Skip to main content
Log in

Genetic variation for resistance to septoria tritici blotch in Iranian tetraploid wheat landraces

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Septoria tritici blotch (STB), caused by Mycosphaerella graminicola has recently become one of the devastating diseases in Iran causing significant yield losses on most commercial bread and durum wheat cultivars. Iran is located in the Fertile Crescent, a region where wheat was historically domesticated; and, thus, landraces derived from this region are of considerable global interest for identification of new sources of resistance to various stresses. Here, we report on the resistance responses of 45 tetraploid wheat landraces collected from different provinces of Iran to eight M. graminicola isolates. In total 138 isolate-specific resistances were found among all interactions (n = 360). The highest number of specific resistances (30 out of 32 interactions) was found in wheat landraces collected from West Azarbaijan. In contrast, all landraces from Kordestan were highly susceptible to M. graminicola isolates and only one isolate-specific resistance was identified among 106 isolate-wheat interactions. Kermanshah landraces showed the highest resistance variation against different isolates. About 57 isolate-specific resistances were identified among 104 interactions. Ilam landraces were highly resistant to STB as 28 specific resistances were observed among 32 interactions. Markazi (n = 2) and Sistan-Baluchestan (n = 1) were susceptible to all isolates tested. Landraces from Lorestan were generally susceptible to isolates tested as 26 susceptible responses were observed out of 32 interactions. Our results indicate that landraces collected from the Fertile Crescent region may possess diverse effective resistance genes or valuable broad spectrum resistance genes, and that their identification is of interest and can be exploited in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrinbana, M., Mozafari, J., Shams-bakhsh, M., & Mehrabi, R. (2010). Genetic structure of Mycosphaerella graminicola populations in Iran. Plant Pathology, 59, 829–838.

    Article  Google Scholar 

  • Adhikari, T. B., Anderson, J. M., & Goodwin, S. B. (2003). Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology, 93, 1158–1164.

    Article  PubMed  CAS  Google Scholar 

  • Adhikari, T. B., Wallwork, H., & Goodwin, S. B. (2004a). Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to septoria tritici blotch in wheat. Crop Science, 44, 1403–1411.

    Article  CAS  Google Scholar 

  • Adhikari, T. B., Cavaletto, J. R., Dubcovsky, J., Gieco, J. O., Schlatter, A. R., & Goodwin, S. B. (2004b). Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathology, 94, 1198–1206.

    Article  CAS  Google Scholar 

  • Adhikari, T. B., Yang, X., Cavaletto, J. R., Hu, X., Buechley, G., Ohm, H. W., et al. (2004c). Molecular mapping of Stb1, a potentially durable gene for resistance to septoria tritici blotch in wheat. Theoretical and Applied Genetics, 109, 944–953.

    Article  CAS  Google Scholar 

  • Arraiano, L. S., & Brown, J. K. M. (2006). Identification of isolate-specific and partial resistance to septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathology, 55, 726–738.

    Article  Google Scholar 

  • Arraiano, L. S., Worland, A. J., Ellerbrook, C., & Brown, J. K. M. (2001). Chromosomal location of a gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in the hexaploid wheat ‘Synthetic 6x’. Theoretical and Applied Genetics, 103, 758–764.

    Article  CAS  Google Scholar 

  • Arraiano, L. S., Brading, P. A., Dedryver, F., & Brown, J. K. M. (2006). Resistance of wheat to septoria tritici blotch (Mycosphaerella graminicola) and associations with plant ideotype and the 1BL-1RS translocation. Plant Pathology, 55, 54–61.

    Article  Google Scholar 

  • Ballantyne, B., & Thomson, F. (1995). Pathogenic variation in Australian isolates of Mycosphaerella graminicola. Australian Journal of Agricultural Research, 46, 921–934.

    Article  Google Scholar 

  • Brading, P. A., Verstappen, E. C. P., Kema, G. H. J., & Brown, J. K. M. (2002). A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology, 92, 439–445.

    Article  PubMed  Google Scholar 

  • Brown, J. K. M., Kema, G. H. J., Forrer, H. R., Verstappen, E. C. P., Arraiano, L. S., Brading, P. A., et al. (2001). Resistance of wheat cultivars and breeding lines to septoria tritici blotch caused by isolates of Mycosphaerella graminicola in field trials. Plant Pathology, 50, 325–338.

    Article  Google Scholar 

  • Chartrain, L., Brading, P. A., Widdowson, J. P., & Brown, J. K. M. (2004a). Partial resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars arina and riband. Phytopathology, 94, 497–504.

    Article  CAS  Google Scholar 

  • Chartrain, L., Brading, P. A., Makepeace, J. C., & Brown, J. K. M. (2004b). Sources of resistance to septoria tritici blotch and implications for wheat breeding. Plant Pathology, 53, 454–460.

    Article  Google Scholar 

  • Chartrain, L., Brading, P. A., & Brown, J. K. M. (2005a). Presence of the Stb6 gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathology, 54, 134–143.

    Article  CAS  Google Scholar 

  • Chartrain, L., Berry, S. T., & Brown, J. K. M. (2005b). Resistance of wheat line Kavkaz-K4500 L.6.A.4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathology, 95, 664–671.

    Article  CAS  Google Scholar 

  • Chartrain, L., Joaquim, P., Berry, S. T., Arraiano, L. S., Azanza, F., & Brown, J. K. M. (2005c). Genetics of resistance to septoria tritici blotch in the Portuguese wheat breeding line TE 9111. Theoretical and Applied Genetics, 110, 1138–1144.

    Article  CAS  Google Scholar 

  • Chartrain, L., Sourdille, P., Bernard, M., & Brown, J. K. M. (2009). Identification and location of Stb9, a gene for resistance to septoria tritici blotch in wheat cultivars Courtot and Tonic. Plant Pathology, 58, 547–555.

    Article  CAS  Google Scholar 

  • Cherif, M., Rezgui, S., Devaux, P., & Harrabi, M. (2007). Interaction between Rhynchosporium secalis and Pyrenophora teres in the field and identification of genotypes with double resistance in a doubled-haploid barley population. Journal of Phytopathology, 155, 90–96.

    Article  Google Scholar 

  • Cowger, C., Hoffer, M. E., & Mundt, C. C. (2000). Specific adaptation by Mycosphaerella graminicola to a resistant wheat cultivar. Plant Pathology, 49, 445–451.

    Article  Google Scholar 

  • Eyal, Z. (1999). The septoria tritici and stagonospora nodorum blotch diseases of wheat. European Journal of Plant Pathology, 105, 629–641.

    Article  Google Scholar 

  • Eyal, Z., & Levy, E. (1987). Variations in pathogenicity patterns of Mycosphaerella graminicola within Triticum Spp in Israel. Euphytica, 36, 237–250.

    Article  Google Scholar 

  • Eyal, Z., Amiri, Z., & Wahl, I. (1973). Physiologic specialization of Septoria tritici. Phytopathology, 63, 1087–1091.

    Article  Google Scholar 

  • Fraaije, B. A., Cools, H. J., Kim, S. H., Motteram, J., Clark, W. S., & Lucas, J. A. (2007). A novel substitution I381V in the sterol 14 alpha-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Molecular Plant Pathology, 8, 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Grieger, A., Lamari, L., & Brule-Babel, A. (2005). Physiologic variation in Mycosphaerella graminicola from western Canada. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 27, 71–77.

    Article  Google Scholar 

  • Kema, G. H. J., Annone, J. G., Sayoud, R., VanSilfhout, C. H., VanGinkel, M., & de Bree, J. (1996). Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. 1. Interactions between pathogen isolates and host cultivars. Phytopathology, 86, 200–212.

    Article  Google Scholar 

  • Kema, C. H. J., Verstappen, E. C. P., & Waalwijk, G. (2000). Avirulence in the wheat septoria tritici leaf blotch fungus Mycosphaerella graminicola is controlled by a single locus. Molecular Plant-Microbe Interactions, 13, 1375–1379.

    Article  PubMed  CAS  Google Scholar 

  • Leroux, P., Albertini, C., Gautier, A., Gredt, M., & Walker, A. S. (2007). Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Management Science, 63, 688–698.

    Article  PubMed  CAS  Google Scholar 

  • McCartney, C. A., Brule-Babel, A. L., & Lamari, L. (2002). Inheritance of race-specific resistance to Mycosphaerella graminicola in wheat. Phytopathology, 92, 138–144.

    Article  PubMed  CAS  Google Scholar 

  • McCartney, C. A., Brule-Babel, A. L., Lamari, L., & Somers, D. J. (2003). Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6. Theoretical and Applied Genetics, 107, 1181–1186.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349-+.

    Google Scholar 

  • Mehrabi, R., van der Lee, T., Waalwijk, C., & Kema, G. H. J. (2006). MgSlt2, a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth. Molecular Plant-Microbe Interactions, 19, 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Saadaoui, E. M. (1987). Physiological specialization of Septoria tritici in Morocco. Plant Disease, 71, 153–155.

    Article  Google Scholar 

  • Salamini, F., Ozkan, H., Brandolini, A., Schafer-Pregl, R., & Martin, W. (2002). Genetics and geography of wild cereal domestication in the Near East. Nature Reviews Genetics, 3, 429–441.

    PubMed  CAS  Google Scholar 

  • Sokal, R. R., & Rohlf, J. F. (1995). Biometry (3rd ed.). New York: Freeman.

    Google Scholar 

  • Stukenbrock, E. H., Banke, S., Javan-Nikkhah, M., & McDonald, B. A. (2007). Origin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation. Molecular Biology and Evolution, 24, 398–411.

    Article  PubMed  CAS  Google Scholar 

  • Torriani, S. F. F., Brunner, P. C., McDonald, B. A., & Sierotzki, H. (2009). QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Management Science, 65, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Van Ginkel, M., & Scharen, A. L. (1987). Generation mean analysis and heritabilities of resistance to septoria-tritici in durum-wheat. Phytopathology, 77, 1629–1633.

    Article  Google Scholar 

  • Williams, P. H. (1989). Screening for resistance to diseases. In A. H. D. Brown et al. (Eds.), The use of plant genetic resources. Cambridge. U. K: Cambridge University Press.

  • Wilson, J. P., Hess, D. E., Hanna, W. W., Kumar, K. A., & Gupta, S. C. (2004). Pennisetum glaucum subsp monodii accessions with Striga resistance in West Africa. Crop Protection, 23, 865–870.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank M. Tabib Ghaffari and GHJ Kema for their help in LSD analysis. National Plant Genebank of Iran is acknowledged for providing the wheat accessions. Seed and Plant Improvement Institute is acknowledged for providing facilities and support to carry out this project (No. 2-03-03-87100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Mehrabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghaneie, A., Mehrabi, R., Safaie, N. et al. Genetic variation for resistance to septoria tritici blotch in Iranian tetraploid wheat landraces. Eur J Plant Pathol 132, 191–202 (2012). https://doi.org/10.1007/s10658-011-9862-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9862-7

Keywords

Navigation