Skip to main content
Log in

Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignosus and expression in Pichia pastoris

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A cDNA encoding for a laccase was isolated from the white-rot fungus Fome lignosus by RT-PCR. It contained an open reading frame of 1,557 bp. The deduced mature protein consisted of 497 amino acids and was preceded by a signal peptide of 21 amino acids. The genomic DNA of the laccase, containing 11 introns, was cloned by PCR. The cDNA was cloned into the vectors pGAPZαA and pGAPZA, and expressed in the Pichia pastoris GS115. Laccase-secreting transformants were selected by their ability to oxidize the substrate 2′2-azinobis-(3-ethylbenzthiaoline-6-sufonic acid) (ABTS). The laccase activity obtained with the native signal peptide was found to be fivefold higher than that obtained with the α-factor secretion signal peptide. The presence of 0.4 mM copper was necessary for optimal activity of the enzyme. The highest activity value reached 9.03 U ml−1, and the optimal secreting time was 2~3 days at 20°C. The crude laccase was stable in a pH range from 6.0 to 10.0 and at temperatures lower than 30°C in pH4.5 for 24 h. The molecular mass of the enzyme was estimated to be 66.5 kDa by SDS-PAGE. The optimum pH and temperature were 2.4 and 55°C. The K m and V max values for ABTS were 177 μM and 23.54 μmol min−1 respectively. The extent of glycosylation of the purified enzyme was 58.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paulo A, Gübitz GM (2000) Decolorization and detoxification of texile dyes with a laccase from Trametes hirsuta. Appl Environ Microbiol 66:3357–3362

    CAS  PubMed  Google Scholar 

  • Aramayo R, Timberlake WE (1990) Sequence and molecular structure of the Aspergillus nidulans yA (laccase 1) gene. Nucleic Acids Res 18:3415

    CAS  PubMed  Google Scholar 

  • Balance DJ (1986) Sequence important for gene expression in filamentous fungi. Yeast 2:229–236

    CAS  PubMed  Google Scholar 

  • Bergbauer M, Eggert C, Kraepelin G (1991) Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 35:105–109

    CAS  Google Scholar 

  • Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26:1876–1881

    CAS  Google Scholar 

  • Cassland P, Jönsson LJ (1999) Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol 52:393–400

    Article  CAS  PubMed  Google Scholar 

  • Chao YP, Ye J, Qian SJ (2000) Producing characterization of constitutive form laccase by basidiomycete. Acta Microbiol Sin 40:628–632

    CAS  Google Scholar 

  • Clutterbuck A (1972) Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J Gen Microbiol 70:423–435

    CAS  PubMed  Google Scholar 

  • Collins PJ, Dobson ADW (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63:3444–3450

    CAS  Google Scholar 

  • Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology 11:905–909

    CAS  PubMed  Google Scholar 

  • Ducros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinnereus at 2.2 Å resolution. Nat Struct Biol 5:310–315

    CAS  PubMed  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407:89–92

    CAS  PubMed  Google Scholar 

  • Gavel Y, von Heijine G (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering, Protein Eng 3:433–442

    Google Scholar 

  • Geiger JP, Nicole M, Nandris D, Rio B (1986) Root rot diseases of Hevea brasiliensis. I. Physiological and biochemical aspects of root aggression. Eur J Pathol 16:22–37

    Google Scholar 

  • Ghindilis A (2000) Direct electron transfer catalysed by enzymes: application for biosensor development. Biochem Soc Trans 28:84–89

    CAS  PubMed  Google Scholar 

  • Hoshida H, Nakao M, Kanazawa H, Kubo K, Hakukawa T, Morimasa K, Akada R, Nishizawa Y (2001) Isolation of five laccase gene sequences from the white rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J Biosci Bioeng 92:372–380

    Article  CAS  Google Scholar 

  • Huttermann A, Mai C, Kharazipour A (2001) Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol 55:387–394

    Article  PubMed  Google Scholar 

  • Jönsson L, Saloheimo M, Penttil M (1997) Laccase from the white-rot fungus Trametes versicolor: cDNA cloning of lcc1 and expression in Pichia pastoris. Curr Genet 32:425–430

    Article  CAS  PubMed  Google Scholar 

  • Karahanian E, Corsini G, Lobos S, Vicuna R (1998) Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta 1443:65–74

    Article  CAS  PubMed  Google Scholar 

  • Lante A, Crapisi A, Pasini G, Zamorani A, Spettoli P (1992) Immobilized laccase for must and wine processing. In: Clark DS, Estell DA (eds) Enzyme engineering XI. The New York Academy of Sciences, New York, pp 558–562

  • Leatham G, Stahman MA (1981) Studies on the laccase of Lentinus edoes: Specificity, localization and association with the development of fruiting bodies. J Gen Microbiol 125:147–157

    CAS  Google Scholar 

  • Liu SZ, Qian SJ (2003) Purification and properties of laccase from basidiomycetes. Acta Microbiol Sin 43:73–78

    Google Scholar 

  • Mikuni J, Morohoshi N (1997) Cloning and sequencing of a second laccase gene from the white-rot fungus Coriolus versicolor. FEMS Microbiol Lett 155:79–84

    Article  CAS  PubMed  Google Scholar 

  • O'Callaghan J, O'Brien MM, Dobson ADW (2002) Optimisation of the expression of Trametes versicolor laccase gene in Pichia pastoris. J Ind Microbiol Biotechnol 29:55–59

    Article  CAS  PubMed  Google Scholar 

  • O'Malley DM, Whetten R, Bao W, Chen C, Sederon RR (1993) The role of laccase in lignification. J Plant Res 4:751–757

    Article  CAS  Google Scholar 

  • Ong E, Pollock WB, Smith M (1997) Cloning and sequence analysis of two laccase complementary DNAs from the ligninolytic basidiomycete Trametes versicolor. Gene 196:113–119

    CAS  PubMed  Google Scholar 

  • Otterbein L, Record E, Longhi S, Asther M, Moukha S (2000) Molecular cloning of the cDNA encoding laccase from Pycnoporus cinabarinus 1-937 and expression in Pichia pastoris. Eur J Biochem 267:1619–1625

    Article  CAS  PubMed  Google Scholar 

  • Reid ID (1991) Biological pulping in paper manufacture. Trends Biotechnol 9:262–265

    Article  Google Scholar 

  • Schein CH, Noteborn MHM (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Biotechnology 6:291–294

    CAS  Google Scholar 

  • Xu F, Yoell HJ, Anderson JB (1994) An efficient protocol for isolating DNA from higher fungi. Trends Genet 10:226–227

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Site-directed mutagenesis in fungal laccases: effect on redox potential, activity and pH profile. J Biochem 334:63–70

    CAS  Google Scholar 

  • Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Key MW, Schneider P, Halkier T, Mondorf K, Dalbøge H (1996) Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841

    CAS  PubMed  Google Scholar 

  • Yaver DS, Overjero MDC, Xu F, Nelson BA, Brown KM, Halkier T, Bernauer S, Brown SH, Kauppinen S (1999) Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1. Appl Environ Microbiol 65:4943–4948

    CAS  PubMed  Google Scholar 

  • Zhao J, Kwan HS (1999) Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes. Appl Environ Microbiol 65:4908–4913

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the National High Technology Program and the Chinese Academy of Sciences, especially grant KSCXZ-SW-113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Chao, Y., Liu, S. et al. Molecular cloning and characterization of a laccase gene from the basidiomycete Fome lignosus and expression in Pichia pastoris . Appl Microbiol Biotechnol 63, 174–181 (2003). https://doi.org/10.1007/s00253-003-1398-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1398-0

Keywords

Navigation