Skip to main content
Log in

High-level expression of a truncated 1,3-1,4-β-d-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

1,3-1,4-β-d-glucanase is an important endoglycosidase in the brewing and animal feed industries. To achieve high-level expression of recombinant glucanase in Pichia pastoris, we designed sequences encoding the α-factor signal peptide from Saccharomyces cerevisiae and the truncated 1,3-1,4-β-d-glucanase from Fibrobacter succinogenes as a whole. The codons encoding the 52 amino acids of the signal peptide and 106 residues of the glucanase protein were optimized for expression in P. pastoris; 189 nucleotides were changed. The G + C content was adjusted to 48–49%, and AT-rich stretches were eliminated to avoid premature termination. The messenger ribonucleic acid secondary structure near the AUG start codon was also adjusted to ensure efficient translation; the resulting glucanase production was twofold higher compared with that achieved with gene structure optimization alone. We also propose a new fermentation strategy for the induction phase, in which 5/95% glycerol/methanol mixed feed was used in days 1–3 and 100% methanol was used on days 4–6. By comparison with methanol feed and glycerol/methanol-mixed feed alone, the yield of recombinant glucanase increased by 38.5 and 16.5%, respectively. The expressed optimized recombinant 1,3-1,4-β-d-glucanase constituted ~90% of the total secreted protein, reaching up to 3 g l−1 in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asryants RA, Duszenkova IV, Nagradova NK (1985) Determination of sepharose-bound protein with coomassie brilliant blue G-250. Anal Biochem 151:571–574

    Article  CAS  Google Scholar 

  • Bielecki S, Galas E (1991) Microbial β-glucanase different from cellulases. Crit Rev Biotechnol 10:275–305

    Article  CAS  Google Scholar 

  • Buliga G, Brant D, Fincher G (1986) The sequence statistics and solution conformation of a barley (1,3-1,4)-β-d-glucan. Carbohydr Res 157:139–156

    Article  CAS  Google Scholar 

  • Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    CAS  PubMed  Google Scholar 

  • Chen JL, Tsai LC, Wen TN, Tang JB, Yuan HS, Shyur LF (2001) Directed mutagenesis of specific active site residues on Fibrobacter succinogenes 1,3-1,4-glucanase significantly affects catalysis and enzyme structural stability. J Biol Chem 276:17895–17901

    Article  CAS  Google Scholar 

  • Clare JJ, Romanos MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K, Henwood CA (1991) Production of mouse epidennal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 105:205–212

    Article  CAS  Google Scholar 

  • Clark DR, Johnson J, Chung KH, Kirkwood S (1978) Purification, characterization, and action-pattern studies on the endo-1,3-β-d-glucanase from Rhizopus arrhizus. Carbohydr Res 61:457–477

    Article  CAS  Google Scholar 

  • Ekinci MS, McCrae SI, Flint HJ (1997) Isolation and overexpression of a gene encoding an extracellular β-(1,3-1,4)-glucanase from Streptococcus bovis JB1. Appl Environ Microbiol 63:3752–3756

    Article  CAS  Google Scholar 

  • Heinemann U, Ay J, Gaiser O, Muller J, Ponnuswamy M (1996) Enzymology and folding of natural and engineered bacterial β-glucanases studied by X-ray crystallography. J Biol Chem 377:447–454

    CAS  Google Scholar 

  • Hinchliff E, Wendy GB (1984) Expression of the cloned endo-β-1,3-1,4-glucanase gene of Bacillus subtilis in Saccharomyces cerevisiae. Curr Genet 8:471–475

    Article  Google Scholar 

  • Huang H, Luo H, Bai Y, Wang Y, Yao B (2006) Overexpression of Citrobacter braakii phytase with high specific activity in Pichia pastoris. Acta Microbiol Sin 46:945–950

    CAS  Google Scholar 

  • Invitrogen (2002) Pichia Expression kit: a manual of methods for expression of recombinant proteins in Pichia pastoris. Version M. Invitrogen, San Diego, CA

    Google Scholar 

  • Li S, Sauer WC, Huang S, Gabert VI (1996) Effect of β-glucanase supplementation to hulless barley- or wheat-soybean meal diets on the digestibilities of energy, protein, β-glucans and amino acid in young pigs. J Anim Sci 74:1649–1656

    Article  CAS  Google Scholar 

  • Liu J, Yu B, Zhao X, Cheng K (2007) Coexpression of rumen microbial b-glucanase and xylanase genes in Lactobacillus reuteri. Appl Microbiol Biotechnol 77:117–124

    Article  CAS  Google Scholar 

  • Luo H, Yao B, Yuan T, Wang Y, Shi X, Wu N, Fan Y (2004) Overexpression of Escherichia coli phytase with high specific activity. Chin J Biotechnol 20:78–84

    CAS  Google Scholar 

  • Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101:7287–7292

    Article  CAS  Google Scholar 

  • Mathlouthi N, Serge M, Luc S, Bernard Q, Michel L (2002) Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and faecal microflora of broiler chickens fed a wheat and barley-based diet. Anim Res 51:395–406

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Olsen O, Borris R, Simon O, Thomsen KK (1991) Hybrid Bacillus 1,3-1,4-β-glucanase: engineering thermostable enzymes by construction of hybrid genes. Mol Gen Genet 225:177–185

    Article  CAS  Google Scholar 

  • Planas A, Juncosa M, Cayetano A, Querol E (1992) Studies on Bacillus licheniformis endo-β-(1,3-1,4)-D-glucanases: characterization and kinetic analysis. Appl Microbiol Biotechnol 37:583–589

    Article  CAS  Google Scholar 

  • Planas A (2000) Bacterial 1,3–1,4-β-glucanases: structure, function and protein engineering. Biochem Biophys Acta 1543:361–382

    CAS  PubMed  Google Scholar 

  • Plantz BA, Sinha J, Villarete L, Nickerson KW, Schlegel VL (2006) Pichia pastoris fermentation optimization: energy state and testing a growth-associated model. Appl Microbiol Biotechnol 72:297–305

    Article  CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    Article  CAS  Google Scholar 

  • Schimming S, Schwarz WH (1991) Properties of a thermoactive β-1,3-1,4-glucanase (Lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochem Biophys Res Commun 177:447–452

    Article  CAS  Google Scholar 

  • Shi Y, Zhang Y, Shih D (2005) Cloning and expression analysis of two β-1,3-glucanase genes from strawberry. J Plant Physiol 163:956–967

    Article  Google Scholar 

  • Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA (1997) Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene 190:55–62

    Article  CAS  Google Scholar 

  • Sreekrishna K, Prevatt WD, Thill GP, Davis GR, Koutz P, Barr KA, Hopkins SA (1993) Production of Bacillus entomotoxins in methylotrophic yeast. EPO Patent no. EP0586 892 Al

  • Sue MP, Mariana LF, Brian M, Linda MH (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  Google Scholar 

  • Teather RM, Erfle JD (1990) DNA sequence of a Fibrobacter succinogenes mixed-linkage 3-glucanase (1,3-1,4-β-d-glucan 4-glucanohydrolase) gene. J Bacteriol 172:3837–3841

    Article  CAS  Google Scholar 

  • Teng D, Fan Y, Yang Y, Tian Z, Luo J, Wang J (2007) Codon optimization of Bacillus licheniformis β-1,3–1,4-glucanase gene and its expression in Pichia pastoris. Appl Microbiol Biotechnol 74:1074–1083

    Article  CAS  Google Scholar 

  • Tsai LC, Shyur LF, Cheng YS, Lee SH (2005) Crystal structure of truncated Fibrobacter succinogenes 1,3-1,4-β-d-glucanase in complex with β-1,3-1,4-cellotriose. J Mol Biol 354:642–651

    Article  CAS  Google Scholar 

  • Viladot JL, de Ramon E, Durany O, Planas A (1998) Probing the mechanism of Bacillus 1,3–1,4-β-D-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues. Biochemistry 37:11332–11342

    Article  CAS  Google Scholar 

  • Wen TN, Chen JL, Lee SH, Yang NS, Shyur LF (2005) A truncated Fibrobacter succinogenes 1,3–1,4-β-d-glucanase with improved enzymatic activity and thermotolerance. Biochemistry 44:9197–9205

    Article  CAS  Google Scholar 

  • Xiong A, Yao Q, Peng R, Zhang Z, Xu F, Liu J, Han P, Chen J (2006) High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol 72:1039–1047

    Article  CAS  Google Scholar 

  • Yaish M, Doxey A, McConkey B, Moffatt B, Griffith M (2006) Cold-active winter rye glucanases with ice-binding capacity. Plant Physiol 141:1459–1472

    Article  CAS  Google Scholar 

  • Yang P, Shi P, Wang Y, Bai Y, Meng K, Luo H, Yuan T, Yao B (2007) Cloning and overexpression of a Paenibacillus β-glucanase in Pichia pastoris: purification and characterization of the recombinant enzyme. J Microbiol Biotechnol 17:58–66

    PubMed  Google Scholar 

  • Yuan T, Yao B, Luo H, Wang Y, Bai Y, Wu N, Fan Y (2005) Overexpression of one thermoacidophilic alpha-amylase gene and analysis of recombinant enzyme heterogeneity. Chin High Technol Lett 15:63–68

    CAS  Google Scholar 

  • Zhang W, Hywood Potter KJ, Plantz BA, Schlegel VL, Smith LA, Meagher MM (2003) Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. J Ind Microbiol Biotechnol 30:210–215

    Article  CAS  Google Scholar 

  • Zhao X, Huo K, Li Y (2000) Synonymous codon usage in Pichia pastoris. Chin J Biotechnol 16:308–311

    CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the National High Technology Research and Development Program of China (863 program, Grant no. 2006AA02Z213 and 2007AA100601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Yang, P., Luo, H. et al. High-level expression of a truncated 1,3-1,4-β-d-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl Microbiol Biotechnol 78, 95–103 (2008). https://doi.org/10.1007/s00253-007-1290-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1290-4

Keywords

Navigation