Skip to main content

Contribution of Landraces in Wheat Breeding

  • Chapter
  • First Online:
Wheat Landraces

Abstract

Agricultural production system is extremely vulnerable to climate change, and this change will heavily affect the grain yields, thereby threating the food security worldwide. People from developing countries are at greatest risk of experiencing food insecurity, and today, millions of people are going to bed hungry. Wheat is serving as a staple food for millions of people around the world. Development of high-yielding wheat varieties during the Green Revolution is considered an important event in agricultural history. However, these plant breeding activities also resulted in genetic erosion in wheat. Moreover, it is also believed that after domestication process, selection process also resulted in the loss of genetic diversity of wheat. Therefore, commercial wheat cultivars are prone to various biotic and abiotic stresses. To combat with climate changes and to serve enough quantity of food with quality, there is a need to harness wheat landraces. Landraces are considered as repository of gene pool that enhance the biodiversity and maintain and stabilize the ecosystem in a sustainable way to make it functional. Wheat landraces are traditional crop populations developed by the farmers through natural and human selection under their years of cultivations and have adaptation to local environment and management practices. Wheat landraces have more genetic diversity compared to their cultivated ones, and breeding community has utilized their potential in development of climate-resilient wheat cultivars. Here, we are exploring the role of landraces in wheat breeding and hoping that provided information will catch the attention of breeding community to collect, conserve, and perform breeding activities using wheat landraces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasov M, Akparov Z, Gross T, Babayeva S, Izzatullayeva V, Hajiyev E, Rustamov K, Gross P, Tekin M, Akar T, Chao S (2018) Genetic relationship of diploid wheat (Triticum spp.) species assessed by SSR markers. Genet Resour Crop Evol 65(5):1441–1453

    Article  CAS  Google Scholar 

  • Abu-Zaitoun SY, Chandrasekhar K, Assili S, Shtaya MJ, Jamous RM, Mallah OB, Nashef K, Sela H, Distelfeld A, Alhajaj N, Ali-Shtayeh MS (2018) Unlocking the genetic diversity within a Middle-East panel of durum wheat landraces for adaptation to semi-arid climate. Agronomy 8(10):233

    Article  Google Scholar 

  • Adhikari TB, Gurung S, Hansen JM, Jackson EW, Bonman JM (2012) Association mapping of quantitative trait loci in spring wheat landraces conferring resistance to bacterial leaf streak and spot blotch. Plant Genome 5(1):1–16

    Article  Google Scholar 

  • Adhikari TB, Jackson EW, Gurung S, Hansen JM, Bonman JM (2011a) Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA National Small Grains Collection. Phytopathology 101(11):1301–1310

    Article  PubMed  Google Scholar 

  • Adhikari TB, Hansen JM, Gurung S, Bonman JM (2011b) Identification of new sources of resistance in winter wheat to multiple strains of Xanthomonas translucens pv. undulosa. Plant disease 95(5):582–588

    Article  CAS  PubMed  Google Scholar 

  • Aguiriano E, Ruiz M, Fite’ R, Carrillo JM (2006) Analysis of genetic variability in a sample of the durum wheat (Triticum durum Desf.) Spanish collection based on gliadin markers. Genet Resour Crop Evol 53(8):1543–1552

    Article  CAS  Google Scholar 

  • Ahmad M, Shahzad A, Iqbal M, Asif M, Hirani AH (2013) Morphological and molecular genetic variation in wheat for salinity tolerance at germination and early seedling stage. Aust J Crop Sci 7(1):66

    CAS  Google Scholar 

  • Ahmadi J, Pour-Aboughadareh A, Ourang SF, Mehrabi AA, Siddique KHM (2018) Wild relatives of wheat: Aegilops–Triticum accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiol Plant 40:1–14

    Article  CAS  Google Scholar 

  • Ahmadi J, Pour-Aboughadareh A, Ourang SF, Khalili P, Poczai P (2020) Unraveling salinity stress responses in ancestral and neglected wheat species at early growth stage: A baseline for utilization in future wheat improvement programs. Physiol Mol Biol Plants 1–13.

    Google Scholar 

  • Akar T, Mert Z, Yazar S, Sanal T, Avci M (2009) Sustainable use of winter Durum wheat landraces under Mediterranean conditions. Afr J Biotechnol 8(17)

    Google Scholar 

  • Akcura M, Kadir A, Hocaoglu O (2017) Biplot analysis of leaf rust resistance in pure lines selected from eastern Anatolian bread wheat landraces of turkey. Turkish J Field Crops 22(2):227–234

    Google Scholar 

  • Aktaş H (2016) Drought tolerance indices of selected landraces and bread wheat (Triticum aestivum L.) genotypes derived from synthetic wheats. Appl Ecol Environ Res 14(4):177–189

    Article  Google Scholar 

  • Al Khateeb W, Schroeder D, Musallam I (2017) Phenotypic and molecular variation in drought tolerance of Jordanian durum wheat (Triticum durum Desf.) landraces. Physiol Mol Biol Plants 23(2):311–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali ML, Baenziger PS, Ajlouni ZA, Campbell BT, Gill KS, Eskridge KM, Mujeeb-Kazi A, Dweikat I (2011) Mapping QTLs for yield and agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations. Crop Sci 51:553–566

    Article  Google Scholar 

  • Alipour H, Bihamta MR, Mohammadi V, Peyghambari SA, Bai G, Zhang G (2017) Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Front Plant Sci 8:1293

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-maskri A, Hameed M, Ashraf M, Khan MM, Fatima S, Nawaz T, Batool R (2014) Structural features of some wheat (Triticum spp.) landraces/cultivars under drought and salt stress. Arid Land Res Manag 28(3):355–370

    Article  CAS  Google Scholar 

  • Al-Naggar AMM, Abd El-Shafi MAE, El-Shal MH, Anany AH (2020) Evaluation of Egyptian wheat landraces (Triticum aestivum L.) for drought tolerance, agronomic, grain yield and quality traits. Plant Archives 20(Supplement 1):3487–3504

    Google Scholar 

  • Alsaleh A, Baloch FS, Derya M, Azrak M, Kilian B, Özkan H, Nachit M (2015) Genetic linkage map of Anatolian durum wheat derived from a cross of Kunduru-1149× Cham1. Plant Mol Biol Rep 33:209–220

    Article  CAS  Google Scholar 

  • Alsaleh A, Baloch FS, Nachit M, Ozkan H (2016) Phenotypic and genotypic intra-diversity among Anatolian durum wheat “Kunduru” landraces. Biochem Syst Ecol 65:9–16

    Article  CAS  Google Scholar 

  • Amin M, Mahmood K, Nazir N, Kassi AK, Ahmed S (2019) Population dynamics of wheat aphid on different landraces of wheat under field conditions. Plant Protect 3(2):59–66

    Article  Google Scholar 

  • Andeden EE, Yediay FE, Baloch FS, Shaaf S, Kilian B, Nachit M, Ozkan H (2011) Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces. Cereal Res Commun 39:352–364

    Article  CAS  Google Scholar 

  • Andenow Y, Hullukal M, Belay G (1997) Resistance and tolerance to leaf rust in Ethiopian tetraploid wheat landraces. Plant breeding 116(6):533–536

    Article  Google Scholar 

  • Aoun M, Kolmer JA, Rouse MN, Elias EM, Breiland M, Bulbula WD, Chao S, Acevedo M (2019) Mapping of novel leaf rust and stem rust resistance genes in the Portuguese durum wheat landrace PI 192051. G3: Genes, Genomes. Genetics 9(8):2535–2547

    CAS  Google Scholar 

  • Aprile A, Havlickova L, Panna R, Mare C, Borrelli GM, Marone D, Perrotta C, Rampino P, De Bellis L, Curn V, Mastrangelo AM, Rizza F, Cattivelli L (2013) Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. BMC Genomics 14:821–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabbeigi M, Arzani A, Majidi MM, Kiani R, Tabatabaei BES, Habibi F (2014) Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiol Plant 36(8):2243–2251

    Article  CAS  Google Scholar 

  • Arabbeigi M, Arzani A, Majidi MM, Sayed-Tabatabaei BE, Saha P (2018) Expression pattern of salt tolerance-related genes in Aegilops cylindrica. Physiol Mol Biol Plants 24(1):61–73

    Google Scholar 

  • Arriagada O, Mora F, Quitral Y, Del Pozo A (2017) Identification of QTL underlying agronomic, morphological and physiological traits in barley under rainfed conditions using SNP markers. Acta Sci Agron 39:321–329

    Article  Google Scholar 

  • Arystanbekkyzy M, Nadeem MA, Aktas H, Yeken MZ, Zencirci N, Nawaz MA, Ali F, Haider MS, Tunç K, Chung G, Baloch FS (2019) Phylogenetic and taxonomic relationship of Turkish wild and cultivated emmer (Triticum turgidum ssp. dicoccoides) revealed by iPBSretrotransposons markers. Int J Agric Biol 21(1):155–163

    CAS  Google Scholar 

  • Asplund L, Hagenblad J, Leino MW (2010) Re-evaluating the history of the wheat domestication gene NAM-B1 using historical plant material. J Archaeol Sci 37:2303–2307

    Article  Google Scholar 

  • Avivi L (1978) High protein content in wild tetraploid Triticum dicoccoides Korn. In Ramanujam S (ed). In: Proceedings of the 5th international wheat genetics symposium, New Delhi, 23–28 Feb 1978. Indian Soc Genet Plant Breed, Indian Agric Res Inst, New Delhi, pp 372–380

    Google Scholar 

  • Ayala M, Guzmán AJB, Peña RJ (2013) Characterization of genetic diversity of puroindoline genes in Mexican wheat landraces. Euphytica 190(1):53–63

    Article  Google Scholar 

  • Azeez MA, Adubi AO, Durodola FA (2018) Landraces and crop genetic improvement. In Rediscovery of landraces as a resource for the future. IntechOpen.

    Google Scholar 

  • Babiker EM, Gordon TC, Chao S, Newcomb M, Rouse MN, Jin Y, Wanyera B, Acevedo M, Brown-Guedira G, Williamson S, Bonman JM (2015) Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theor Appl Genet 128(4):605–612

    Article  CAS  PubMed  Google Scholar 

  • Baenziger PS, Depauw RM (2009) Wheat breeding: Procedures and strategies. In: Wheat science and trade. Wiley-Blackwell, Ames, pp 273–308

    Chapter  Google Scholar 

  • Bal W, Kozlowski H, Robbins R, Pettit LD (2010) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Google Scholar 

  • Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet 112:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Ballesta P, Mora F, Del Pozo A (2019) Association mapping of drought tolerance indices in wheat: QTL-rich regions on chromosome 4A. Sci Agri 77(2)

    Google Scholar 

  • Baloch FS, Alsaleh A, Andeden EE, Hatipoğlu R, Nachit M, Özkan H (2016) High levels of segregation distortion in the molecular linkage map of bread wheat representing the West Asia and North Africa region. Turk J Agric For 40(3):352–364

    Article  CAS  Google Scholar 

  • Baloch FS, Alsaleh A, Shahid MQ, Çiftçi V, Aasim M, Nadeem MA, Aktaş H, Özkan H, Hatipoğlu R (2017) A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One 12(1):e0167821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baloch FS, Karaköy T, Demirbaş A, Toklu F, Özkan H, Hatipoğlu R (2014) Variation of some seed mineral contents in open pollinated faba bean (Vicia faba L.) landraces from Turkey. Turk J Agric For 38(5):591–602

    Google Scholar 

  • Bansal UK, Arief VN, DeLacy IH, Bariana HS (2013) Exploring wheat landraces for rust resistance using a single marker scan. Euphytica 194(2):219–233

    Article  Google Scholar 

  • Belay G, Tesemma T, Bechere E, Mitiku D (1995) Natural and human selection for purple-grain tetraploid wheats in the Ethiopian highlands. Genet Resour Crop Evol 42:387–391

    Article  Google Scholar 

  • Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc Natl Acad Sci U S A 106(23):9519–9524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhullar NK, Zhang Z, Wicker T, Keller B (2010) Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol 10(1):88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonman JM, Bockelman HE, Goates BJ, Obert DE, McGuire PE, Qualset CO, Hijmans RJ (2006) Geographic distribution of common and dwarf bunt resistance in landraces of Triticum aestivum subsp. aestivum. Crop Sci 46(4):1622–1629

    Article  Google Scholar 

  • Bonman JM, Bockelman HE, Jin Y, Hijmans RJ, Gironella AIN (2007) Geographic distribution of stem rust resistance in wheat landraces. Crop Sci 47(5):1955–1963

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105(6-7):921–936

    Google Scholar 

  • Börner A, Worland AJ, Plaschke J, Schumann E, Law CN (1993) Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breed 111:204–216

    Article  Google Scholar 

  • Borojevic K, Borojevic K (2005) Historic role of the wheat variety Akakomugi in Southern and Central European wheat breeding programs. Breed Sci 55:253–256

    Article  Google Scholar 

  • Bouffier B (2014) Genetic and ecophysiological dissection of tolerance to drought and heat stress in bread wheat: from environmental characterization to QTL detection (Doctoral dissertation).

    Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Bragard C, Singer E, Alizadeh A, Vauterin L, Maraite H, Swings J (1997) Xanthomonas translucens from small grains: diversity and phytopathological relevance. Phytopathology 87(11):1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Braun HJ, Zencirci N, Altay F, Atli A, Avci M, Eser V, Kambertay M, Payne TS (2001) Turkish wheat pool. In: Bonjean AP, Agnus WJ (eds) The world wheat book: A history of wheat breeding. Lavosier, Paris, pp 851–879

    Google Scholar 

  • Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riordan TP, Dweikat I (2004) Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet 108:328–334

    Article  CAS  PubMed  Google Scholar 

  • Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593

    Article  CAS  PubMed  Google Scholar 

  • Burt C, Griffe LL, Ridolfini AP, Orford S, Griffiths S, Nicholson P (2014) Mining the Watkins collection of wheat landraces for novel sources of eyespot resistance. Plant Pathol 63(6):1241–1250

    Google Scholar 

  • Bux H, Ashraf M, Chen X (2012) Expression of high-temperature adult-plant (HTAP) resistance against stripe rust (Puccinia striiformis f. sp. tritici) in Pakistan wheat landraces. Can J Plant Pathol 34(1):68–74

    Article  CAS  Google Scholar 

  • Cai J, Wang S, Li T, Zhang G, Bai G (2016) Multiple minor QTLs are responsible for Fusarium head blight resistance in Chinese wheat landrace Haiyanzhong. PLoS One 11(9):e0163292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai J, Wang S, Su Z, Li T, Zhang X, Bai G (2019) Meta-analysis of QTL for Fusarium head blight resistance in Chinese wheat landraces. Crop J 7(6):784–798

    Article  Google Scholar 

  • Casañas F, Simó J, Casals J, Prohens J (2017) Toward an evolved concept of landrace. Front Plant Sci 8:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaichi M, Sanjarian F, Razavi K, Gonzalez-Hernandez JL (2019) Phenotypic diversity among Iranian bread wheat landraces, as a screening tool for drought tolerance. Acta Physiol Plant 41(6):1–15

    Google Scholar 

  • Cetin Y, Bullerman LB (2005) Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay. Food Chem Toxicol 43(5):755–764

    Article  CAS  PubMed  Google Scholar 

  • Chaparzadeh N, Aftabi Y, Dolati M, Mehrnejad F, Pessarakli M (2014) Salinity tolerance ranking of various wheat landraces from the west of the Urmia saline lake in Iran by using physiological parameters. J Plant Nutr 37(7):1025–1039

    Article  CAS  Google Scholar 

  • Chartrain L, Berry ST, Brown JKM (2005a) Resistance of wheat line Kavkaz-K4500 L. 6. A. 4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology 95(6):664–671

    Article  CAS  PubMed  Google Scholar 

  • Chartrain L, Brading PA, Brown JKM (2005b) Presence of the Stb6 gene for resistance to Septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathol 54(2):134–143

    Article  CAS  Google Scholar 

  • Chebotar GO, Chebotar SV, Motsnyy II, Sivolap YM (2013) Clarification of the Rht8–PpdD1 gene linkage on the 2D chromosome of winter bread wheat. Cytol Genet 47:70–74

    Article  Google Scholar 

  • Chen W, Wellings C, Chen X, Kang Z, Liu T (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol 15(5):433–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed 31(2):477–484

    Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Groenewald JE, Gams W (2003) Eyespot of cereals revisited: ITS phylogeny reveals new species relationships. Eur J Plant Pathol 109(8):841–850

    Article  CAS  Google Scholar 

  • Dababat A, İmren M, Pridannikov M, Özer G, Zhapayev R, Mokrini F, Otemissova A, Yerimbetova A, Morgounov A (2020. Plant-parasitic nematodes on cereals in northern Kazakhstan. J Plant Dis Prot 1–9

    Google Scholar 

  • Daetwyler HD, Bansal UK, Bariana HS, Hayden MJ, Hayes BJ (2014) Genomic prediction for rust resistance in diverse wheat landraces. Theor Appl Genet 127(8):1795–1803

    Article  CAS  PubMed  Google Scholar 

  • Damania AB, Pecetti L, Qualset CO, Humeid BO (1996) Diversity and geographic distribution of adaptive traits in Triticum turgidum L. (durum group) wheat landraces from Turkey. Genet Resour Crop Evol 43:409–422

    Google Scholar 

  • De Valença AW, Bake A, Brouwer ID, Giller KE (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Sec 12:8–14

    Article  Google Scholar 

  • De Wolf ED, Effertz RJ, Ali S, Francl LJ (1998) Vistas of tan spot research. Canadian journal of plant pathology= Revue Canadienne de phytopathologie

    Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57(3):1070–1082

    Article  Google Scholar 

  • Denbel W, Badebo A (2012) Valuable sources of resistance in the Ethiopian durum wheat landraces to Ug33 and other stem rust races. Int. J. Agron. Plant Prod 3:191–195

    Google Scholar 

  • Derakhshan B, Mohammadi SA, Moghaddam M, Jalal Kamali MR (2013) Molecular characterization of vernalization genes in Iranian wheat landraces. Crop Breed J 3:11–14

    Google Scholar 

  • Devi R, Ram S, Rana V, Malik VK, Pande V, Singh GP (2019) QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.). Euphytica 215(12):210

    Article  CAS  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4:59–66

    Article  CAS  PubMed  Google Scholar 

  • Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661

    Article  CAS  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    Article  CAS  Google Scholar 

  • DuToit F, Walters MC (1984) Damage assessment and economic threshold values for the chemical control of the Russian wheat aphid, Diuraphis noxia (Mordvilko) on winter wheat. Technical communication-South Africa, Department of Agriculture

    Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Dvorak J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum L by the Kna1 locus transferred from Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor Appl Genet 87:872–877

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21:31–42

    Article  CAS  PubMed  Google Scholar 

  • ELshafei AA, Afiah SA, Amer MA, El-enany MAM (2019) Validation of molecular markers linked with salinity tolerance in wheat (Triticum aestivum L.) grown on saline soil. Biosci Res 16(2):963–978

    Google Scholar 

  • Endresen DTF, Street K, Mackay M, Bari A, DePauw E (2011) Predictive association between biotic stress traits and eco-geographic data for wheat and barley landraces. Crop Sci 51(5):2036–2055

    Article  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. Sinauer, Sunderland

    Google Scholar 

  • Eyal Z (1987) The Septoria diseases of wheat: concepts and methods of disease management. CIMMYT

    Google Scholar 

  • Fageria NK, Stone LF, dos Santos AB (2012) Breeding for salinity tolerance. In plant breeding for abiotic stress tolerance. Springer, Berlin, pp 103–122

    Book  Google Scholar 

  • Farooq S, Niazi M, Iqbal N, Shah TM (1989) Salt tolerance potential of wild resources of the tribe Triticeae II. Screening of species of the genus Aegilops. Plant and Soil 119:255–260

    Article  CAS  Google Scholar 

  • Fei X, Wen-Wen Z, Xia-Yu D, Yi-Lin Z, Wan-Quan J (2009) Microsatellite mapping of a powdery mildew resistance gene in wheat landrace Xiaobaidong. Acta Agronomica Sinica 35(10):1806–1811

    Google Scholar 

  • Fitt BD, Goulds A, Hollins TW, Jones DR (1990) Strategies for control of eyespot (Pseudocercosporella herpotrichoides) in UK winter wheat and winter barley. Ann Appl Biol 117(2):473–486

    Article  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Frankel OH, Bennett E (1970) Genetic resources in plants-their exploration and conservation. In: Genetic resources in plants-their exploration and conservation. Distributed by Blackwell Scientific, Oxford

    Google Scholar 

  • Fu B, Chen Y, Li N, Ma H, Kong Z, Zhang L, Jia H, Ma Z (2013) pmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theor Appl Genet 126(4):913–921

    Article  CAS  PubMed  Google Scholar 

  • Fu B, Zhang Z, Zhang Q, Wu X, Wu J, Cai S (2017) Identification and mapping of a new powdery mildew resistance allele in the Chinese wheat landrace Hongyoumai. Molecular Breeding 37(11):133

    Article  CAS  Google Scholar 

  • Gadea M (1958) Trigos cultivados en España y nuevas variedades recomendadas. Ministerio de Agricultura, Madrid

    Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrnl) and frost resistance (Frl) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121(5):877–894

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant and Soil 314:49

    Article  CAS  Google Scholar 

  • Gessese M, Bariana H, Wong D, Hayden M, Bansal U (2019) Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant disease 103(6):1166–1171

    Article  CAS  PubMed  Google Scholar 

  • Ghaneie A, Mehrabi R, Safaie N, Abrinbana M, Saidi A, Aghaee M (2012) Genetic variation for resistance to septoria tritici blotch in Iranian tetraploid wheat landraces. Eur J Plant Pathol 132(2):191–202

    Article  Google Scholar 

  • Giraldo P, Royo C, Gonzalez M, Carrillo JM, Ruiz M (2016) Genetic diversity and association mapping for agromorphological and grain quality traits of a structured collection of durum wheat landraces including subsp. durum, turgidum and diccocon. PLoS One 11(11):e0166577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goates BJ, Peterson GL (1999) Relationship between soilborne and seedborne inoculum density and the incidence of dwarf bunt of wheat. Plant Dis 83(9):819–824

    Article  PubMed  Google Scholar 

  • Gökgöl M (1935) Turkish wheats, vol I. Ministry of Agriculture, Yesilkoy Seed Breeding Institute Publications. No: 7, Devlet Press, Istanbul. (In Turkish), 436 pp.

    Google Scholar 

  • Goncharov NP (1998) Genetic resources of wheat related species: The Vrn genes controlling growth habit (spring vs. winter). Euphytica 100(1):371–376

    Article  Google Scholar 

  • Gonzalez-Hernandez JL, Elias EM, Kianian SF (2004) Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139:217–225

    Article  CAS  Google Scholar 

  • Gorham J, Bristol A, Young EM, Wyn Jones RG, Kashour G (1990) Salt tolerance in the Triticeae: K/Na discrimination in barley. J Exp Bot 41:1095–1101

    Article  CAS  Google Scholar 

  • Gorham J (1994) Salt tolerance in the Triticeae: K/Na discrimination in some perennial wheatgrasses and their amphiploids with wheat. J Exp Bot 45:441–447

    Article  CAS  Google Scholar 

  • Gorham J, Bridges J, Dubcovsky J, Dvoák J, Hollington PA, Luo MC, Khan JA (1997) Genetic analysis and physiology of a trait for enhanced K + /Na + discrimination in wheat. New Phytol 137:109–116

    Article  CAS  Google Scholar 

  • Gorham J, Hardy C, WynJones RG, Joppa LR, Law CN (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588

    Article  CAS  PubMed  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5(6):515–525

    Article  CAS  PubMed  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Guo X, Wang Y, Meng L, Liu H, Yang L, Zhou Y, Zhang H (2015) Distribution of the Vrn-D1b allele associated with facultative growth habit in Chinese wheat accessions. Euphytica 206:1–10

    Article  Google Scholar 

  • Guo X, Xin Z, Yang T, Ma X, Zhang Y, Wang Z, Ren Y, Lin T (2020) Metabolomics Response for Drought Stress Tolerance in Chinese Wheat Genotypes (Triticum aestivum). Plan Theory 9(4):520

    CAS  Google Scholar 

  • Gurcan K, Demirel F, Tekin M, Demirel S, Akar T (2017) Molecular and agro-morphological characterization of ancient wheat landraces of Turkey. BMC Plant Biol 17(1):171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, DelRio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123(6):1029

    Article  CAS  PubMed  Google Scholar 

  • Haile JK, Hammer K, Badebo A, Singh RP, Röder MS (2013) Haplotype analysis of molecular markers linked to stem rust resistance genes in Ethiopian improved durum wheat varieties and tetraploid wheat landraces. Genetic resources and crop evolution 60(3):853–864

    Article  CAS  Google Scholar 

  • Hammer K, Knüpffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Genet Resour Crop Evol 43:329–336

    Article  Google Scholar 

  • Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Velu G, Peña RJ, Singh S, Singh RP (2014) Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol Breed 34:1893–1902

    Article  CAS  Google Scholar 

  • Hagenblad J, Asplund L, Balfourier F, Ravel C, Leino MW (2012) Strong presence of the high grain protein content allele of NAM-B1 in Fennoscandian wheat. Theor Appl Genet 125:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Hamdi O, Bellil I, Branlard G, Khelii D (2010) Genetic variation and geographical diversity for seed storage proteins of seventeen durum wheat populations collected in Algeria. Not Bot Horti Agrobo 38(2):22–32

    CAS  Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188(4188):618–621

    Article  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hede AR, Skovmand B, Reynolds MP, Crossa J, Vilhelmsen AL, Stølen O (1999) Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces. Genet Resour Crop Evol 46(1):37–45

    Article  Google Scholar 

  • Heidari B, Padash S, Dadkhodaie A (2016) Variations in micronutrients, bread quality and agronomic traits of wheat landrace varieties and commercial cultivars. Aust J Crop Sci 10:377–384

    Article  CAS  Google Scholar 

  • Henkrar F, El-Haddoury J, Iraqi D, Bendaou N, Udupa SM (2017) Allelic variation at high-molecular weight and low-molecular weight glutenin subunit genes in Moroccan bread wheat and durum wheat cultivars.3. Biotech 7:287

    Google Scholar 

  • Herrera-Foessel S, Singh R, Huerta-Espino J, Crossa J, Yuen J, Djurle A (2006) Effect of leaf rust on grain yield and yield traits of durum wheats with race-specific and slow-rusting resistance to leaf rust. Plant Dis 90:1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Hewitt PH, Van Niekerk, GJJ, Walters MC, Kriel CF, Fouche A (1984) Aspects of the ecology of the Russian wheat aphid, Diuraphis noxia, in the Bloemfontein district. I. The colonization and infestation of sown wheat, identification of summer hosts and cause of infestation symptoms. Technical Communication, Department of Agriculture, South Africa, (191), p. 3–13

    Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ (1997) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L. em Thell.). IX. Cultivars, land races and breeding lines grown in China. Plant Breed 116:233–238

    Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101(3):407–414

    Article  CAS  Google Scholar 

  • Hussain B, Lucas SJ, Ozturk L, Budak H (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  • Hysing SC, Merker A, Liljeroth E, Koebner RM, Zeller FJ, Hsam SL (2007) Powdery mildew resistance in 155 Nordic bread wheat cultivars and landraces. Hereditas 144(3):102–119

    Article  PubMed  Google Scholar 

  • Iizumi T, Furuya J, Shen Z, Kim W, Okada M, Fujimori S, Hasegawa T, Nishimori M (2017) Responses of crop yield growth to global temperature and socioeconomic changes. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  • Ilyas N, Amjid MW, Saleem MA, Khan W, Wattoo FM, Rana RM, Rana HM, Zahid A, Shah GA, Anwar A, Ahmad MQ, Shaheen M, Riaz H, Ansari MJ (2020) Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/Frontana recombinant inbred lines (RILs) population of wheat (Triticum aestivum) under salt stress condition. Saudi J Biol Sci 27(1):341–351

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Vy TT, Yoshida K, Asano H, Mitsuoka C, Asuke S, Anh VL, Cumagun CJR, Chuma I, Terauchi R, Kato K, Mitchell T, Valent B, Farman M, Yukio TY (2017) Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357(6346):80–83

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Navabi A, Salmon DF, Yang RC, Spaner D (2007) Simultaneous selection for early maturity, increased grain yield and elevated grain protein content in spring wheat. Plant Breed 126:244–250

    Article  Google Scholar 

  • Iwaki K, Haruna S, Niwa T, Kato K (2001) Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. Plant Breed 120:107–114

    Article  CAS  Google Scholar 

  • Izanloo A, Condon AG, Langridge P, Tester M, Schnurbusch T (2008) Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot 59(12):3327–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalal A, Shah S, Filho MCMT, Khan A, Shah T, Ilyas M, Rosa PAL (2020) Agro-Biofortification of Zinc and Iron in Wheat Grains. Gesunde Pflanzen 72:227–236

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jan SU, Jamil M, Alipour H, Bhatti MF, Gul A (2017) Analysis of salinity tolerance potential in synthetic hexaploid wheat. Pak J Bot 49(4):1269–1278

    CAS  Google Scholar 

  • Janni M, Cadonici S, Bonas U, Grasso A, Dahab AAD, Visioli G, Pignone D, Ceriotti A, Marmiroli N (2018) Gene-ecology of durum wheat HMW glutenin reflects their diffusion from the center of origin. Sci Rep 8:16929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaradat A (2006) Phenotypic divergence in the meta-population of the Hourani wheat landrace. J Food Agric Env 4:186–191

    Google Scholar 

  • Jaradat AA (2011) Wheat landraces: genetic resources for sustenance and sustainability. usda-ars, pp 1–20. http://www.usmarc.usda.gov/SP2UserFiles/Place/36450000/products-wheat/AAJ-wheatlandraces.pdf

  • Jaradat AA (2013) Wheat landraces: a mini review. Emir J Food Agric 25:20–29

    Google Scholar 

  • Jiang Y, Huang L, Hu Y (2010) Distribution of vernalization genes in Chinese wheat landraces and their relationship with winter hardness. Sci Agric Sin 43:2619–2632

    CAS  Google Scholar 

  • Joppa LR, Cantrell RG (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064

    Article  CAS  Google Scholar 

  • Joppa LR, Du C, Hart GE, Hareland GA (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    Article  CAS  Google Scholar 

  • Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Sharpe AG, Sidebottom CHD, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Anthony Hall A, Akhunov E (2015) A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 16(1):1–18

    Article  Google Scholar 

  • Jorgensen C, Luo MC, Ramasamy R, Dawson M, Gill BS, Korol AB, Distelfeld A, Dvorak J (2017) A high-density genetic map of wild emmer wheat from the Karaca Dağ region provides new evidence on the structure and evolution of wheat chromosomes. Front Plant Sci 8:1798

    Google Scholar 

  • Kahrizi D, Cheghamirza K, Kakaei M, Mohammadi R, Ebadi A (2010) Heritability and genetic gain of some morphophysiological variables of durum wheat (Triticum turgidum var. durum). Afr J Biotechnol 9(30):4687–4691

    Google Scholar 

  • Kamal NM, Gorafi YSA, Mega R, Tsujimoto H (2018) Physiological response of wheat to chemical desiccants used to simulate post-anthesis drought stress. Agronomy 8(4):44

    Article  CAS  Google Scholar 

  • Kamran A, Iqbal M, Navabi A, Randhawa HS, Pozniak C, Spaner D (2013) Earliness per QTLs and their interaction with photoperiod insensitive allele Ppd-D1a in Cutler x AC Barrie spring wheat population. Theor Appl Genet 126:1965–1976

    Article  CAS  PubMed  Google Scholar 

  • Kandel JS, Krishnan V, Jiwan D, Chen X, Skinner DZ, See DR (2017) Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035. PloS one 12(5):e0177898

    Google Scholar 

  • Kankwatsa P, Singh D, Thomson PC, Babiker EM, Bonman JM, Newcomb M, Park RF (2017) Characterization and genome-wide association mapping of resistance to leaf rust, stem rust and stripe rust in a geographically diverse collection of spring wheat landraces. Mol Breed 37(9):113

    Article  CAS  Google Scholar 

  • Karagöz A, Zencirci N (2005) Variation in wheat (Triticum spp.) landraces from different altitudes of three regions of Turkey. Genet Resour Crop Ev 52(6):775–785

    Article  Google Scholar 

  • Karan R, Subudhi PK (2012) Approaches to increasing salt tolerance in crop plants. In: Abiotic stress responses in plants. Springer, New York, pp 63–88

    Chapter  Google Scholar 

  • Kato K, Mori Y, Beiles A, Nevo E (1997) Geographical variation in heading traits in wild emmer wheat, Triticum dicoccoides. I. Variation in vernalization response and ecological differentiation. Theor Appl Genet 95:546–552

    Article  Google Scholar 

  • Kato K, Taketa S, Ban T, Iriki N, Miura K (2001) The influence of a spring habit gene, Vrn-D1, on heading time in wheat. Plant Breed 120:115–120

    Article  CAS  Google Scholar 

  • Kato K, Wada T (1999) Genetic analysis and selection experiment for narrow-sense earliness in wheat by using segregating hybrid progenies. Breed Sci 49:233–238

    Article  Google Scholar 

  • Kato K, Yokoyama H (1992) Geographical variation in heading characters among wheat landraces, Triticum aestivum L., and its implication for their adaptability. Theor Appl Genet 84:259–265

    Article  CAS  PubMed  Google Scholar 

  • Kertho A, Mamidi S, Bonman JM, McClean PE, Acevedo M (2015) Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS One 10(6):e0129580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MA, Fuller MP, Baloch FS (2008) Effect of soil applied zinc sulphate on wheat (Triticum aestivum L.) grown on a calcareous soil in Pakistan. Cereal Res Commun 36:571–582

    Article  CAS  Google Scholar 

  • Khan MH, Bukhari A, Dar ZA, Rizvi SM (2013) Status and strategies in breeding for rust resistance in wheat. Agr Sci 4:292

    Google Scholar 

  • Khokhar JS, King J, King IP, Young SD, Foulkes MJ, De Silva J et al (2020) Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces. PLoS One 15(2):e0229107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidane YG, Gesesse CA, Hailemariam BN, Desta EA, Mengistu DK, Fadda C, Pe ME, Dell’Acqua M (2019) A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. Plant Biotechnol J 17(7):1380–1393

    Google Scholar 

  • Kidane YG, Hailemariam BN, Mengistu DK, Fadda C, Pè ME, Dell’Acqua M (2017) Genome-wide association study of Septoria tritici blotch resistance in Ethiopian durum wheat landraces. Front Plant Sci 8:1586

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilian B, Ozkan H, Pozzi C, Salamini F (2009) Domestication of the Triticeae in the Fertile Crescent. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. USA pp, Springer-Verlag, New York, pp 81–119

    Chapter  Google Scholar 

  • King JE, Cook RJ, Melville SC (1983) A review of Septoria diseases of wheat and barley. Ann Appl Biol 103(2):345–373

    Article  Google Scholar 

  • Kishii M (2019) An update of recent use of Aegilops species in wheat breeding. Front Plant Sci 10:585

    Article  PubMed  PubMed Central  Google Scholar 

  • Klindworth DL, Hareland GA, Elias EM, Faris JD, Chao S, Xu SS (2009) Agronomic and quality characteristics of two new sets of Langdon durum-wild emmer wheat chromosome substitution lines. J Cereal Sci 50:29–35

    Article  CAS  Google Scholar 

  • Kolev S, Vassilev D, Kostov K, Todorovska E (2011) Allele variation in loci for adaptive response in Bulgarian wheat cultivars and landraces and its effect on heading date. Plant Genet Res 9:251–255

    Article  CAS  Google Scholar 

  • Kolmer JA, Garvin DF, Hayden M, Spielmeyer W (2018) Adult plant leaf rust resistance derived from the wheat landrace cultivar Americano 44d is conditioned by interaction of three QTL. Euphytica 214(3):59

    Article  CAS  Google Scholar 

  • Korkut ZK, Balkan A, Başer İ, Bilgin O (2019) Grain Yield and Some Physiological Traits Associated with Heat Tolerance in Bread Wheat (Triticum aestivum L.) Genotypes. J Agric Sci 25(3):391–400

    Google Scholar 

  • Kumar J, Jaiswal V, Kumar A, Kumar N, Mir RR, Kumar S, Dhariwala R, Tyagia S, Khandelwale M, Prabhub KV, Prasade R, Balyana HS, Guptaa PK (2011) Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crop Res 123:226–233

    Article  Google Scholar 

  • Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel KH (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3(4):185–195

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Archak S, Tyagi RK, Kumar J, Vikas VK, Jacob SR, Srinivasan K, Radhamani J, Parimalan R, Sivaswamy M, Tyagi S, Yadav M, Kumari J, Deepali SS, Bhagat I, Meeta M, Bains NS, Chowdhury AK, Saha BC, Bhattacharya PM, Kumari J, Singh MC, Gangwar OP, Prasad P, Bharadwaj SC, Gogoi R, Sharma JB, Kumar GMS, Saharan MS, Bag M, Roy A, Prasad TV, Sharma RK, Dutta M, Sharma I, Bansal KC (2016) Evaluation of 19,460 wheat accessions conserved in the Indian national genebank to identify new sources of resistance to rust and spot blotch diseases. PLoS One 12:e0175610

    Article  Google Scholar 

  • Kumar S, Beena AS, Awana M, Singh A (2017) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151

    Article  PubMed  PubMed Central  Google Scholar 

  • Law CN, Worland AJ, Giorgi B (1976) The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity 36:49–58

    Article  Google Scholar 

  • Leonard K, Szabo L (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6:99–111

    Article  PubMed  Google Scholar 

  • Li G, Carver BF, Cowger C, Bai G, Xu X (2018a) Pm223899, a new recessive powdery mildew resistance gene identified in Afghanistan landrace PI 223899. Theor Appl Genet 131(12):2775–2783

    Article  CAS  PubMed  Google Scholar 

  • Li G, Xu X, Bai G, Carver BF, Hunger R, Bonman JM (2016a) Identification of novel powdery mildew resistance sources in wheat. Crop Sci 56(4):1817–1830

    Article  CAS  Google Scholar 

  • Li G, Xu X, Carver BF, Guo P, Puterka G (2018b) Dn10, a new gene conferring resistance to Russian wheat aphid biotype 2 in Iranian wheat landrace PI 682675. Crop Sci 58(3):1219–1225

    Article  CAS  Google Scholar 

  • Li H, Vikram P, Singh RP, Kilian A, Carling J, Song J, Burgueno-Ferreira JA, Bhavani S, Huerta-Espino J, Payne T, Sehgal D, Wenzl P, Singh S (2015) A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics 16(1):1–15.

    Google Scholar 

  • Li T, Bai G, Wu S, Gu S (2011) Quantitative trait loci for resistance to fusarium head blight in a Chinese wheat landrace Haiyanzhong. Theor Appl Genet 122(8):1497–1502

    Article  PubMed  Google Scholar 

  • Li T, Zhang D, Zhou X, Bai G, Li L, Gu S (2016b) Fusarium head blight resistance loci in a stratified population of wheat landraces and varieties. Euphytica 207(3):551–561

    Article  CAS  Google Scholar 

  • Li XJ, Xu X, Yang XM, Li XQ, Liu WH, Gao AN, Li LH (2012) Genetic diversity of the wheat landrace Youzimai from different geographic regions investigated with morphological traits, seedling resistance to powdery mildew, gliadin and microsatellite markers. Cereal Res Commun 40(1):95–106

    Article  Google Scholar 

  • Li X, Li Y, Zhang M, Yu X, Hu R, Chang J, Yang G, Wang Y, He G (2019) Diversity of Puroindoline genes and their association with kernel hardness in Chinese wheat cultivars and landraces. Mol Breed 39(4):1–13

    Google Scholar 

  • Li Y, Huang C, Sui X, Fan Q, Li G, Chu X (2009) Genetic variation of wheat glutenin subunits between landraces and varieties and their contributions to wheat quality improvement in China. Euphytica 169:159–168

    Article  CAS  Google Scholar 

  • Li Y, Shi X, Hu J, Wu P, Qiu D, Qu Y, Xie J, Wu Q, Zhang H, Yang L, Liu H, Zhou Y, Liu Z, Li H (2020) Identification of a recessive gene PmQ conferring resistance to powdery mildew in wheat landrace Qingxinmai using BSR-Seq analysis. Plant Disease 104(3):743–751

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liu Y, Zhang W, Chen X, Zou C (2017a) Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 9(5):465

    Article  PubMed Central  CAS  Google Scholar 

  • Liu D, Zhang L, Hao M, Ning S, Yuan Z, Dai S, Huang L, Wu B, Yan Z, Lan X, Zheng Y (2018) Wheat breeding in the hometown of Chinese Spring. Crop J 6:82–90

    Article  Google Scholar 

  • Liu J, Huang L, Wang C, Liu Y, Yan Z, Wang Z, Xiang L, Zhong X, Gong F, Zheng Y, Liu D, Wu B (2019) Genome-Wide Association Study Reveals Novel Genomic Regions Associated With High Grain Protein Content in Wheat Lines Derived From Wild Emmer Wheat. Front Plant Sci 10:464

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Maccaferri M, Rynearson S, Letta T, Zegeye H, Tuberosa R, Chen X, Pumphrey M (2017b) Novel sources of stripe rust resistance identified by genome-wide association mapping in Ethiopian durum wheat (Triticum turgidum ssp. durum). Front Plant Sci 8:774.1

    Google Scholar 

  • Liu Y, Lin Y, Gao S, Li Z, Deng M, Chen G, Wei Y, Zheng Y (2017c) A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J 91:861–873

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Qie Y, Li X, Wang M, Chen X (2020) Genome-Wide Mapping of Quantitative Trait Loci Conferring All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Landrace PI 181410. Int J Mol Sci 21(2):478

    Article  CAS  PubMed Central  Google Scholar 

  • Lodhi SS, Maryam S, Rafique K, Shafique A, Yousaf ZA, Talha AM, Gul A, Amir R (2020) Overview of the prospective strategies for conservation of genomic diversity in wheat landraces. In: Climate change and food security with emphasis on wheat. Academic Press, London, pp 293–309

    Chapter  Google Scholar 

  • Long L, Yao F, Yu C, Ye X, Cheng Y, Wang Y, Wu Y, Li J, Wang J, Jiang Q, Li W, Ma J, Liu Y, Deng M, Wei Y, Zheng Y, Chen G (2019) Genome-Wide association study for adult-plant resistance to stripe rust in Chinese wheat landraces (Triticum aestivum L.) from the yellow and huai river valleys. Front Plant Sci 10:596

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A, Ban T, Vikram P (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66:3477–3486

    Article  CAS  PubMed  Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant and Soil 269:369–380

    Article  CAS  Google Scholar 

  • Ma D, Li Q, Tang M, Chao K, Li J, Wang B, Jing J (2015) Mapping of gene conferring adult-plant resistance to stripe rust in Chinese wheat landrace Baidatou. Mol Breed 35(8):157

    Article  CAS  Google Scholar 

  • Ma L, Zhou E, Huo N, Zhou R, Wang G, Jia J (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153(1-2):109–117

    Article  CAS  Google Scholar 

  • Mahrookashani A, Siebert S, Hüging H, Ewert F (2017) Independent and combined effects of high temperature and drought stress around anthesis on wheat. J Agron Crop Sci 203(6):453–463

    Article  CAS  Google Scholar 

  • Manickavelu A, Joukhadar R, Jighly A, Lan C, Huerta-Espino J, Stanikzai AS, Kilian A, Singh RP, Ban T (2016) Genome wide association mapping of stripe rust resistance in Afghan wheat landraces. Plant Sci 252:222–229

    Article  CAS  PubMed  Google Scholar 

  • Manickavelu A, Niwa S, Ayumi K, Komatsu K, Naruoka Y, Ban T (2014) Molecular evaluation of Afghan wheat landraces. Plant Genet Resour-C 12:S31–S35

    Article  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+Business Media, LLC, New York

    Chapter  Google Scholar 

  • Maraite H, Di Zinno T, Longree H, Daumerie V, Duveiller E (1997) Fungi associated with foliar blight of wheat in warm areas. In Proceedings of the international workshop on helminthosporium diseases of wheat: Spot Blotch and Tan Spot, El Batán (pp. 293–300)

    Google Scholar 

  • Masood MS, Javaid A, Rabbani MA, Anwar R (2005) Phenotypic diversity and trait association in bread wheat (Triticum aestivum L.) landraces from Baluchistan, Pakistan. Pak J Bot 37:949

    Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, East Melbourne (Australia)

    Book  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. https://shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • McKay JK, Richards JH, Mitchell-Olds T (2003) Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol Ecol 12:1137–1151

    Article  CAS  PubMed  Google Scholar 

  • Melnikova NV, Ganeva GD, Popova ZG, Landjeva SP, Kudryavtsev AM (2010) Gliadins of Bulgarian durum wheat Triticum durum Desf. landraces: genetic diversity and geographical distribution. Genet Resour Crop Evol 57:587–595

    Article  Google Scholar 

  • Mengistu N, Baenziger PS, Eskridge KM, Dweikat I, Wegulo SN, Gill KS, Mujeeb-Kazi A (2012) Validation of QTL for grain yield-related traits on wheat chromosome 3a using recombinant inbred chromosome lines. Crop Sci 52:1622–1632

    Article  Google Scholar 

  • Merchuk-Ovnat L, BarakV FT, Ordon F, Lidzbarsky GA, Krugman T, Saranga Y (2016) Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front Plant Sci 7:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Mir RA, Sharma A, Mahajan R (2020) Crop landraces: present threats and opportunities for conservation. In: Rediscovery of genetic and genomic resources for future food security 2020. Springer, Singapore, pp 335–349

    Chapter  Google Scholar 

  • Mir Ali N, Arabi MIE, Al-Safadi B (1999) Frequencies of high and low molecular weight glutenin subunits in durum wheat grown in Syria. Cereal Res Commun 27:301–305

    Article  Google Scholar 

  • Mishra VK, Gupta PK, Arun B, Vasistha NK, Vishwakarma MK, SinghYadav P, Kumar H, Joshiac AK (2015) Introgression of a gene for high grain protein content (Gpc-B1) into two leading cultivars of wheat in Eastern Gangetic Plains of India through marker assisted backcross breeding. J Plant Breed Crop Sci 7:292–300

    Article  CAS  Google Scholar 

  • Mitrofanova OP, Khakimova AG (2017) New genetic resources in wheat breeding for increased grain protein content. Russ J Genet Appl Res 7(4):477–487

    Article  Google Scholar 

  • Mohammadi R, Armion M, Kahrizi D, Amri A (2012) Efficiency of screening techniques for evaluating durum wheat genotypes under mild drought conditions. Int J Plant Prod 4(1):11–24

    Google Scholar 

  • Mohammadi R, Sadeghzadeh B, Ahmadi H, Bahrami N, Amri A (2015) Field evaluation of durum wheat landraces for prevailing abiotic and biotic stresses in highland rainfed regions of Iran. The Crop Journal 3(5):423–433

    Article  Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Article  Google Scholar 

  • Mondal S, Rutkoski JE, Velu G, Singh PK, Crespo-Herrera LA, Guzman C, Bhavani S, Lan C, He X, Singh RP (2016) Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front Plant Sci 7:991

    Article  PubMed  PubMed Central  Google Scholar 

  • Mora F, Castillo D, Lado B, Matus I, Poland J, Belzile F, Zitzewitz JV, del Pozo A (2015) Genome-wide association mapping of agronomic traits and carbon isotope discrimination in a worldwide germplasm collection of spring wheat using SNP markers. Mol Breed 35(2):69

    Article  CAS  Google Scholar 

  • Moragues M, Zarco-Hernández J, Moralejo MA, Royo C (2006) Genetic diversity of glutenin protein subunits composition in durum wheat landraces [Triticum turgidum ssp. turgidum convar. durum (Desf.) MacKey] from the Mediterranean basin. Genet Resour Crop Evol 53(5):993–1002

    Article  CAS  Google Scholar 

  • Motzo R, Giunta F (2007) The effect of breeding on the phenology of Italian durum wheats: From landraces to modern cultivars. Eur J Agron 26:462–470

    Article  Google Scholar 

  • Mohammed AR, Tarpley L (2009) High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agric For Meteorol 149(6–7):999–1008

    Google Scholar 

  • Mujeeb-Kazi A, Gul A, Ahmad I, Farooq M, Rauf Y, Riaz H (2009) Genetic resources for some wheat abiotic stress tolerances. In: Salinity and water stress. Springer, Dordrecht, pp 149–163

    Chapter  Google Scholar 

  • Muqaddasi QH, Reif JC, Li Z, Basnet BR, Dreisigacker S, Röder MS (2017) Genome-wide association mapping and genome-wide prediction of anther extrusion in CIMMYT spring wheat. Euphytica 213(3):73

    Article  CAS  Google Scholar 

  • Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ (2016) Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front Plant Sci 7:1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285

    Article  CAS  Google Scholar 

  • Naghavi MR, Monfared SR, Ahkami AH, Ombidbakhsh MA (2009) Genetic variation of durum wheat landraces and cultivars using morphological and protein markers. Proceedings of world academy of science. Eng Technol 37:73–75

    Google Scholar 

  • Nazco R, Villegas D, Ammar K, Pena RJ, Moragues M, Royo C (2012) Can Mediterranean durum wheat landraces contribute to improved grain quality attributes in modern cultivars? Euphytica 185(1):1–17

    Article  Google Scholar 

  • Newcomb M, Acevedo M, Bockelman HE, Brown-Guedira G, Goates BJ, Jackson EW, Jin Y, Njau P, Rouse MN, Singh RD, Wanyera R, Bonman JM (2013) Field resistance to the Ug99 race group of the stem rust pathogen in spring wheat landraces. Plant disease 97(7):882–890

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larsson H, Pinheiro de Carvalho MAA, Rubiales D, Russell J, Dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. Sustain Agric 2:147–186

    Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Article  Google Scholar 

  • Nicol J, Rivoal R, Taylor S, Zaharieva M (2003) Global importance of cyst (Heterodera spp.) and lesion nematodes (Pratylenchus spp.) on cereals: distribution, yield loss, use of host resistance and integration of molecular tools. Nematol Monogr Perspect 2:1–19

    Google Scholar 

  • Nicol JM, Rivoal R, Bolat N, Aktas H, Braun HJ, Mergoum M, Yildrim AF, Bagci A, Eleckcioglu IH, Yahyaoui A (2002) The frequency and diversity of the cyst and lesion nematode on wheat in the Turkish Central Anatolian Plateau. Nematology 4(2):272

    Google Scholar 

  • Norman A, Taylor J, Tanaka E, Telfer P, Edwards J, Martinant JP, Kuchel H (2017) Increased genomic prediction accuracy in wheat breeding using a large Australian panel. Theor Appl Genet 130(12):2543–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Driscoll A, Kildea S, Doohan F, Spink J, Mullins E (2014) The wheat–Septoria conflict: a new front opening up? Trends Plant Sci 19(9):602–610

    Article  PubMed  CAS  Google Scholar 

  • Okechukwu EC, Agbo CU, Uguru MI, Ogbonnaya FC (2016) Germplasm evaluation of heat tolerance in bread wheat in Tel Hadya, Syria. Chil J Agric Res 76(1):9–17

    Article  Google Scholar 

  • Olmstead AL, Rhode PW (2002) The red queen and the hard reds: productivity grown in American wheat 1800–1940. J Econ Hist 62:929–966

    Article  Google Scholar 

  • Ouaja M, Aouini L, Bahri B, Ferjaoui S, Medini M, Marcel TC, Hamza S (2020) Identification of valuable sources of resistance to Zymoseptoria tritici in the Tunisian durum wheat landraces. Eur J Plant Pathol 156(2):647–661

    Article  CAS  Google Scholar 

  • Oak MD, Tamhankar SA (2017) 1BL/1RS translocation in durum wheat and its effect on end use quality traits. J Plant Biochem Biot 26(1):91–96

    Article  CAS  Google Scholar 

  • Ozberk I, Atay S, Altay F, Cabi E, Ozkan H, Atli A (2016) The Wheat Atlas of Turkey. (World Wildlife Fund), Istanbul (in Turkish)

    Google Scholar 

  • Ozer G, Paulitz TC, Imren M, Alkan M, Muminjanov H, Dababat AA (2020) Identity and Pathogenicity of Fungi Associated with Crown and Root Rot of Dryland Winter Wheat in Azerbaijan. Plant Disease 104:2149–2157

    Article  CAS  PubMed  Google Scholar 

  • Özkan H, Brandolini A, Schäfer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol Evol 19(10):1797–1801

    Article  PubMed  Google Scholar 

  • Özkan H, Willcox G, Graner A, Salamini F, Kilian B (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58(1):11–53

    Article  Google Scholar 

  • Pasam RK, Bansal U, Daetwyler HD, Forrest KL, Wong D, Petkowski J, Willey N, Randhawa M, Chhetri M, Miah H, Tibbits J, Bariana H, Hayden MJ (2017) Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches. Theor Appl Genet 130(4):777–793

    Article  CAS  PubMed  Google Scholar 

  • Peng JH, Sun D, Nevo E (2011a) Domestication evolution, genetics and genomics in wheat. Mol Breed 28:281–301

    Article  CAS  Google Scholar 

  • Peng ZS, Li X, Yang ZJ, Liao ML (2011b) A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet Mol Res 10:2349–2357

    Article  CAS  PubMed  Google Scholar 

  • Peusha H, Lebedeva T, Prilinn O, Enno T (2002) Genetic analysis of durable powdery mildew resistance in a common wheat line. Hereditas 136:201–206

    Article  PubMed  Google Scholar 

  • Pinto RS, Molero G, Reynolds MP (2017) Identification of heat tolerant wheat lines showing genetic variation in leaf respiration and other physiological traits. Euphytica 213(3):76

    Article  CAS  Google Scholar 

  • Poersch-Bortolon LB, Pereira JF, Nhani Junior A, Gonzáles HHS, Torres GAM, Consoli L, Arenhart RA, Bodanese-Zanettini MH, Margis-Pinheiro M (2016) Gene expression analysis reveals important pathways for drought response in leaves and roots of a wheat cultivar adapted to rainfed cropping in the Cerrado biome. Genet Mol Biol 39(4):629–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov C, Hondru N, Bărbulescu A, Vonica I, Mărgărit G (1988) Species of aphids attacking wheat and barley crops. Analele Institutului de Cercetări pentru Cereale și Plante Tehnice, Fundulea 56:379–384

    Google Scholar 

  • Pu Z, Pei Y, Yang J, Ma J, Li W, Liu D, Wang J, Wei Y, Zheng Y (2018) A QTL located on chromosome 3D enhances the selenium concentration of wheat grain by improving phytoavailability and root structure. Plant and Soil 425(1-2):287–296

    Article  CAS  Google Scholar 

  • Pugsley AT (1971) A genetic analysis of the spring-winter habit of growth in wheat. Aust J Agr Res 22:21–23

    Article  Google Scholar 

  • Pugsley AT (1972) Additional genes inhibiting winter habit in wheat. Euphytica 21:547–552

    Article  Google Scholar 

  • Qaseem MF, Qureshi R, Muqaddasi QH, Shaheen H, Kousar R, Röder MS (2018) Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress. PLoS One 13:6

    Article  CAS  Google Scholar 

  • Qiang LI, Wang ZR, Ding LI, Wei JW, Qiao WC, Meng XH, Sun SI, Li HM, Zhao MH, Chen XM, Zhao FW (2018) Evaluation of a new method for quantification of heat tolerance in different wheat cultivars. J Integr Agric 17(4):786–795

    Article  Google Scholar 

  • Qie Y, Sheng Y, Xu H, Jin Y, Ma F, Li L, Li X, An D (2019) Identification of a new powdery mildew resistance gene pmDHT at or closely linked to the Pm5 locus in the Chinese wheat landrace Dahongtou. Plant disease 103(10):2645–2651

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring× SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110(5):865–880

    Article  CAS  PubMed  Google Scholar 

  • Quisenberry KS, Reitz LP (1974) Turkey wheat: The cornerstone of an empire. Agric Hist 48:98–110

    Google Scholar 

  • Qureshi N, Bariana H, Kolmer JA, Miah H, Bansal U (2017) Genetic and molecular characterization of leaf rust resistance in two durum wheat landraces. Phytopathology 107(11):1381–1387

    Google Scholar 

  • Qureshi N, Bariana H, Kumran VV, Muruga S, Forrest KL, Hayden MJ, Bansal U (2018) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet 131(5):1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Rahmatov M, Otambekova M, Muminjanov H, Rouse MN, Hovmøller MS, Nazari K, Steffenson BJ, Johansson E (2019) Characterization of stem, stripe and leaf rust resistance in Tajik bread wheat accessions. Euphytica 215(3):1–22

    Article  CAS  Google Scholar 

  • Ram S, Govindan V (2020) Improving wheat nutritional quality through biofortification. In: Igrejas G, Ikeda TM, Guzman C (eds) Wheat quality for improving processing and human health. Springer, Switzerland, pp 205–224

    Chapter  Google Scholar 

  • Rasheed A, Xia X, Mahmood T, Quraishi UM, Bux AAH, Mahmood Z, Mirza JI, Mujeeb-Kazi A, He Z (2016) Comparison of economically important loci in landraces and improved wheat cultivars from Pakistan. Crop Sci 56:287–301

    Article  CAS  Google Scholar 

  • Rawson HM, Richards RA, Munns R (1988) An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. Aust J Agr Res 39:759–772

    Article  Google Scholar 

  • Reitz LP, Salmon SC (1968) Origin, history, and use of Norin 10 wheat. Crop Sci 8:686–689

    Article  Google Scholar 

  • Ren Y, Xu Y, Teng W, Li B, Lin T (2018) QTLs for seedling traits under salinity stress in hexaploid wheat. Cienc Rural 48(3):e20170446

    Article  CAS  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58(2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Reynolds MP, Borlaug NE (2006a) Applying innovations and new technologies for international collaborative wheat improvement. J Agr Sci-Cambridge 144:95

    Article  Google Scholar 

  • Reynolds MP, Borlaug NE (2006b) Impacts of breeding on international collaborative wheat improvement. J Agr Sci-Cambridge 144:3–17

    Article  Google Scholar 

  • Riaz A, Athiyannan N, Periyannan S, Afanasenko O, Mitrofanova O, Aitken EA, Lagudah E, Hickey LT (2017) Mining Vavilov’s treasure chest of wheat diversity for adult plant resistance to Puccinia triticina. Plant disease 101(2):317–323

    Article  PubMed  Google Scholar 

  • Ribaut JM, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3(6):236–239

    Article  Google Scholar 

  • Ribeiro M, Carvalho C, Carnide V, Guedes-Pinto H, Igrejas G (2011) Towards allelic diversity in the storage proteins of old and currently growing tetraploid and hexaploid wheats in Portugal. Genet Resour Crop Evol 58:1051–1073

    Article  CAS  Google Scholar 

  • Roelfs A, Huerto-Espino J, Marshall D (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Rola EL, De Vallavieille-Pope C, Leconte M, Nazari K (2019) Diversity of genes for resistance to stripe rust in wheat elite lines, commercial varieties and landraces from Lebanon and Syria. Phytopathologia Mediterranea 58(3):607–627

    Google Scholar 

  • Roselló M, Royo C, Álvaro F, Villegas D, Nazco R, Soriano JM (2018) Pasta-making quality QTLome from Mediterranean durum wheat landraces. Front Plant Sci 9:1512

    Article  PubMed  PubMed Central  Google Scholar 

  • Roshanzamir H, Kordenaeej A, Bostani A (2013) Mapping QTLs related to Zn and Fe concentrations in bread wheat (Triticum aestivum) grain using microsatellite markers. Iran J Genet Plant Breed 2:10–17

    Google Scholar 

  • Royo C, Briceño-Félix GA (2011a) Spanish wheat pool. In: Bojean AP, Angus WJ, van Ginkel M (eds) The world wheat book. A history of wheat breeding, vol 2. Lavoisier, Paris, pp 121–154

    Google Scholar 

  • Royo C, Dreisigacker S, Soriano JM, Lopes MS, Ammar K, Villegas D (2020) Allelic variation at the vernalization response (Vrn-1) and photoperiod sensitivity (Ppd-1) genes and their association with the development of durum wheat landraces and modern cultivars. Front Plant Sci 11:838

    Article  PubMed  PubMed Central  Google Scholar 

  • Royo C, Briceño-Félix GA (2011b) Spanish wheat pool. In: Bojean AP, Angus WJ, van Ginkel M (eds) The world wheat book. A history of wheat breeding. Lavoisier Publishing, Paris, pp 121–154

    Google Scholar 

  • Ruiz M, Giraldo P, Royo C, Villegas D, Jose Aranzana M, Carrillo JM (2012) Diversity and genetic structure of a collection of spanish durum wheat landraces. Crop Sci 52(5):2262–2275

    Article  Google Scholar 

  • Saini DK, Devi P, Kaushik P (2020) Advances in genomic interventions for wheat biofortification: a review. Agronomy 10(1):62

    Article  CAS  Google Scholar 

  • Salvi S, Porfiri O, Ceccarelli S (2013) Nazareno Strampelli, the ‘Prophet’ of the green revolution. J Agr Sci-Cambridge 151:1–5

    Article  Google Scholar 

  • Sansaloni C, Franco J, Santos B, Percival-Alwyn L, Singh S, Petroli C, Campos J, Dreher K, Payne T, Marshall D, Kilian B (2020) Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat Commun 11:1–2

    Article  CAS  Google Scholar 

  • Sareen S, Tyagi BS, Sarial AK, Tiwari V, Sharma I (2014) Trait analysis, diversity, and genotype x environment interaction in some wheat landraces evaluated under drought and heat stress conditions. Chil J Agric Res 74(2):135–142

    Article  Google Scholar 

  • Schmidt AL, McIntyre CL, Thompson J, Seymour NP, Liu CJ (2005) Quantitative trait loci for root lesion nematode (Pratylenchus thornei) resistance in Middle-Eastern landraces and their potential for introgression into Australian bread wheat. Aust J Agr Res 56(10):1059–1068

    Article  CAS  Google Scholar 

  • Schmidt J, Tricker PJ, Eckermann P, Kalambettu P, Garcia M, Fleury DL (2020) Novel alleles for combined drought and heat stress tolerance in wheat. Front Plant Sci 10:1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott PR, Hollins TW (1974) Effects of eyespot on the yield of winter wheat. Ann Appl Biol 78(3):269–279

    Article  Google Scholar 

  • Shahzad A, Ahmad M, Iqbal M, Ahmed I, Ali GM (2012) Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genet Mol Res 11(1):679–692

    Article  CAS  PubMed  Google Scholar 

  • Shamaya NJ, Shavrukov Y, Langridge P, Roy SJ, Tester M (2017) Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces. BMC Plant Biol 17(1):209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma DK, Torp AM, Rosenqvist E, Ottosen CO, Andersen SB (2017) QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for Fv/Fm in wheat. Front Plant Sci 8:1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Shavrukov Y, Langridge P, Tester M (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breed Sci 59(5):671–678

    Article  CAS  Google Scholar 

  • Shi R, Li H, Tong Y, Jing R, Zhang F, Zou C (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant and Soil 306:95–104

    Article  CAS  Google Scholar 

  • Singh R, Govindan V, Andersson MS (2017) Zinc-Biofortified Wheat: Harnessing Genetic Diversity for Improved Nutritional Quality. Sci Br Biofortif Ser 1:1–4

    Google Scholar 

  • Smale M (1996) Understanding global trends in the use of wheat diversity and international flows of wheat genetic resources. CIMMYT, Mexico

    Google Scholar 

  • Smale, M. and McBride, T., 1996. Understanding global trends in the use of wheat diversity and international flows of wheat genetic resources: part 1. CIMMYT 1995/96 World Wheat Facts and Trends: Understanding Global Trends in the Use of Wheat Diversity and International Flows of Wheat Genetic Resources (No. Look under series title. CIMMYT.). Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), Mexico

    Google Scholar 

  • Sofalian O, Chaparzadeh N, Javanmard A, Hejazi MS (2008) Study the genetic diversity of wheat landraces from northwest of Iran based on ISSR molecular markers. Int J Agric Biol 10:466–468

    CAS  Google Scholar 

  • Soriano JM, Villegas D, Aranzana MJ, García del Moral LF, Royo C (2016) Genetic structure of modern durum wheat cultivars and Mediterranean landraces matches with their agronomic performance. PLoS One 11:e0160983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soriano JM, Villegas D, Sorrells MR, Royo C (2018) Durum wheat landraces from east and west regions of the Mediterranean basin are genetically distinct for yield components and phenology. Front Plant Sci 9:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Stelmakh AF (1990) Geographic distribution of Vrn-genes in landraces and improved varieties of spring bread wheat. Euphytica 45:113–118

    Article  Google Scholar 

  • Sthapit J, Newcomb M, Bonman JM, Chen X, See DR (2014) Genetic diversity for stripe rust resistance in wheat landraces and identification of accessions with resistance to stem rust and stripe rust. Crop Sci 54(5):2131–2139

    Article  Google Scholar 

  • Sun H, Hu J, Song W, Qiu D, Cui L, Wu P, Zhang H, Liu H, Li L, Qu Y, Li Y, Li T, Cheng W, Zhou Y, Liu Z, Li J, Li H (2018) Pm61: A recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theor Appl Genet 131(10):2085–2097

    Article  CAS  PubMed  Google Scholar 

  • Sun QM, Zhou RH, Gao LF, Zhao GY, Jia JZ (2009) The characterization and geographical distribution of the genes responsible for vernalization requirement in Chinese bread wheat. J Integr Plant Biol 51:423–432

    Article  PubMed  Google Scholar 

  • Tadesse W, Amri A, Ogbonnaya FC, Sanchez-Garcia M, Sohail Q, Baum M (2016) Wheat. In: Mohar S, Upadhyaya H (eds) Genetic and genomic resources for grain cereals improvement. Academic Press, Oxford, UK, pp 81–124

    Chapter  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant Physiology, 4th edn. Sinauer Associates Inc Publishers, Sunderland

    Google Scholar 

  • Talas F, Longin F, Miedaner T (2011) Sources of resistance to Fusarium head blight within Syrian durum wheat landraces. Plant breeding 130(3):398–400

    Article  Google Scholar 

  • Tan C, Li G, Cowger C, Carver BF, Xu X (2018) Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356. Theor Appl Genet 131(5):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Tan C, Li G, Cowger C, Carver BF, Xu X (2019) Characterization of Pm63, a powdery mildew resistance gene in Iranian landrace PI 628024. Theor Appl Genet 132(4):1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Tehseen MM, Tonk FA, Tosun M, Amri A, Sansaloni CP, Kurtulus E, Yazbek M, Al-Sham’aa K, Ozseven I, Safdar LB, Shehadeh A, Nazari K (2020) Genome Wide Association Study of Resistance to PstS2 and Warrior Races of Stripe (Yellow) Rust in Bread Wheat Landraces. bioRxiv

    Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S (2018) NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato. Plant Biotechnol J 16(2):354–366

    Article  CAS  PubMed  Google Scholar 

  • Thompson AL, Smiley RW, Paulitz TC, Garland-Campbell K (2016) Identification of resistance to Pratylenchus neglectus and Pratylenchus thornei in Iranian landrace accessions of wheat. Crop Sci 56(2):654–672

    Article  CAS  Google Scholar 

  • Thompson JP, O’reilly MM, Clewett TG (2009) Resistance to the root-lesion nematode Pratylenchus thornei in wheat landraces and cultivars from the West Asia and North Africa (WANA) region. Crop Pasture Sci 60(12):1209–1217

    Article  Google Scholar 

  • Thompson JP, Seymour NP (2011) Inheritance of resistance to root-lesion nematode (Pratylenchus thornei) in wheat landraces and cultivars from the West Asia and North Africa (WANA) region. Crop Pasture Sci 62(1):82–93

    Article  Google Scholar 

  • Toor AK, Bansal UK, Bhardwaj S, Badebo A, Bariana HS (2013) Characterization of stem rust resistance in old tetraploid wheat landraces from the Watkins collection. Genet Resour Crop Evol 60(7):2081–2089

    Article  CAS  Google Scholar 

  • Toreti A, Cronie O, Zampieri M (2019) Concurrent climate extremes in the key wheat producing regions of the world. Sci Rep 9:5493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Touzy G, Rincent R, Bogard M, Lafarge S, Dubreuil P, Mini A, Deswarte JC, Beauchene K, Le Gouis J, Praud S (2019) Using environmental clustering to identify specific drought tolerance QTLs in bread wheat (T. aestivum L.). Theor Appl Genet 132(10):2859–2880

    Article  CAS  PubMed  Google Scholar 

  • Turner AS, Faure S, Zhang Y, Laurie DA (2013) The effect of day-neutral mutations in barley and wheat on the interaction between photoperiod and vernalization. Theor Appl Genet 126:2267–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah S, Bramley H, Daetwyler H, He S, Mahmood T, Thistlethwaite R, Trethowan R (2018) Genetic contribution of emmer wheat (Triticum dicoccon Schrank) to heat tolerance of bread wheat. Front Plant Sci 9:1529

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdez VA, Byrne PF, Lapitan NL, Peairs FB, Bernardo A, Bai G, Haley SD (2012) Inheritance and genetic mapping of Russian wheat aphid resistance in Iranian wheat landrace accession PI 626580. Crop Sci 52(2):676–682

    Article  CAS  Google Scholar 

  • Valluru R, Reynolds MP, Davies WJ, Sukumaran S (2017) Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol 214(1):271–283

    Article  CAS  PubMed  Google Scholar 

  • Van Oosten MJ, Costa A, Punzo P, Landi S, Ruggiero A, Batelli G, Grillo S (2016) Genetics of drought stress tolerance in crop plants. In Drought Stress Tolerance in Plants, vol 2. Springer, Cham, pp 39–70

    Google Scholar 

  • Varella AC, Weaver DK, Blake NK, Hofland ML, Heo HY, Cook JP, Lamb PF, Jordan KW, Akhunov E, Chao S, Talbert LE (2019) Analysis of recombinant inbred line populations derived from wheat landraces to identify new genes for wheat stem sawfly resistance. Theor Appl Genet 132(8):2195–2207

    Article  CAS  PubMed  Google Scholar 

  • Varella AC, Weaver DK, Cook JP, Blake NK, Hofland ML, Lamb PF, Talbert LE (2017) Characterization of resistance to the wheat stem sawfly in spring wheat landrace accessions from targeted geographic regions of the world. Euphytica 213(7):153

    Article  Google Scholar 

  • Vats P, Banerjee UC (2004) Production studies and catalytic properties of phytases (myo-inositol hexakisphosphate phosphohydrolases): an overview. Enzyme Microb Technol 35(1):3–14

    Article  CAS  Google Scholar 

  • Veraverbeke WS, Delcour JA (2002) Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit Rev Food Sci Nutr 42:179–208

    Article  CAS  PubMed  Google Scholar 

  • Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint Pierre C, Ortiz C, Sneller C, Tattaris M, Guzman C, Sansaloni CP (2016a) Unlocking the genetic diversity of Creole wheats. Sci Rep 6:23092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint Pierre C, Cynthia Ortiz C, Clay Sneller C, Maria Tattaris M, Carlos Guzman C, Carolina Paola Sansaloni CP, Ellis M, Fuentes-Davila G, Reynolds M, Sonder K, Singh P, Payne T, Wenzl P, Sharma A, Bains NS, Singh GP, Crossa J, Singh S (2016b) Unlocking the genetic diversity of Creole wheats. Sci Rep 6:23092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa TC, Maxted N, Scholten M, Ford-Lloyd B (2005) Defining and identifying crop landraces. Plant Genet Res 3(3):373–384

    Article  Google Scholar 

  • Vishwakarma MK, Arun B, Mishra VK, Yadav PS, Kumar H, Joshi AK (2016) Marker-assisted improvement of grain protein content and grain weight in Indian bread wheat. Euphytica 208:313–321

    Article  CAS  Google Scholar 

  • Von Rünker K (1908) Die Systematischeeinteilung und Benen-ung der Getreidesortenfu¨rpr aktische Zwecke. Jahrbuch der Deutschenlandwirtschafts-Gesellschaft 23:137–167

    Google Scholar 

  • Wamalwa MN, Owuoche J, Ogendo J, Wanyera R (2019) Multi-Pathotype Testing of Selected Kenyan Wheat Germplasm and Watkin Landraces for Resistance to Wheat Stripe Rust (Puccinia striiformis f. sp tritici). Races Agronomy 9(11):770

    Article  CAS  Google Scholar 

  • Wamalwa M, Tadesse Z, Muthui L, Yao N, Zegeye H, Randhawa M, Wanyera R, Uauy C, Shorinola O (2020) Allelic diversity study of functional genes in East Africa bread wheat highlights opportunities for genetic improvement. Mol Breedi 40(11):1–14

    Google Scholar 

  • Wang S, Asuke S, Vy TTP, Inoue Y, Chuma I, Win J, Kato K, Tosa Y (2018a) A new resistance gene in combination with Rmg8 confers strong resistance against Triticum isolates of Pyricularia oryzae in a common wheat landrace. Phytopathology 108(11):1299–1306

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Peng H, Liu G, Xie C, Ni Z, Yang T, Liu Z, Sun Q (2010) Identification and molecular mapping of a leaf rust resistance gene in spelt wheat landrace Altgold. Euphytica 174(3):371–375

    Article  CAS  Google Scholar 

  • Wang Z, Huang L, Wu B, Hu J, Jiang Z, Qi P, Zheng Y, Liu D (2018b) Characterization of an integrated active Glu-1Ay allele in common wheat from wild emmer and its potential role in flour improvement. Int J Mol Sci 19:E923

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li H, Zhang D, Guo L, Chen J, Chen Y, Wu Q, Xie J, Zhang Y, Sun Q, Dvorak J, Luo M, Liu Z (2015) Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor Appl Genet 128(2):365–373

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ren J, Du Z, Che M, Zhang Y, Quan W, Jiang X, Ma Y, Zhao Y, Zhang Z (2019) Identification of a major QTL on chromosome arm 2AL for reducing yellow rust severity from a Chinese wheat landrace with evidence for durable resistance. Theor Appl Genet 132(2):457–471

    Article  CAS  PubMed  Google Scholar 

  • Ward RW, Yang ZL, Kim HS, Yen C (1998) Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia. Theor Appl Genet 96:312–318

    Article  CAS  Google Scholar 

  • Wei YM, Hou YC, Yan ZH, Wu W, Zhang ZQ, Liu DC, Zheng YL (2005) Microsatellite DNA polymorphism divergence in Chinese wheat (Triticum aestivum L.) landraces highly resistant to Fusarium head blight. J Appl Genet 46(1):3–9

    PubMed  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593

    Article  PubMed  CAS  Google Scholar 

  • WHO (2009) Global health risks, mortality and burden of disease attributable to selected major risks. Geneva, Switzerland, WHO

    Google Scholar 

  • Witcombe JR, Joshi A, Joshi KD, Sthapit BR (1996) Farmer Participatory Crop Improvement. I. Varietal Selection and Breeding Methods and Their Impact on Biodiversity. Exp Agric 32(04):445–460

    Article  Google Scholar 

  • Worland AJ, Korzun V, Röder MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    Article  CAS  Google Scholar 

  • Wu L, Xia X, Rosewarne GM, Zhu H, Li S, Zhang Z, He Z (2015) Stripe rust resistance gene Yr18 and its suppressor gene in Chinese wheat landraces. Plant Breed 134(6):634–640

    Article  CAS  Google Scholar 

  • Wu XL, Wang JW, Cheng YK, Ye XL, Li W, Pu ZE, Jiang QT, Wei YM, Deng M, Zheng YL, Chen GY (2016) Inheritance and molecular mapping of an all-stage stripe rust resistance gene derived from the Chinese common wheat landrace “Yilongtuomai”. J Hered 107(5):463–470

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Jia X, Wang H, Zhao R, Fang Y, Gao R, Wu Z, Cao A, Wang J, Xue Z, Zhao W, Kang J, Chen Q, Chen P, Wang X (2011) A fast-neutron induced chromosome fragment deletion of 3BS in wheat landrace Wangshuibai increased its susceptibility to Fusarium head blight. Chromosome Res 19(2):225–234

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Jin X, Jia X, Wang H, Cao A, Zhao W, Pei H, Xue Z, He L, Chen Q, Wang X (2013) Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics 14(1):1–19

    Article  CAS  Google Scholar 

  • Xu H, Yi Y, Ma P, Qie Y, Fu X, Xu Y, Zhang X, An D (2015) Molecular tagging of a new broad-spectrum powdery mildew resistance allele Pm2c in Chinese wheat landrace Niaomai. Theor Appl Genet 128(10):2077–2084

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Li Q, Ma Z, Fan J, Zhou Y (2018) Molecular mapping of powdery mildew resistance gene PmSGD in Chinese wheat landrace Shangeda using RNA-seq with bulk segregant analysis. Mol Breed 38(3):23

    Article  CAS  Google Scholar 

  • Xu X, Liu W, Liu Z, Fan JR, Zhou Y (2020) Mapping powdery mildew resistance gene pmYBL on chromosome 7B of Chinese Wheat (Triticum aestivum L.) Landrace Youbailan. Plant Dis 104(9):2411–2417

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, An D, Liu D, Zhang A, Xu H, Li B (2012) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crop Res 138:57–62

    Article  Google Scholar 

  • Xue F, Wang C, Li C, Duan X, Zhou Y, Zhao N, Wang Y, Ji W (2012) Molecular mapping of a powdery mildew resistance gene in common wheat landrace Baihulu and its allelism with Pm24. Theor Appl Genet 125(7):1425–1432

    Article  CAS  PubMed  Google Scholar 

  • Xue F, Zhai WW, Duan XY, Zhou YL, Ji WQ (2009) Microsatellite mapping of powdery mildew resistance gene in wheat landrace Xiaobaidong. Acta Agron Sin 34:1193–1198

    Google Scholar 

  • Xynias IN, Kozub NA, Sozinov IA (2011) Analysis of hellenic durum wheat Triticum turgidum L. var. durum germplasm using gliadin and high-molecular-weight glutenin subunit loci. Cereal Res Commun 39:415–425

    Article  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100:6263–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeken MZ, Akpolat H, Karaköy T, Çiftçi V (2018) Assessment of Mineral Content Variations for Biofortification of the Bean Seed. Int J Agri Wild Sci 4(2):261–269

    Google Scholar 

  • Yen C, Luo MC, Yang JL (1988) The origin of the Tibetan weedrace of hexaploid wheat, Chinese Spring, Chengdu-guang-tou and other landraces of the white wheat complex from China. In: Miller TE, Koebner RMD (eds.) Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, pp 175–179

    Google Scholar 

  • Yu S, Wu J, Wang M, Shi W, Xia G, Jia J, Kang Z, Han D (2020) Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J. https://doi.org/10.1016/j.cj.2020.03.007

  • Yuan FP, Zeng QD, Wu JH, Wang QL, Yang ZJ, Liang BP, Kang ZS, Chen XH, Han DJ (2018) QTL mapping and validation of adult plant resistance to stripe rust in Chinese wheat landrace Humai 15. Front Plant Sci 9:968

    Article  PubMed  PubMed Central  Google Scholar 

  • Zampieri M, Ceglar A, Dentener F, Toreti A (2017) Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ Res Lett 12(6):064008

    Article  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

  • Zeven AC (1999) The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review. Euphytica 110:181–191

    Article  Google Scholar 

  • Zeven AC (2000) Traditional maintenance breeding of landraces: 1. Data by crop. Euphytica 116:65–85

    Article  Google Scholar 

  • Zhang K, Wang J, Qin H, Wei Z, Hang L, Zhang P, Reynolds M, Wang D (2019a) Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height, time to heading and yield traits in common wheat. The Crop Journal 7:845–856

    Article  Google Scholar 

  • Zhang P, Gebrewahid TW, Zhou Y, Ll Q, LI Z, LIu D (2019b) Seedling and adult plant resistance to leaf rust in 46 Chinese bread wheat landraces and 39 wheat lines with known Lr genes. J Integr Agric 18(5):1014–1023

    Article  CAS  Google Scholar 

  • Zhang X, Pan H, Bai G (2012) Quantitative trait loci responsible for Fusarium head blight resistance in Chinese landrace Baishanyuehuang. Theor Appl Genet 125(3):495–502

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yang S, Zhou Y, He Z, Xia X (2006) Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica 152:109–116

    Article  CAS  Google Scholar 

  • Zhang XK, Xiao YG, Zhang Y, Xia XC, Dubcovsky J, He ZH (2008) Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci 48:458–470

    Article  CAS  Google Scholar 

  • Zhao C, Cui F, Wang X, Shan S, Li X, Bao Y, Wang H (2012) Effects of 1BL/1RS translocation in wheat on agronomic performance and quality characteristics. Field Crops Res 127:79–84

    Google Scholar 

  • Zhao FJ, Su YH, Dunham SJ, Rakszegi M, Bedo Z, McGrath SP, Shewry PH (2009) Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci 49:290–295

    Article  CAS  Google Scholar 

  • Zhou Y, Chen Z, Cheng M, Chen J, Zhu T, Wang R, Liu Y, Qi P, Chen G, Jiang Q, Wei Y, Luo MC, Nevo E, Allaby RG, Liu D, Wang J, Dvorak J, Zheng Y (2018) Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotechnol J 16(1):280–291

    Article  CAS  PubMed  Google Scholar 

  • Ziv O, Eyal Z (1977) Assessment of yield component losses caused in plants of spring wheat cultivars by selected isolates of septoria tritici. Phytopathology 68:791–796

    Article  Google Scholar 

  • Zurn JD, Newcomb M, Rouse MN, Jin Y, Chao S, Sthapit J, See DR, Wanyera R, Njau P, Bonman JM, Brueggeman R, Acevedo M (2014) High-density mapping of a resistance gene to Ug99 from the Iranian landrace PI 626573. Molecular breeding 34(3):1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadeem, M.A. et al. (2021). Contribution of Landraces in Wheat Breeding. In: Zencirci, N., Baloch, F.S., Habyarimana, E., Chung, G. (eds) Wheat Landraces. Springer, Cham. https://doi.org/10.1007/978-3-030-77388-5_11

Download citation

Publish with us

Policies and ethics