Skip to main content
Log in

Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A partial peptide sequence of β-glucosidase isoform (Bgl4) of Penicillium funiculosum NCL1 was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The cDNA (bgl4) encoding Bgl4 protein was cloned from P. funiculosum NCL1 RNA by consensus RT-PCR. The bgl4 gene encoded 857 amino acids that contained catalytic domains specific for glycoside hydrolase family 3. The cDNA was over-expressed in Pichia pastoris KM71H and the recombinant protein (rBgl4) was purified with the specific activity of 1,354.3 U/mg. The rBgl4 was a glycoprotein with the molecular weight of ~130 kDa and showed optimal activity at pH 5.0 and 60 °C. The enzyme was thermo-tolerant up to 60 °C for 60 min. The rBgl4 was highly active on aryl substrates with β-glucosidic, β-xylosidic linkages and moderately active on cellobiose and salicin. It showed remarkably high substrate conversion rate of 3,332 and 2,083 μmol/min/mg with the substrates p-nitrophenyl β-glucoside and cellobiose respectively. In addition, the rBgl4 showed tolerance to glucose concentration up to 400 mM. It exhibited twofold increase in glucose yield when supplemented with crude cellulase of Trichoderma reesei Rut-C30 in cellulose hydrolysis. These results suggested that rBgl4 is a thermo- and glucose-tolerant β-glucosidase and is a potential supplement for commercial cellulase in cellulose hydrolysis and thereby assures profitability in bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties and applications. Crit Rev Biotechnol 22:375–407

    Article  CAS  PubMed  Google Scholar 

  2. Bhiri F, Chaabouni SE, Limam F, Ghrir R, Marzouki N (2008) Purification and biochemical characterization of extracellular β-glucosidases from the hypercellulolytic Pol6 mutant of Penicillium occitanis. Appl Biochem Biotechnol 149:169–182

    Article  CAS  PubMed  Google Scholar 

  3. de Castro AM, de Albuquerque de Carvalho ML, Leite SG, Pereira N Jr (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37(2):151–158

    Article  CAS  PubMed  Google Scholar 

  4. Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35(4):275–282

    Article  CAS  PubMed  Google Scholar 

  5. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  6. Guais O, Borderies G, Pichereaux C, Maestracci M, Neugnot V, Rossignol M, François JM (2008) Proteomics analysis of “Rovabiot Excel”, a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J Ind Microbiol Biotechnol 35(12):1659–1668

    Article  CAS  PubMed  Google Scholar 

  7. Harvey AJ, Hrmova M, De Gori R, Varghese JN, Fincher GB (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins 41:257–269

    Article  CAS  PubMed  Google Scholar 

  8. Hong J, Tamaki H, Kumagai H (2006) Unusual hydrophobic linker region of β-glucosidase (BGLII) from Thermoascus aurantiacus is required for hyper-activation by organic solvents. Appl Microbiol Biotechnol 73:80–88

    Article  CAS  PubMed  Google Scholar 

  9. Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable β-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339

    Article  CAS  PubMed  Google Scholar 

  10. Issam SM, Mohamed G, Farid L, Sami F, Thierry M, Dominique LM, Nejib M (2003) Production, purification, and biochemical characterization of two beta-glucosidases from Sclerotinia sclerotiorum. Appl Biochem Biotechnol 111:29–40

    Article  CAS  PubMed  Google Scholar 

  11. Jabbour D, Klippel B, Antranikian G (2012) A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum. Appl Microbiol Biotechnol 93(5):1947–1956

    Article  CAS  PubMed  Google Scholar 

  12. Jeng WY, Wang NC, Lin MH, Lin CT, Liaw YC, Chang WJ, Liu CI, Liang PH, Wang AH (2001) Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol 173(1):46–56

    Article  Google Scholar 

  13. Kaur J, Chadha BS, Kumar BA, Kaur GS, Saini HS (2007) Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electron J Biotechnol 10:260–270

    Article  CAS  Google Scholar 

  14. Kawai T, Nakazawa H, Ida N, Okada H, Ogasawara W, Morikawa Y, Kobayashi YA (2013) A comprehensive analysis of the effects of the main component enzymes of cellulase derived from Trichoderma reesei on biomass saccharification. Ind Microbiol Biotechnol 40(8):805–810

    Article  CAS  Google Scholar 

  15. Krogh KB, Harris PV, Olsen CL, Johansen KS, Hojer-Pedersen J, Borjesson J, Olsson L (2009) Characterization and kinetic analysis of a thermostable GH3 beta-glucosidase from Penicillium brasilianum. Appl Microbiol Biotechnol 86(1):143–154

    Article  PubMed  Google Scholar 

  16. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  17. Liu D, Zhang R, Yang X, Zhang Z, Song S, Miao Y, Shen Q (2012) Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microb Cell Fact 17(11):25

    Article  CAS  Google Scholar 

  18. Mandels M, Reese ET (1957) Induction of cellulases in fungi in Trichoderma viride as influencing carbon source. J Bacteriol 37:269–278

    Google Scholar 

  19. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339(1):69–72

    Article  CAS  PubMed  Google Scholar 

  20. Murray P, Aro N, Collins C, Grassick A, Penttilae M, Saloheimo M, Tuohy M (2004) Expression in Trichoderma reesei and characterisation of a thermostable family 3 β-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Exp Purif 38(2):248–257

    Article  CAS  Google Scholar 

  21. Nagaraj AK, Singhvi M, Kumar VR, Gokhale D (2014) Optimization studies for enhancing cellulase production by Penicillium janthinellum mutant EU2D-21 using Response Surface Methodology. Bioresources 9(2):1914–1923

    Google Scholar 

  22. Njokweni AP, Rose SH, van Zyl WH (2012) Fungal β-glucosidase expression in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 39(10):1445–1452

    Article  CAS  PubMed  Google Scholar 

  23. Rajasree KP, Mathew GM, Pandey A, Sukumaran RK (2013) Highly glucose tolerant β-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. J Ind Microbiol Biotechnol 40(9):967–975

    Article  CAS  PubMed  Google Scholar 

  24. Ramani G, Meera B, Vanitha C, Rao M, Gunasekaran P (2012) Production, Purification, and Characterization of a β-Glucosidase of Penicillium funiculosum NCL1. Appl Biochem Biotechnol 167(5):959–972

    Article  CAS  PubMed  Google Scholar 

  25. Rao M, Mishra C (1984) Properties and applications of Penicillium funiculosum cellulase immobilized on a soluble polymer. Biotechnol Lett 6(5):319–322

    Article  CAS  Google Scholar 

  26. Shipkowski S, Brenchley JE (2005) Characterization of an unusual cold-active β-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. Strain C7. Appl Environ Microbiol 71(8):4225–4232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Toonkool P, Metheenukul P, Sujiwattanarat P, Paiboon P, Tongtubtim N, Ketudat-Cairns M, Ketudat-Cairns J, Svasti J (2006) Expression and purification of dalcochinase, a β-glucosidase from Dalbergia cochinchinensis Pierre, in yeast and bacterial hosts. Protein Exp Purif 48:195–204

    Article  CAS  Google Scholar 

  28. Tsukada T, Igarashi K, Fushinobu S, Samejima M (2008) Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 β-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium. Biotechnol Bioeng 99(6):1295–1302

    Article  CAS  PubMed  Google Scholar 

  29. Wallecha A, Mishra S (2003) Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta 1649(1):74–84

    Article  CAS  PubMed  Google Scholar 

  30. Wang S, Liu G, Wang J, Yu J, Huang B, Xing M (2013) Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. J Ind Microbiol Biotechnol 40(6):633–641

    Article  CAS  PubMed  Google Scholar 

  31. Yang X, Ma R, Shi P, Huang H, Bai Y, Wang Y, Yang P, Fan Y, Yao B (2014) Molecular characterization of a highly-active thermophilic β-glucosidase from Neosartorya fischeri P1 and Its application in the hydrolysis of soybean isoflavone glycosides. PLoS One 9(9):e106785

    Article  PubMed Central  PubMed  Google Scholar 

  32. Yoshida E, Hidaka M, Fushinobu S, Koyanagi T, Minami H, Tamaki H, Kitaoka M, Katayama T, Kumagai H (2009) Purification, crystallization and preliminary X-ray analysis of beta-glucosidase from Kluyveromyces marxianus NBRC1777. Acta Crystallogr, Sect F 65(11):1190–1192

    Article  CAS  Google Scholar 

  33. Zhang YP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  34. Zmudka MW, Thoden JB, Holden HM (2013) The structure of DesR from Streptomyces venezuelae, a β-glucosidase involved in macrolide activation. Protein Sci 22(7):883–892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (No. 5/258/51/2006-NMITLI). The UGC-CAS, CEGS, NRCBS, DBT-IPLS, DST-PURSE Programs of School of Biological Sciences, Madurai Kamaraj University, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramasamy Gunasekaran.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramani, G., Meera, B., Vanitha, C. et al. Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. J Ind Microbiol Biotechnol 42, 553–565 (2015). https://doi.org/10.1007/s10295-014-1549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1549-6

Keywords

Navigation