Skip to main content
Log in

A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel β-mannanase gene, man5XZ7, was cloned from thermophilic fungus Thielavia arenaria XZ7, and successfully expressed in Pichia pastoris. The gene (1,110 bp) encodes a 369-amino acid polypeptide with a molecular mass of approximately 40.8 kDa. The deduced sequence of Man5XZ7 consists of a putative 17-residue signal peptide and a catalytic module belonging to glycoside hydrolase (GH) family 5, and displays 76 % identity with the experimentally verified GH 5 endo-β-1,4-mannanase from Podospora anserina. Recombinant Man5XZ7 was optimally active at 75 °C and pH 5.0 and exhibited high activity at a wide temperature range (>50.0 % activity at 50–85 °C). Moreover, it had good adaptability to acidic to basic pH (>74.1 % activity at pH 4.0–7.0 and 25.6 % even at pH 9.0) and good stability from pH 3.0 to 10.0. These enzymatic properties showed that Man5XZ7 was a new thermophilic and alkali-tolerant β-mannanase. Further amino acid composition analysis indicated that Man5XZ7 has several characteristic features of thermophilic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Araujo A, Ward OP (1990) Extracellular mannanases and galactanases from selected fungi. J Ind Microbiol Biotechnol 6:171–178

    CAS  Google Scholar 

  • Benech RO, Li X, Patton D, Powlowski J, Storms R, Bourbonnais R, Paice M, Tsang A (2007) Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-β-1,4-mannanase. Enzyme Microb Tech 41:740–747

    Article  CAS  Google Scholar 

  • Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nature Biotechnol 29:922–927

    Article  CAS  Google Scholar 

  • Chakravarty S, Varadarajan R (2000) Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett 470:65–69

    Article  PubMed  CAS  Google Scholar 

  • Chauhan PS, Puri N, Sharma P, Gupta N (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93:1817–1830

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Cao Y, Ding Y, Lu W, Li D (2007) Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastoris. J Biotechnol 128:452–461

    Article  PubMed  CAS  Google Scholar 

  • Christgau S, Kauppinen S, Vind J, Kofod LV, Dalbøge H (1994) Expression cloning, purification and characterization of a β-1,4-mannanase from Aspergillus aculeatus. Biochem Mol Biol Int 33:917–925

    PubMed  CAS  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol l27:197–216

    Article  Google Scholar 

  • Do BC, Dang TT, Berrin JG, Haltrich D, To KA, Sigoillot JC, Yamabhai M (2009) Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01. Microb Cell Fact 8:59

    Article  PubMed  Google Scholar 

  • Folcarelli S, Battistoni A, Carrì MT, Polticelli F, Falconi M, Nicolini L, Stella L, Rosato N, Rotilio G, Desideri A (1996) Effect of Lys-Arg mutation on the thermal stability of Cu, Zn superoxide dismutase: influence on the monomer-dimer equilibrium. Protein Eng 9:323–325

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094

    Article  PubMed  CAS  Google Scholar 

  • Hilge M, Gloor SM, Rypniewski W, Sauer O, Heightman TD, Zimmermann W, Winterhalter K, Piontek K (1998) High-resolution native and complex structures of thermostable β-mannanase from Thermomonospora fusca—substrate specificity in glycosyl hydrolase family 5. Structure 6:1433–1444

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13:179–191

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Wang Y, Wang H, Yang J, Yang Y, Huang H, Yang P, Bai Y, Shi P, Fan Y, Yao B (2009) A novel highly acidic β-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol 82:423–461

    Article  Google Scholar 

  • Luo H, Wang K, Huang H, Shi P, Yang P, Yao B (2012) Gene cloning, expression, and biochemical characterization of an alkali-tolerant β-mannanase from Humicola insolens Y1. J Ind Microbiol Biotechnol 39:547–555

    Article  PubMed  CAS  Google Scholar 

  • Maijala P, Kango N, Szijarto N, Viikari L (2012) Characterization of hemicellulases from thermophilic fungi. Antonie Van Leeuwenhoek 101:905–917

    Article  PubMed  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  PubMed  CAS  Google Scholar 

  • Petkowicz CLO, Reicher F, Chanzy H, Taravel FR, Vuong R (2001) Linear mannan in the endosperm of Schizolobium amazonicum. Carbohyd Polym 44:107–112

    Article  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  PubMed  CAS  Google Scholar 

  • Puchart V, Vršanská M, Svoboda P, Pohl J, Ögel ZB, Biely P (2004) Purification and characterization of two forms of endo-β-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Biochim Biophys Acta 1674:239–250

    Article  PubMed  CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  PubMed  CAS  Google Scholar 

  • Stålbrand H, Siika-aho M, Tenkanen M, Viikari L (1993) Purification and characterization of two β-mannanases from Trichoderma reesei. J Biotechnol 29:229–242

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9

    Article  PubMed  Google Scholar 

  • Xiao L, Honig B (1999) Electrostatic contributions to the stability of hyperthermophilic proteins. J Mol Biol 289:1435–1444

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation for Distinguished Young Scholars of China (31225026) and the National Natural Science Foundation of China (31172235) and the China Modern Agriculture Research System (CARS-42).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huitu Zhang or Bin Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Zhang, H., Shi, P. et al. A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme features. Appl Microbiol Biotechnol 97, 8121–8128 (2013). https://doi.org/10.1007/s00253-012-4656-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4656-1

Keywords

Navigation