Skip to main content
Log in

Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino)xylans

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous fungus Talaromyces versatilis produces a wide range of cellulolytic and hemicellulolytic enzymes such as xylanases. The recent accessibility to the T. versatilis genome allows identifying two new genes, xynE and xynF, encoding glycoside-hydrolases from family GH11. Both genes were cloned and expressed in the methylotrophic yeast Pichia pastoris in order to compare these new xylanases with two other GH11 xylanases from T. versatilis (XynB and XynC) that were previously reported. High-level expression of recombinant enzymes was obtained for the four enzymes that were purified to homogeneity. The XynB, XynC, XynE and XynF enzymes have molecular masses of 34, 22, 45 and 23 kDa, an optimal pH between 3.5 and 4.5 and an optimal temperature between 50 °C and 60 °C. Interestingly, XynF has shown the best thermal stability at 50 °C for at least 180 min with a weak loss of activity. The four xylanases catalysed hydrolysis of low viscosity arabinoxylan (LVAX) with K m(app) between 11.5 and 23.0 mg.mL−1 and k cat/K m(app) 170 and 3,963 s−1 mg−1.mL. Further investigations on the rate and pattern of hydrolysis of the four enzymes on LVAX showed the predominant production of xylose, xylobiose and some (arabino)xylo-oligosaccharides as end products. The initial rate data from the hydrolysis of short xylo-oligosaccharides indicated that the catalytic efficiency increased with increasing degree of polymerisation of oligomer up to 6, suggesting that the specificity region of XynE and XynF spans at least six xylose residues. Because of their attractive properties, T. versatilis xylanases might be considered for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcocer MJC, Furniss CSM, Kroon PA, Campbell M, Archer DB (2003) Comparison of modular and non-modular xylanases as carrier proteins for the efficient secretion of heterologous proteins from Penicillium funiculosum. Appl Microbiol Biotechnol 60:726–732. doi:10.1007/s00253-002-1184-4

    Article  CAS  PubMed  Google Scholar 

  • Azzaz HH (2009) Effect of cellulolytic enzymes addition to diets on the productive performance of lactating goats. Thesis, Faculty of Agriculture, Cairo University, Egypt, M.Sc

    Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  • Berrin JG, Ajandouz EH, Georis J, Arnaut F, Juge N (2007) Substrate and product hydrolysis specificity in family 11 glycoside hydrolases: an analysis of Penicillium funiculosum and Penicillium griseofulvum xylanases. Appl Microbiol Biotechnol 74:1001–1010. doi:10.1007/s00253-006-0764-0

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann R, Belshaw N, Archer D, Alcocer M, Fish Neville M, Pierrard J, Guitton C (2000) Recombinant Penicillium funiculosum for homologous and heterologous protein production. Patent WO0068401

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brutus A, Villard C, Durand A, Tahir TA, Furniss C, Puigserver A, Juge N, Giardina T (2004) The inhibition specificity of recombinant Penicillium funiculosum xylanase B towards wheat proteinaceous inhibitors. Biochim Biophys Acta 1701:121–128. doi:10.1016/j.bbapap.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  • Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S, Eurwilaichitr L (2010) Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J Biosci Bioeng 110:18–25. doi:10.1016/j.jbiosc.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.1093/nar/gkn663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Castro AM, de Albuquerque de Carvalho ML, Leite SG, Pereira N Jr (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37:151–158. doi:10.1007/s10295-009-0656-2

    Article  PubMed  Google Scholar 

  • Cervera-Tison MC, Andre-Leroux G, Lafond M, Georis J, Juge N, Berrin J-G (2009) Molecular determinants of substrate and inhibitor specificities of the Penicillium griseofulvum family 11 xylanases. Biochim Biophys Acta 1794:438–445. doi:10.1016/j.bbapap.2008.11.024

    Article  CAS  PubMed  Google Scholar 

  • Chavez R, Schachter K, Navarro C, Peirano A, Aguirre C, Bull P, Eyzaguirre J (2002) Differences in expresion of two endoxylanase genes (xynA and xynB) from Penicillium purpurogenum. Gene 293:161–168. doi:10.1016/S0378-1119(02)00720-5

    Article  CAS  PubMed  Google Scholar 

  • Chavez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 123:413–433. doi:10.1016/j.jbiotec.2005.12.036

    Article  CAS  PubMed  Google Scholar 

  • Couthino P, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies GJ, Svensson B, Henrissat B (eds) Recent advances in carbohydrate engineering. Royal Society of Chemistry, Cambridge, UK, pp 3–12

    Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138. doi:10.1002/jmr.687

    Article  CAS  PubMed  Google Scholar 

  • Dervilly G, Saulnier L, Roger P, Thibault JF (2000) Isolation of homogeneous fractions from wheat water-soluble arabinoxylans. Influence of the structure on their macromolecular characteristics. J Agric Food Chem 48:270–278. doi:10.1021/jf990222k

    Article  CAS  PubMed  Google Scholar 

  • Driss D, Berrin JG, Juge N, Bhiri F, Ghorbel R, Chaabouni SE (2013) Functional characterization of Penicillium occitanis Pol6 and Penicillium funiculosum GH11 xylanases. Prot Expr Purif 90:195–201. doi:10.1016/j.pep.2013.06.007

    Article  CAS  Google Scholar 

  • Fauré R, Courtin CM, Delcour JA, Dumon C, Faulds CB, Fincher GB, Fort S, Fry SC, Halila S, Kabel MA, Pouvreau L, Quemener B, Rivet A, Saulnier L, Schols HA, Driguez H, O’Donohue MJ (2009) A brief and informationally rich naming system for oligosaccharide motifs of heteroxylans found in plant cell walls. Aus J Chem 62:533–537. doi:10.1071/ch08458

    Article  Google Scholar 

  • Furniss CSM, Belshaw NJ, Alcocer MJC, Williamson G, Elliott GO, Gebruers K, Haigh NP, Fish NM, Kroon PA (2002) A family 11 xylanase from Penicillium funiculosum is strongly inhibited by three wheat xylanase inhibitors. Biochim Biophys Acta 1598:24–29. doi:10.1016/S0167-4838(02)00366-7

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HJ, Knox JP, Boraston AB (2013) Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol 23:669–677. doi:10.1016/j.sbi.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. doi:10.1016/j.biortech.2010.01.088

    Article  PubMed  Google Scholar 

  • Guais O, Borderies G, Pichereaux C, Maestracci M, Neugnot V, Rossignol M, Francois JM (2008) Proteomics analysis of “RovabioTM Excel”, a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J Ind Microbiol Biot 35:1659–1668. doi:10.1007/s10295-008-0430-x

    Article  CAS  Google Scholar 

  • Gusakov AV, Sinitsyn AP (2012) Cellulases from Penicillium species for producing fuels from biomass. Biofuels 3: 463–477. doi: 10.4155/bfs.12.41

    Google Scholar 

  • Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gas–liquid solid-phase peptide and protein sequenator. J Biol Chem 256:7990–7997

    CAS  PubMed  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36. doi:10.1186/1754-6834-4-36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koseki T, Takahashi K, Handa T, Yamane Y, Fushinobu S, Hashizume K (2006) N-linked oligosaccharides of Aspergillus awamori feruloyl esterase are important for thermostability and catalysis. Biosci Biotechnol Biochem 70:2476–2480. doi:10.1271/bbb.60207

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Lafond M, Tauzin A, Desseaux V, Bonnin E, Ajandouz EH, Giardina T (2011) GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharides production. Microb Cell Fact 10:20. doi:10.1186/1475-2859-10-20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lafond M, Navarro D, Haon M, Couturier M, Berrin JG (2012) Characterization of a broad-specificity β-glucanase acting on β-(1,3)-, β-(1,4)-, and β-(1,6)-glucans that defines a new glycoside hydrolase family. Appl Environ Microbiol 78:8540–8546. doi:10.1128/AEM.02572-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Zhou Z, Qu Y (2013) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS ONE 8:e55185. doi:10.1371/journal.pone.0055185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Dong H, Wang S, Chen H, Shao W (2006) Computational analysis of di-peptides correlated with the optimal temperature in G/11 xylanase. Process Biochem 41:305–311. doi:10.1016/j.procbio.2005.06.027

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:490–495. doi:10.1093/nar/gkt1178

    Article  Google Scholar 

  • Luttig M, Pretorius IS, van Zyl WH (1997) Cloning of two β-xylanase-encoding genes from Aspergillus niger and their expression in Saccharomyces cerevisiae. Biotechnol Lett 19:411–415. doi:10.1023/A:1018327623422

    Article  CAS  Google Scholar 

  • Madhukumar MS, Muralikrishna G (2010) Structural characterization and determination of prebiotic activity of purified xylo-oligosaccharides obtained from Bengal gram husk (Cicer arietinum L.) and wheat bran (Triticum aestivum). Food Chem 118:215–223. doi:10.1016/j.foodchem.2009.04.108

    Article  CAS  Google Scholar 

  • Maeda RN, Barcelos CA, Santa Anna LM, Pereira N Jr (2013) Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J Biotechnol 163:38–44. doi:10.1016/j.jbiotec.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  • McLauchlan WR, Garcia-Conesa MT, Williamson G, Roza M, Ravestein P, Maat J (1999) A novel class of protein from wheat which inhibits xylanases. Biochem J 338:441–446. doi:10.1042/0264-6021:3380441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moers K, Courtin CM, Brijs K, Delcour JA (2003) A screening method for endo-β-1, 4-xylanase substrate selectivity. Anal Biochem 319:73–77

    Article  CAS  PubMed  Google Scholar 

  • Norvell LL (2011) Fungal nomenclature. 1. Melbourne approves a new Code. Mycotaxon 116:481–490. doi:10.5248/116.481

    Article  Google Scholar 

  • Paës G, Berrin JG, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30:564–592. doi:10.1016/j.biotechadv.2011.10.003

    Article  PubMed  Google Scholar 

  • Puchart V, Biely P (2008) Simultaneous production of endo-β-1,4-xylanase and branched xylooligosaccharides by Thermomyces lanuginosus. J Biotechnol 137:34–43. doi:10.1016/j.jbiotec.2008.07.1789

    Article  CAS  PubMed  Google Scholar 

  • Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, Varga J, Frisvad JC (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 70:159–183. doi:10.3114/sim.2011.70.04

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sapag A, Wouters J, Lambert C, de Joanes P, Eyzaguirre J, Depiereux E (2002) The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenic relationships. J Biotechnol 95:109–131

    Article  CAS  PubMed  Google Scholar 

  • Saulnier L, Quémener B (2009) Enzymatic mapping of arabinoxylan structure. In: Shewry PR, Ward JL (eds) Analysis of bioactive components in small grain cereals. AACC International, St Paul, Minnesota, pp 191–202

    Google Scholar 

  • Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR (2008) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol 99:4997–5005. doi:10.1016/j.biortech.2007.09.064

    Article  CAS  PubMed  Google Scholar 

  • Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st- to 2nd –generation of biofuel technologies. An overview of current industry and. RD&D activities, International Energy Agency, IEA Bioenergy, Paris, France, OECD/IEA

    Google Scholar 

  • Sunga AJ, Tolstorukov I, Cregg JM (2008) Posttransformational vector amplification in the yeast Pichia pastoris. FEMS Yeast Res 8:870–876. doi:10.1111/j.1567-1364.2008.00410.x

    Article  CAS  PubMed  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64. doi:10.1080/07388550290789450

    Article  CAS  PubMed  Google Scholar 

  • Van Gool MP, Van Muiswinkel GCJ, Hinz SWA, Schols HA, Sinitsyn AP, Gruppen H (2013) Two novel GH11 endo-xylanases from Myceliophthora thermophila C1 act differently toward soluble and insoluble xylans. Enz Microb Technol 53:25–32. doi:10.1016/j.enzmictec.2013.03.019

    Article  CAS  Google Scholar 

  • Vardakou M, Katapodis P, Samiotaki M, Kekos D, Panayotou G, Christakopoulos P (2003) Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan. Int J Biol Macromol 33:129–134. doi:10.1016/S0141-8130(03)00077-1

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Siika-Aho M, Puranen T, Tang M, Tenkanen M, Viikari L (2011) Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 4:1–12. doi:10.1186/1754-6834-4-12

    Article  CAS  Google Scholar 

  • Zhang Z, Donaldson AA, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 30:913–919. doi:10.1016/j.biotechadv.2012.01.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the CINABio-Adisseo Company (Antony, France) under the FUNZymplant project.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Giardina.

Supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 1904 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafond, M., Guais, O., Maestracci, M. et al. Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino)xylans. Appl Microbiol Biotechnol 98, 6339–6352 (2014). https://doi.org/10.1007/s00253-014-5606-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5606-x

Keywords

Navigation