.1007/s42114-021-00246-9

    Article  CAS  Google Scholar 

  87. Naik N, Shivamurthy B, Thimmappa BHS, Gupta A, Guo JZ, Seok I (2022) A review on processing methods and characterization techniques of green composites. Eng Sci 20:80–99. https://doi.org/10.30919/es8d713

    Article  CAS  Google Scholar 

  88. Bahaar H, Giridhar Reddy S, Siva Kumar B, Prashanthi K, Ananda Murthy HC (2023) Modified layered double hydroxide – PEG magneto-sensitive hydrogels with suitable ligno-alginate green polymer composite for prolonged drug delivery applications. Eng Sci 24:914

    CAS  Google Scholar 

  89. Sethupathy S, Morales GM, Gao L, Wang H, Yang B, Jiang J, Sun J, Zhu D (2022) Lignin valorization: status, challenges and opportunities. Bioresour Technol 347:126696. https://doi.org/10.1016/j.biortech.2022.126696

    Article  CAS  PubMed  Google Scholar 

  90. Huang D, Li R, Xu P, Li T, Deng R, Chen S, Zhang Q (2020) The cornerstone of realizing lignin value-addition: exploiting the native structure and properties of lignin by extraction methods. Chem Eng J 402:126237. https://doi.org/10.1016/j.cej.2020.126237

    Article  CAS  Google Scholar 

  91. Liu R, Dai L, Xu C, Wang K, Zheng C, Si C (2020) Lignin-based micro-and nanomaterials and their composites in biomedical applications. Chemsuschem 13(17):4266–4283. https://doi.org/10.1002/cssc.202000783

    Article  CAS  PubMed  Google Scholar 

  92. Yan Y, Zhang L, Zhao X, Zhai S, Wang Q, Li C, Zhang X (2022) Utilization of lignin upon successive fractionation and esterification in polylactic acid (PLA)/lignin biocomposite. Int J Biol Macromol 203:49–57. https://doi.org/10.1016/j.ijbiomac.2022.01.041

    Article  CAS  PubMed  Google Scholar 

  93. Peng Y, Nair SS, Chen H, Yan N, Cao J (2018) Effects of lignin content on mechanical and thermal properties of polypropylene composites reinforced with micro particles of spray dried cellulose nanofibrils. ACS Sustain Chem Eng 6(8):11078–11086. https://doi.org/10.1021/acssuschemeng.8b02544

    Article  CAS  Google Scholar 

  94. Maldhure AV, Ekhe JD (2017) Effect of modifications of lignin on thermal, structural, and mechanical properties of polypropylene/modified lignin blends. J Thermoplast Compos Mater 30(5):625–645. https://doi.org/10.1177/0892705715610402

    Article  CAS  Google Scholar 

  95. Alassod A, Gibril M, Islam SR, Huang W, Xu G (2020) Polypropylene/lignin blend monoliths used as sorbent in oil spill cleanup. Heliyon 6(9):e04591. https://doi.org/10.1016/j.heliyon.2020.e04591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pregi E, Faludi G, Kun D, Móczó J, Pukánszky B (2022) Three-component polypropylene/lignin/flax composites with high natural additive content for structural applications. Ind Crops Prod 182:114890. https://doi.org/10.1016/j.indcrop.2022.114890

    Article  CAS  Google Scholar 

  97. Cicala G, Latteri A, Saccullo G, Recca G, Sciortino L, Lebioda S, Saake B (2017) Investigation on structure and thermomechanical processing of biobased polymer blends. J Polym Environ 25:750–758. https://doi.org/10.1007/s10924-016-0857-5

    Article  CAS  Google Scholar 

  98. Yan K, Sun X, Ying S, Cheng W, Deng Y, Ma Z, Zhao Y, Wang X, Pan L, Shi Y (2020) Ultrafast microwave synthesis of rambutan-like CMK-3/carbon nanotubes nanocomposites for high-performance supercapacitor electrode materials. Sci Rep 10(1):6227. https://doi.org/10.1038/s41598-020-63204-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Uday RA, Kiran D, GS AK, Prakash KG, Maddodi BS (2022) Effect of polypropylene macro fiber on geotechnical characteristics of black cotton soil: an experimental investigation and correlation analysis. Eng Sci 21:775. https://doi.org/10.30919/es8d775

    Article  CAS  Google Scholar 

  100. Singh M, Zappa D, Comini E (2021) Solid oxide fuel cell: decade of progress, future perspectives and challenges. Int J Hydrog Energy 46(54):27643–27674. https://doi.org/10.1016/j.ijhydene.2021.06.020

    Article  CAS  Google Scholar 

  101. Pai A, Kini AK, Kini CR, Shenoy S (2022) Effect of natural fibre-epoxy plies on the mechanical and shock wave impact response of fibre metal laminates. Eng Sci 19:292–300. https://doi.org/10.30919/es8d730

    Article  CAS  Google Scholar 

  102. Shundo A, Yamamoto S, Tanaka K (2022) Network formation and physical properties of epoxy resins for future practical applications. JACS Au 2(7):1522–1542. https://doi.org/10.1021/jacsau.2c00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jing X, Wei J, Liu Y, Song B, Liu Y (2020) Deployment analysis of aramid fiber reinforced shape-memory epoxy resin composites. Eng Sci 11(2):44–53. https://doi.org/10.30919/es8d1120

    Article  CAS  Google Scholar 

  104. Amelia J, Firman D, Damayanti L (2022) Tensile bond strength of customized cast post and core cemented with two luting agent. SONDE (Sound of Dentistry) 7(2):1–7. https://journal.maranatha.edu/index.php/sod/article/view/3864. Accessed 20 Aug 2023

  105. Duan H, Zhuang C, Mei F, Zeng C, Pashameah RA, Huang M, Alzahrani E, Gao J, Han Y, Yu Q, Wang Z (2022) Benzyl (4-fluorophenyl) phenylphosphine oxide-modified epoxy resin with improved flame retardancy and dielectric properties. Adv Compos 5(2):776–787. https://doi.org/10.1007/s42114-022-00491-6

    Article  CAS  Google Scholar 

  106. Zhang T, Yu C, Yu M, Huang Y, Tan J, Zhang M, Zhu X (2022) Multifunctional tannin extract-based epoxy derived from waste bark as a highly toughening and strengthening agent for epoxy resin. Ind Crops Prod 176:114255. https://doi.org/10.1016/j.indcrop.2021.114255

    Article  CAS  Google Scholar 

  107. Xu W, Wang X, Sandler N, Willfor S, Xu C (2018) Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications. ACS Sustain Chem Eng 6(5):5663–5680. https://doi.org/10.1021/acssuschemeng.7b03924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Martin E, Badel E, Léger S, Dubessay P, Delattre C, Audonnet F, Hartmann F, Bertrand E, Sciara G, Garajova S, Record E (2022) Effect of laccase pre-treatment on the mechanical properties of lignin-based agrocomposites reinforced with wood fibers. Ind Crops Prod 189:115876. https://doi.org/10.1016/j.indcrop.2022.115876

    Article  CAS  Google Scholar 

  109. Young RJ, Lovell PA (2011) Introduction to polymers. CRC Press

    Book  Google Scholar 

  110. Maxineasa SG, Isopescu DN, Entuc IS, Taranu N, Lupu LM, Hudisteanu I (2019) Environmental performances of different carbon and glass fiber reinforced polymer shear strengthening solutions of linear reinforced concrete elements. Bull Transilv Univ Bras II For Wood Ind Agric Food Eng 11(60):107–114. https://webbut.unitbv.ro/index.php/Series_I/article/view/2360. Accessed 22 Jan 2019

  111. Gouveia JR, Gonçalves M, Rocha R, Baptista AJ, Monteiro H (2022) Efficiency framework to assess aeronautic composite panel production: tracking environmental and process performance. Sustain Prod Consum 31:419–431. https://doi.org/10.1016/j.spc.2022.03.007

    Article  Google Scholar 

  112. Li A, Xu W, Chen R, Liu Y, Li W (2018) Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos A: Appl Sci 112:558–571. https://doi.org/10.1016/j.compositesa.2018.07.001

    Article  CAS  Google Scholar 

  113. Zhen X, Li H, Xu Z, Wang Q, Zhu S, Wang Z, Yuan Z (2021) Facile synthesis of lignin-based epoxy resins with excellent thermal-mechanical performance. International J Biol Macromol 182:276–285. https://doi.org/10.1016/j.ijbiomac.2021.03.203

    Article  CAS  Google Scholar 

  114. Lu X, Gu X (2023) A sustainable lignin-based epoxy resin: its preparation and combustion behaviors. Ind Crops Prod 192:116151. https://doi.org/10.1016/j.indcrop.2022.116151

    Article  CAS  Google Scholar 

  115. Dong W, Li W, Vessalas K, Wang K (2020) Mechanical and conductive properties of smart cementitious composites with conductive rubber crumbs. ES Mater Manuf 7:51-63. https://doi.org/10.30919/esmm5f711. Accessed 16 Feb 2020

  116. Barrera CS, Cornish K (2016) High performance waste-derived filler/carbon black reinforced guayule natural rubber composites. Ind Crops Prod 86:132–142. https://doi.org/10.1016/j.indcrop.2016.03.021

    Article  CAS  Google Scholar 

  117. Yan Q, Dai W, Gao J, Tan X, Lv L, Ying J, Lu X, Lu J, Yao Y, Wei Q, Sun R (2021) Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 15(4):6489–6498. https://doi.org/10.1021/acsnano.0c09229

    Article  CAS  PubMed  Google Scholar 

  118. Roy K, Debnath SC, Das A, Heinrich G, Potiyaraj P (2018) Exploring the synergistic effect of short jute fiber and nanoclay on the mechanical, dynamic mechanical and thermal properties of natural rubber composites. Polym Test 67:487–493. https://doi.org/10.1016/j.polymertesting.2018.03.032

    Article  CAS  Google Scholar 

  119. Duan X, Cheng S, Tao R, Zhang Z, Zhao G (2022) Synergistically enhanced thermal control ability and mechanical properties of natural rubber for tires through a graphene/silica with a dot-face structure. Adv Compos Hybrid Mater 5(2):1145–1157. https://doi.org/10.1007/s42114-022-00453-y

    Article  Google Scholar 

  120. Setua DK, Shukla MK, Nigam V, Singh H, Mathur GN (2000) Lignin reinforced rubber composites Polym compos 21(6):988–995. https://doi.org/10.1002/pc.10252

    Article  CAS  Google Scholar 

  121. Shorey R, Gupta A, Mekonnen TH (2021) Hydrophobic modification of lignin for rubber composites. Ind Crops Prod 174:114189. https://doi.org/10.1016/j.indcrop.2021.114189

    Article  CAS  Google Scholar 

  122. Kruželák J, Hložeková K, Kvasničáková A, Tomanová K, Hudec I (2022) Application of sulfur and peroxide curing systems for cross-linking of rubber composites filled with calcium lignosulfonate. Polymers 14(9):1921. https://doi.org/10.3390/polym14091921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ling Q, Liu W, Liu J, Zhao L, Ren Z, Gu H (2022) Highly sensitive and robust polysaccharide-based composite hydrogel sensor integrated with underwater repeatable self-adhesion and rapid self-healing for human motion detection. ACS Appl Mater Interfaces 14(21):24741–24754. https://doi.org/10.1021/acsami.2c01785

    Article  CAS  PubMed  Google Scholar 

  124. Guo Q, Du J, Jiang Y, Goff HD, Cui SW (2019) Pectic polysaccharides from hawthorn: physicochemical and partial structural characterization. Food Hydrocoll 90:146–153. https://doi.org/10.1016/j.foodhyd.2018.10.011

    Article  CAS  Google Scholar 

  125. Sadeghifar H, Cui C, Argyropoulos DS (2012) Toward thermoplastic lignin polymers. Part 1. Selective masking of phenolic hydroxyl groups in kraft lignins via methylation and oxypropylation chemistries. Ind Eng Chem Res 51(51):16713–16720. https://doi.org/10.1021/ie301848j

    Article  CAS  Google Scholar 

  126. Fu L, Gong Y, Zhou Q, Ou Z, Rao X, Wang S, Huo C, Du X (2023) Antioxidant and ultraviolet shielding performance of lignin-polysaccharide complex isolated from spent coffee ground. Int. J Biol Macromol 230:123245. https://doi.org/10.1016/j.ijbiomac.2023.123245. Accessed 1 Mar 2023

    Article  CAS  PubMed  Google Scholar 

  127. Wang C, Luo W, Li P, Li S, Yang Z, Hu Z, Liu Y, Ao N (2017) Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohydr Polym 174:432–442. https://doi.org/10.1016/j.carbpol.2017.06.112

    Article  CAS  PubMed  Google Scholar 

  128. Chen C, Zhang B, Huang Q, Fu X, Liu RH (2017) Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: characterization and hypoglycemic activity. Ind Crops Prod 100:1–11. https://doi.org/10.1016/j.indcrop.2017.01.042

    Article  CAS  Google Scholar 

  129. Zhang L, Lu H, Yu J, Fan Y, Ma J, Wang Z (2019) Contribution of lignin to the microstructure and physical performance of three-dimensional lignocellulose hydrogels. Cellulose 26:2375–2388. https://doi.org/10.1007/s10570-019-02251-0

    Article  CAS  Google Scholar 

  130. Çalgeris İ, Çakmakçı E, Ogan A, Kahraman MV, Kayaman-Apohan N (2012) Preparation and drug release properties of lignin–starch biodegradable films. Starch-Stärke 64(5):399–407. https://doi.org/10.1002/star.201100158

    Article  CAS  Google Scholar 

  131. Ran F, Li C, Hao Z, Zhang X, Dai L, Si C, Shen Z, Qiu Z, Wang J (2022) Combined bactericidal process of lignin and silver in a hybrid nanoparticle on E. coli. Adv Compos Hybrid Mater 5(3):1841–1851. https://doi.org/10.1007/s42114-022-00460-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bula K, Klapiszewski Ł, Jesionowski T (2015) A novel functional silica/lignin hybrid material as a potential bio-based polypropylene filler. Polym Compos 36(5):913–922. https://doi.org/10.1002/pc.23011

    Article  CAS  Google Scholar 

  133. Matsushita Y (2015) Conversion of technical lignins to functional materials with retained polymeric properties. J Wood Sci 61(3):230–250. https://doi.org/10.1007/s10086-015-1470-2

    Article  CAS  Google Scholar 

  134. Zhang R, Xiao X, Tai Q, Huang H, Yang J, Hu Y (2012) Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly (lactic acid) system. High Perform Polym 24(8):738–746. https://doi.org/10.1177/0954008312451476

    Article  CAS  Google Scholar 

  135. Culebras M, Collins GA, Beaucamp A, Geaney H, Collins MN (2022) Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng Sci 17:195–203. https://doi.org/10.30919/es8d608

    Article  CAS  Google Scholar 

  136. Wu Q, Gao L, Huang M, Mersal GA, Ibrahim MM, El-Bahy ZM, Shi X, Jiang Q (2022) Aminated lignin by ultrasonic method with enhanced arsenic (V) adsorption from polluted water. Adv Compos Hybrid Mater 5(2):1044–1053. https://doi.org/10.1007/s42114-022-00492-5

    Article  CAS  Google Scholar 

  137. Bartczak P, Klapiszewski Ł, Wysokowski M, Majchrzak I, Czernicka W, Piasecki A, Ehrlich H, Jesionowski T (2017) Treatment of model solutions and wastewater containing selected hazardous metal ions using a chitin/lignin hybrid material as an effective sorbent. J Environ Manage 204:300–310. https://doi.org/10.1016/j.jenvman.2017.08.059

    Article  CAS  PubMed  Google Scholar 

  138. Global lignin and lignin-based products industry research report 2023, competitive landscape, market size, regional status and prospect. IOP: publishing 360 market updates. https://www.360marketupdates.com/enquiry/requestsample/22381135?trk=article-ssr-frontend-pulse_little-text-block. Accessed 18 Jan 2023

  139. Mohanty AK, Mishra M, Sahoo S (2010) Lignin based materials and methods of making those (Unite states patent no.20120071591A1). United States Patent and Trademark Office. https://patents.google.com/patent/US20120071591A1/en. Accessed 22 Mar 2012

  140. Tang Y, Jiang C, Jiao F, Li Z, Jiang G, Xing J (2011) Lignin modified thermoplastic phenolic resin and preparation method thereof (China patent no. CN102875752B). China patent. https://patents.google.com/patent/CN102875752B/en. Accessed 25 Jun 2014

  141. Kurple K, Kurple N, Kerman M (2020) Lignin hybrid polymers obtained from the reaction of lignin and compatible polymer precursors, and starting compositions for forming lignin based hybrid polymers (United States patent no.20200140624A1). United States Patent and Trademark Office. https://patentimages.storage.googleapis.com/7d/98/01/1782e2ea09e941/US20200140624A1.pdf. Accessed 7 May 2020

  142. Osterberg M, Sipponen M, Kestininen M, Akras L, Riviere G, Zhang X (2020) Lignin particle based hydrogel and the method for preparation of lignin colloidal particles by solvent evaporation process (WO patent no. 2020/109671A1). World Intellectual Property Organization Office. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020109671. Accessed 6 Apr 2020

  143. Wohlmann B, Wolkl M, Stusgen S (2011) Thermoplastic lignin for producing carbon finers (WO patent no. 2012038259A1). World Intellectual Property Organization office. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012038259. Accessed 29 Mar 2012

  144. Qui X, Ji Y, Zhao D, Yang D, Pang W, Zhou M, Dang L (2011) Conductive composition containing poly (3,4- ethylene dicoy thiophene)/ lingo sulfonic acid and preparation method thereof (China Patent no. CN102516784B). China patent office. https://patents.google.com/patent/CN102516784B/en. Accessed 2 Jul 2014

  145. Zhu X, Wang F, Wang C, Cheng Z (2013) Preparation method for epoxy resin (China patent no. CN103524709A). China patent office. https://patents.google.com/patent/CN103524709A/en. Accessed 1 Jan 2014

  146. Hu L, Zhou J, Zhou Y, Yang X (2013) Liquefaction method of lignin for preparing thermoplastic phenolic resin (China patent no. CN103554400A). China patent office. https://patentimages.storage.googleapis.com/9c/e2/59/ecf9fa51994c75/CN103554400A.pdf. Accessed 5 Feb 2014

  147. Chen Z, Mo Y, Zhang Z (2013) Rubber composite material filled by cardanol modified lignin and preparation method thereof (China patent no. CN109467770B). China patent office. https://patents.google.com/patent/CN109467770B/en. Accessed 28 Jul 2020

  148. Hong J, Chen X, Yang R, Ye J, Li X, Chen J, Gao Q (2013) Preparation method of wood fiber bio-based plastic (China Patent no. CN103773054A). China Patent Office. https://patents.google.com/patent/CN103773054A/en. Accessed 30 Dec 2015

  149. Brizius GL (2014) Phosphate substituted lignin as a flame retardant (United States patent no. US8747709B2). United States Patent Office. https://patents.google.com/patent/US9410088B2/en. Accessed 9 Aug 2016

  150. Bode D, Wilson P, Craun GP (2014) Lignin based coating compositions (World Intellectual Property Organisation patent no. WO2014/095800A1). World Intellectual Property Organisation office. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014095800. Accessed 26 Jun 2014

  151. Benko DA, Hahn BR, Cohen MP, Dirk SM, Cicotte KN (2014). Functionalized lignin, rubber containing functionalized lignin, and products containing such rubber composition (United States patent no. US8664305B2) United States patent office. https://patents.google.com/patent/US8664305. Accessed 3 Apr 2014

  152. Adam GA (2014) Water based ligninepoxy resins, methods of using and making the same (United States patent no. US9006369B2). United States Patent Office. https://patents.google.com/patent/US9006369B2/en. Accessed 14 Apr 2015

  153. Bouchar BM, Delmas M (2014) Use of a lignin for the mechanical reinforcement of an elastomer, and elastomer thus reinforced (World Intellectual Property Organization patent no. WO2014/012924A1). World Intellectual Property Organization office. https://patents.google.com/patent/WO2014012924A1/en. Accessed 23 Jan 2014

  154. Peng ZDC (2014) Preparation method of lignin based hydrogel (China patent no. CN103834039A). China patent office. https://patents.google.com/patent/CN103834039A/en. Accessed 4 Jun 2014

  155. Shan C, (2014) Method for preparing lignin polyether polyols (China patent no. CN103772693A). China patent office. https://patents.google.com/patent/CN103772693A/en?oq=Shan+C%2c+(2014)+Method+for+preparing+lignin+polyether+polyols.+China+patent.+CN103772693A. Accessed 7 May 2014

  156. Shan C (2014) Preparation method of lignin modified polyester polyol (China patent no. CN103755974A). https://patents.google.com/patent/CN103755974A/en. Accessed 30 Apr 2014

  157. Gridney AA (2014) Lignin composite material (World Intellectual Property Organization patent no. WO2014/070036A1). World Intellectual Property Organization office. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014070036. Accessed 8 May 2014

  158. Ma Y, Wang H, Fang G, Li J, Dai J, Zhao Z (2014) Preparation method of polyacrylated ligin compound oil-absorbing material (China patent no. CN103772627A). China patent office. https://worldwide.espacenet.com/patent/search/family/050565433/publication/CN103772627A?q=pn%3DCN103772627A. Accessed 7 May 2014

  159. Restina T, Nelson K (2015) Processes for producing nanocellulose- lignin composite materials, and compositions obtained thereof (World Intellectual Property Organization patent no. WO2015/200584A1). World Intellectual Property Organization office. https://patents.google.com/patent/US20160168272A1/en. Accessed 16 Jun 2016

  160. Nam J, Kim D (2014) Lignin polymer based nanocomposite and method for producing same (Korean patent no. KP20150061746A). Korean patent office. https://patents.google.com/patent/KR20150061746A/en. Accessed 5 Jun 2015

  161. Harper DP, Hosseinaei O, Fenumadu D, Meck NK, Webb D, Mynes J, Labbe N, John JB, Rials TG, Young SA (2022) Method of producing carbon fibers and carbon fiber composites from plant derived lignin and its blends. United States patent no. USO11512173B2. United States Patent Office. https://patents.google.com/patent/US11512173B2/en. Accessed 29 Nov 2022

  162. Mu L, Dong Y, Li L, Gu X, Shi Y (2021) Achieving high value utilization of bio-oil from lignin targeting for advanced lubrication. ES Mater Manuf 11(2):72–80. https://doi.org/10.30919/esmm5f1146

    Article  CAS  Google Scholar 

  163. Schutyser W, Renders AT, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908. https://doi.org/10.1039/C7CS00566K

    Article  CAS  PubMed  Google Scholar 

  164. Pye O (2010) The biofuel connection–transnational activism and the palm oil boom. Peasant Stud 37(4):851–874

    Article  Google Scholar 

  165. Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneider R, Pleissner D, Rinkel J, Dickschat JS, Venus J (2018) From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng 47:279–293. https://doi.org/10.1016/j.ymben.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  166. Gonçalves CC, Bruce T, Silva CDOG, Fillho EXF, Noronha EF, Carlquist M, Parachin NS (2020) Bioprospecting microbial diversity for lignin valorization: dry and wet screening methods. Front microbiol 11:1081. https://doi.org/10.3389/fmicb.2020.01081

    Article  PubMed  PubMed Central  Google Scholar 

  167. Vardon DR, Franden MA, Johnson CW, Karp EM, Guarnieri MT, Linger JG, Salm MJ, Strathmann TJ, Beckham GT (2015) Adipic acid production from lignin. Energy Environ Sci 8(2):617–628. https://doi.org/10.1039/C4EE03230F

    Article  CAS  Google Scholar 

  168. Sonoki T, Morooka M, Sakamoto K, Otsuka Y, Nakamura M, Jellison J, Goodell B (2014) Enhancement of protocatechuate decarboxylase activity for the effective production of muconate from lignin-related aromatic compounds. J Biotechnol 192:71–77. https://doi.org/10.1016/j.jbiotec.2014.10.027

    Article  CAS  PubMed  Google Scholar 

  169. Becker J, Wittmann C (2018) From systems biology to metabolically engineered cells—an omics perspective on the development of industrial microbes. Curr Opin Microbiol 45:180–188. https://doi.org/10.1016/j.mib.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  170. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75(5):955–962. https://doi.org/10.1007/s00253-007-0945-5

    Article  CAS  PubMed  Google Scholar 

  171. Batista-García RA, del Rayo S-C, Talia P, Jackson SA, O’Leary ND, Folch-Mallol DAD, JL, (2016) From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofpr 10(6):864–882. https://doi.org/10.1002/bbb.1709

    Article  CAS  Google Scholar 

  172. Rausch P, Rühlemann M, Hermes BM, Doms S, Dagan T, Dierking K, Domin H, Fraune S, Von Frieling J, Hentschel U, Heinsen FA (2019) Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome 7(1):1–19. https://doi.org/10.1186/s40168-019-0743-1

    Article  Google Scholar 

  173. Silva JP, Ticona AR, Hamann PR, Quirino BF, Noronha EF (2021) Deconstruction of lignin: from enzymes to microorganisms. Molecules 26(8):2299. https://doi.org/10.3390/molecules26082299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Moraes EC, Alvarez TM, Persinoti GF, Tomazetto G, Brenelli LB, Paixão DA, Ematsu GC, Aricetti JA, Caldana C, Dixon N, Bugg TD (2018) Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol Biofuels 11(1):1–16. https://doi.org/10.1186/s13068-018-1073-4

    Article  CAS  Google Scholar 

  175. Levy-Booth DJ, Hashimi A, Roccor R, Liu LY, Renneckar S, Eltis LD, Mohn WW (2021) Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. ISME J 15(3):879–893. https://doi.org/10.1038/s41396-020-00820-x

    Article  CAS  PubMed  Google Scholar 

  176. Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF (2019) Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 103(10):3979–4002. https://doi.org/10.1007/s00253-019-09692-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13(2):413–429. https://doi.org/10.1038/s41396-018-0279-6

    Article  CAS  PubMed  Google Scholar 

  178. Su L, Yang L, Huang S, Su X, Li Y, Wang F, Wang E, Kang N, Xu J, Song A (2016) Comparative gut microbiomes of four species representing the higher and the lower termites. J Insect Sci 16(1):97. https://doi.org/10.1093/jisesa/iew081

    Article  PubMed  PubMed Central  Google Scholar 

  179. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12(3):168–180. https://doi.org/10.1038/nrmicro3182

    Article  ADS  CAS  PubMed  Google Scholar 

  180. Ufarté L, Potocki-Veronese G, Cecchini D, Tauzin AS, Rizzo A, Morgavi DP, Cathala B, Moreau C, Cleret M, Robe P, Klopp C (2018) Highly promiscuous oxidases discovered in the bovine rumen microbiome. Front microbiol 9:861. https://doi.org/10.3389/fmicb.2018.00861

    Article  PubMed  PubMed Central  Google Scholar 

  181. Beloqui A, Pita M, Polaina J, Martínez-Arias A, Golyshina OV, Zumárraga M, Yakimov MM, García-Arellano H, Alcalde M, Fernández VM, Elborough K (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem 281(32):22933–22942. https://doi.org/10.1074/jbc.M600577200

    Article  CAS  PubMed  Google Scholar 

  182. Agamennone V, Le NG, van Straalen NM, Brouwer A, Roelofs D (2019) Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida. Sci Rep 9(1):1–13. https://doi.org/10.1038/s41598-019-43828-w

    Article  CAS  Google Scholar 

  183. Yu X, Wei Z, Lu Z, Pei H, Wang H (2019) Activation of lignin by selective oxidation: an emerging strategy for boosting lignin depolymerization to aromatics. Bioresour technol 291:121885. https://doi.org/10.1016/j.biortech.2019.121885

    Article  CAS  PubMed  Google Scholar 

  184. Yaguchi A, Spagnuolo M, Blenner M (2018) Engineering yeast for utilization of alternative feedstocks. Curr Opin Biotechnol 53:122–129. https://doi.org/10.1016/j.copbio.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  185. Ece S, Lambertz C, Fischer R, Commandeur U (2017) Heterologous expression of a Streptomyces cyaneus laccase for biomass modification applications. AMB Express 7(1):1–12. https://doi.org/10.1186/s13568-017-0387-0

    Article  CAS  Google Scholar 

  186. Alfi A, Zhu B, Damnjanović J, Kojima T, Iwasaki Y, Nakano H (2019) Production of active manganese peroxidase in Escherichia coli by co-expression of chaperones and in vitro maturation by ATP-dependent chaperone release. J Biosci Bioeng 128(3):290–295. https://doi.org/10.1016/j.jbiosc.2019.02.011

    Article  CAS  PubMed  Google Scholar 

  187. Xie S, Sun S, Lin F, Li M, Pu Y, Cheng Y, Xu B, Liu Z, da Costa SL, Dale BE, Ragauskas AJ (2019) Mechanism-guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining. Adv Sci 6(13):1801980. https://doi.org/10.1002/advs.201801980

    Article  CAS  Google Scholar 

  188. Rivera-Hoyos CM, Morales-Álvarez ED, Abelló-Esparza J, Buitrago-Pérez DF, Martínez-Aldana N, Salcedo-Reyes JC, Poutou-Piñales RA, Pedroza-Rodríguez AM (2018) Detoxification of pulping black liquor with Pleurotus ostreatus or recombinant Pichia pastoris followed by CuO/TiO2/visible photocatalysis. Sci Rep 8(1):1–15. https://doi.org/10.1038/s41598-018-21597-2

    Article  CAS  Google Scholar 

  189. Mateljak I, Monza E, Lucas MF, Guallar V, Aleksejeva O, Ludwig R, Leech D, Shleev S, Alcalde M (2019) Increasing redox potential, redox mediator activity, and stability in a fungal laccase by computer-guided mutagenesis and directed evolution. ACS Catal 9(5):4561–4572. https://doi.org/10.1021/acscatal.9b00531

    Article  CAS  Google Scholar 

  190. Song Q, Deng X, Song RQ (2020) Expression of Pleurotus ostreatus laccase gene in Pichia pastoris and its degradation of corn stover lignin. Microorganisms 8(4):601. https://doi.org/10.3390/microorganisms8040601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L (2021) Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Factories 20(1):1–18. https://doi.org/10.1186/s12934-021-01510-9

    Article  CAS  Google Scholar 

  192. Vieira AP, Portela NA, Neto AC, Lacerda V Jr, Romao W, Castro EV, Filgueiras PR (2019) Determination of physicochemical properties of petroleum using 1H NMR spectroscopy combined with multivariate calibration. Fuel 253:320–326. https://doi.org/10.1016/j.fuel.2019.05.028

    Article  CAS  Google Scholar 

  193. Mekmouche Y, Zhou S, Cusano AM, Record E, Lomascolo A, Robert V, Simaan AJ, Rousselot-Pailley P, Ullah S, Chaspoul F, Tron T (2014) Gram-scale production of a basidiomycetous laccase in Aspergillus niger. J Biosci Bioeng 117(1):25–27. https://doi.org/10.1016/j.jbiosc.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  194. Banerjee AK, Arora N, Murty USN (2012) Analyzing a potential drug target N-Myristoyltransferase of Plasmodium falciparum through in silico approaches. J Glob Infect Dis 4(1):43. https://doi.org/10.4103/0974-777X.93761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kumar A, Kumar J, Bhaskar T (2020) Utilization of lignin: a sustainable and eco-friendly approach. J Energy Inst 93(1):235–271. https://doi.org/10.1016/j.joei.2019.03.005

    Article  CAS  Google Scholar 

  196. Singh AK, Katari SK, Umamaheswari A, Raj A (2021) In silico exploration of lignin peroxidase for unraveling the degradation mechanism employing lignin model compounds. RSC Adv 11(24):14632–14653. https://doi.org/10.1039/D0RA10840E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  197. Díaz R, Díaz-Godínez G, Anducho-Reyes MA, Mercado-Flores Y, Herrera-Zúñiga LD (2018) In silico design of laccase thermostable mutants from Lacc 6 of Pleurotus ostreatus. Front Microbiol 9:2743. https://doi.org/10.3389/fmicb.2018.02743

    Article  PubMed  PubMed Central  Google Scholar 

  198. Mathé C, Fawal N, Roux C, Dunand C (2019) In silico definition of new ligninolytic peroxidase sub-classes in fungi and putative relation to fungal life style. Sci rep 9(1):1–14. https://doi.org/10.1038/s41598-019-56774-4

    Article  CAS  Google Scholar 

  199. Pham LTM, Kim SJ, Kim YH (2016) Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route. Biotechnol biofuels 9(1):1–10. https://doi.org/10.1186/s13068-016-0664-1

    Article  CAS  Google Scholar 

  200. Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S, Girard A, Sachidanandam R, Hannon GJ, Aravin AA (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23(15):1749–1762. https://doi.org/10.1101/gad.1814809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60(12):2126–2132. https://doi.org/10.1107/S0907444904019158

    Article  ADS  CAS  PubMed  Google Scholar 

  202. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D 53(3):240–255. https://doi.org/10.1107/S0907444996012255

    Article  ADS  CAS  PubMed  Google Scholar 

  203. Spassov VZ, Yan L (2016) A pH-dependent computational approach to the effect of mutations on protein stability. J Comput Chem 37(29):2573–2587. https://doi.org/10.1002/jcc.24482

    Article  CAS  PubMed  Google Scholar 

  204. Ali MB, McNear DH (2014) Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. BMC Plant Biol 14(1):1–14. https://doi.org/10.1186/1471-2229-14-84

    Article  CAS  Google Scholar 

  205. Bates PA, Kelley LA, MacCallum RM, Sternberg MJ (2001) Enhancement of protein modeling by human intervention in applying the automatic programs 3D‐JIGSAW and 3D‐PSSM. Prot: Struct Functn Bioinform 45(S5):39–46. https://doi.org/10.1002/prot.1168

    Article  CAS  Google Scholar 

  206. Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35(suppl_2):W433–W437. https://doi.org/10.1093/nar/gkm352

    Article  PubMed  PubMed Central  Google Scholar 

  207. Reddy CA, D’Souza TM (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13(2–3):137–152. https://doi.org/10.1111/j.1574-6976.1994.tb00040.x

    Article  CAS  PubMed  Google Scholar 

  208. Weirick T, Sahu SS, Mahalingam R, Kaundal R (2014) LacSubPred: predicting subtypes of laccases, an important lignin metabolism-related enzyme class, using in silico approaches. BMC Bioinform 15(11):1–19. https://doi.org/10.1186/1471-2105-15-S11-S15

    Article  CAS  Google Scholar 

  209. Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695–700. https://doi.org/10.1038/nbt967

    Article  CAS  PubMed  Google Scholar 

  210. Shi ZJ, Ma MG (2019) Synthesis, structure, and applications of lignin-based carbon materials: a review. Sci Adv Mater 11(1):18–32. https://doi.org/10.1166/sam.2019.3382

    Article  MathSciNet  CAS  Google Scholar 

  211. Feldman D (2002) Lignin and its polyblends—a review. Chemical modification, properties, and usage of lignin, 1st edn. Springer, New York, pp 81–99. https://doi.org/10.1007/978-1-4615-0643-0

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the authorities of Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, for providing facilities to conduct this work.

Author information

Authors and Affiliations

Authors

Contributions

SR, SM, and HNT contributed in drafting the original review article and formatting. SR and DP edited the figures of the article. HD, SM, and HNT supervised the whole work, conceptualized the research, and guided the writing and editing of the article. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Sonali Mohapatra or Hrudayanath Thatoi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, S., Pradhan, D., Du, H. et al. Transforming lignin into value-added products: Perspectives on lignin chemistry, lignin-based biocomposites, and pathways for augmenting ligninolytic enzyme production. Adv Compos Hybrid Mater 7, 27 (2024). https://doi.org/10.1007/s42114-024-00836-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00836-3

Keywords

Navigation