Skip to main content

Improving Wheat Nutritional Quality through Biofortification

  • Chapter
  • First Online:
Wheat Quality For Improving Processing And Human Health

Abstract

Wheat is an important cereal crop that contributes significantly to the human diet. Different parts of the wheat grain provide different nutrients. Wheat germ is rich in vitamins B and E, protein, unsaturated fats, minerals, and carbohydrates, while the bran consists mostly of insoluble carbohydrates, protein, traces of B vitamins and minerals, and some anti-nutritional factors such as phytic acid. The endosperm is the largest part of the grain and consists mainly of starch and protein. There are increasing concerns about the deficiency of vitamins and minerals in the human diet, a condition commonly referred to as “hidden hunger” that has serious and widespread consequences in developing countries where cereals are the main source of food and nutrition. The low bioavailability of essential micronutrients, especially iron and zinc in humans and some farm animals, contributes not only to micronutrient deficiency but also to phosphorus pollution. Existing interventions to provide micronutrients such as with pharmaceutical supplements or industrial fortification of food products are effective yet have some limitations particularly in rural settings. Biofortification, the production of new food crops with higher micronutrient densities, may be a more apt approach. For example, enhancing wheat micronutrient density and bioavailability could lead to both improved human health and more sustainable agriculture. This can be accomplished by understanding the genetic diversity of wheat iron and zinc content and the genetic and molecular factors underlying these traits. Fertilizer application to crops has the potential to complement the gains made through genetic biofortification. Progress made in both genetic and agronomic strategies for wheat iron and zinc biofortification including the enhancement of bioavailability will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aciksoz BS, Yazicici A, Ozturk L, Cakmak I (2011) Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant and Soil 349: 215–225.

    Article  CAS  Google Scholar 

  • Balmer Y, Vensel WH, Dupont FM, Buchanan BB, Hurkman WJ (2006) Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. Journal of Experimental Botany 57: 1591–1602.

    Article  CAS  PubMed  Google Scholar 

  • Baur X, Melching-Kollmuss S, Koops F, Strasburger K, Zober A (2002) IgE-mediated allergy to phytase – A new animal feed additive. Allergy 57: 943–945.

    Article  CAS  PubMed  Google Scholar 

  • Betschart AA (1988) Nutritional quality of wheat and wheat foods. In: Wheat Chemistry and Technology. Ed. Y. Pomeranz. St. Paul, Minnesota, USA. pp. 91–132.

    Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B, Holm P (2009) Iron transport, deposition and bioavailability in the wheat and barley grain. Plant and Soil 325: 15–24.

    Article  CAS  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B, Madsen LH, Darbani B, Noeparvar S, et al. (2012) Wheat ferritins: improving the iron content of the wheat grain. Journal of Cereal Science 56: 204–213.

    Article  CAS  Google Scholar 

  • Borrill P, Connorton JM, Balk J, Miller A, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Frontiers in Plant Science doi: https://doi.org/10.3389/fpls.2014.00053.

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin 32: 31S–40S.

    Article  Google Scholar 

  • Brinch-Pedersen H, Hatzack F, Stoger E, Arcalis E, Pontopidan K., Holm PB (2006) Heat-stable phytases in transgenic wheat (Triticum aestivum L.): Deposition pattern, thermostability and phytate hydrolysis. Journal of Agricultural and Food Chemistry 54 (13): 4624–4632.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification?. Plant and Soil 302: 1–17.

    Article  CAS  Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. Journal of Trace Elements in Medicine and Biology 23: 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Pfeiffer, WH, Mcclafferty B (2010) Biofortification of durum wheat with zinc andiron. Cereal Chemistry 87: 10–20.

    Article  CAS  Google Scholar 

  • Ciccolini V, Pellegrino E, Coccina A, Fiaschi AI, Cerretani D, Sgherri C, Quartacci MF, Ercoli L (2017) Biofortification with iron and zinc improves nutritional and nutraceutical properties of common wheat flour and bread. Journal of Agricultural and Food Chemistry 65 (27): 5443–5452.

    Article  CAS  PubMed  Google Scholar 

  • Connorton JM, Jones ER, Rodríguez-Ramiro I, Fairweather-Tait S, Uauy C, Balka J (2017) Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiology 174: 2434–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean M, et al. (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany 103: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, et al. (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyper accumulation. Plant Cell 24: 708–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, et al. (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiologia Plantarum 129: 635–643.

    Article  CAS  Google Scholar 

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technology and Biotechnology 44 (2): 125–140.

    CAS  Google Scholar 

  • Grusak MA, Penna DD (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annual Review Plant Physiology & Plant Molecular Biology 50: 133–161.

    Article  CAS  Google Scholar 

  • Habib M (2012) Effect of supplementary nutrition with Fe, Zn chelates and urea on wheat quality and quantity. African Journal of Biotechnology 11: 2661–2665.

    CAS  Google Scholar 

  • Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24: 724–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I (2010) Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Cereal Science 53: 118–125.

    Article  CAS  Google Scholar 

  • Lee S, Jeon JS, An G (2012) Iron homeostasis and fortification in rice. Journal of Plant Biology 55: 261–267.

    Article  CAS  Google Scholar 

  • Liu ZH, Wang HY, Wang XE, Zhang GP, Chen PD, Liu DJ (2007) Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. Journal of Cereal Science 45: 319–326.

    Article  CAS  Google Scholar 

  • Lopez HW, Krespine V, Lemaire A, Coudray C, Coudray CF, Messager A, Demigne C, Remesy C (2003) Wheat variety has a major influence on mineral bioavailability; studies in rats. Journal of Cereal Science 37: 257–266.

    Article  Google Scholar 

  • Lu L, Tian S, Zhang J, Yang X, Labavitch JM, Webb SM, et al. (2013) Effi-cient xylem transport and phloem remobilization of Znin the hyper accumulator plant species Sedumal fredii. New Phytologist 198: 721–731.

    Article  CAS  PubMed  Google Scholar 

  • Monasterio I, Graham R (2000) Breeding for trace minerals in wheat. Food Nutrition Bulletin 21(4): 392–396.

    Article  Google Scholar 

  • Mondal S, Rutkoski JE, Velu G, Singh PK, Crespo-Herrera LA, Guzmán C, et al. (2016). Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Frontiers in Plant Science 7: 991. doi: https://doi.org/10.3389/fpls.2016.00991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutangadura GB (2004) World Health Report 2002: Reducing risks, promoting healthy life. Geneva: World Health Organization.

    Google Scholar 

  • Nowack B, Schwyzer I, Schulin R (2008) Uptake of Zn and Fe by wheat (Triticum aestivum var. Greina) and transfer to the grain in the presence of chelating agents (Ethylene diamine disuccinic acid and Ethylene diamine tetra acetic acid). Journal of Agricultural and Food Chemistry 56: 4643–4649.

    Article  CAS  PubMed  Google Scholar 

  • Okot-Kotber, M, Yong KJ, Bagorogoza K, Liavoga A (2003) Phytase activity in extracts of flour and bran from wheat cultivars: enhanced extractability with ß- glucanase and endo-xylanase. Journal of Cereal Science 38: 307–315.

    Article  CAS  Google Scholar 

  • Oloffs K, Cossa J, Jeroch H (2000) The importance of native phytase activity in wheat on the phosphorus utilization in broilers and laying hens. Archiv fur Geflugelkunde 64(4): 157–161.

    CAS  Google Scholar 

  • Ortiz-Monasterio I, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science 46: 293–307.

    Article  CAS  Google Scholar 

  • Oury FX, Leenhardt F, Rémésy C, Chanliaud E, Duperrier B, Balfourier F, Charmet G (2006) Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. European Journal of Agronomy 25: 177–185.

    Article  CAS  Google Scholar 

  • Paltridge NG, Milham PJ, Ortiz-Monasterio JI, Velu G, Yasmin Z, Palmer LJ, Guild GE, Stangoulis JCR (2012) Energy-dispersive X-ray fluorescence spectrometry as a tool for zinc, iron and selenium analysis in whole grain wheat. Plant and Soil 361: 251–260.

    Article  CAS  Google Scholar 

  • Persson DP, deBang TC, Pedas PR, Kutman UB, Cakmak I, Andersen B (2016) Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytologist 211: 1255–1263.

    Article  CAS  PubMed  Google Scholar 

  • Ram S, Verma A, Sharma S (2010) Large variability exists in phytase levels among Indian wheat varieties and synthetic hexaploids. Journal of Cereal Science 52: 486–490.

    Article  CAS  Google Scholar 

  • Rengel Z, Römheld V (2000) Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency. Plant and Soil 222: 25–34.

    Article  CAS  Google Scholar 

  • Sazawal S, Dhingra U, Dhingra P, Dutta A, Deb S, Kumar J, Devi P, Prakash A (2018) Efficacy of high zinc biofortified wheat in improvement of micronutrient status, and prevention of morbidity among preschool children and women - a double masked, randomized, controlled trial. Nutrition Journal 17: 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, et al. (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497: 60–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BR, Timsina YN, Lind OC, Cagno S, Janssens K (2018) Zinc and iron concentration as affected by nitrogen fertilization and their localization in wheat grain. Frontiers in Plant Science 9: 307. doi: https://doi.org/10.3389/fpls.2018.00307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner T, Mosenthin R, Zimmermann B, Greiner R, Roth S (2009) Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar. Animal Feed Science and Technology 133 (3): 320–334.

    Google Scholar 

  • Timsina YN (2014) Effect of nitrogen fertilization on zinc and iron uptake and yield components of wheat. Master thesis, Norwegian University of Life Sciences, As, Akershus, 80.

    Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science 59: 365–372.

    Article  CAS  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J, Peña-Bautista RJ, Arun B, Mahendru-Singh A, Yaqub-Mujahid M, Sohu VS, Mavi GS, Crossa J, Alvarado G, Joshi AK, Pfeiffer WH (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Research 137: 261–267.

    Article  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Singh RP, Payne T (2011) Variation for grain micronutrients concentration in wheat core-collection accessions of diverse origin. Asian Journal of Crop Science 3: 43–48.

    Article  Google Scholar 

  • Velu, G, Singh RP, Crespo-Herrera L, Juliana P, Dreisigacker S, Valluru R (2018) Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. Scientific Reports 8: 13526. (https://www.nature.com/articles/s41598-018-31951-z).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velu G, Tutus Y, Gomez-Becerra HF, Hao Y, Demir L, Kara R, et al. (2016) QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant and Soil 411: 81–99. doi:https://doi.org/10.1007/s11104-016-3025-8.

    Article  CAS  Google Scholar 

  • Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint-Pierre C, et al. (2016) Unlocking the genetic diversity of Creole wheats. Scientific Reports 6: 23092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Science 180: 562–574.

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, House WA, ortiz-monasterio I, Cheng Z (2005) Potential for improving bioavailable zinc in wheat grain (Triticum species) through plant breeding. Journal of Agricultural and Food Chemistry 53: 2176–2180.

    Article  CAS  PubMed  Google Scholar 

  • WHO (2017) The world health report. World Health Organization, Geneva, Switzerland (accessed online June 1, 2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sewa Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ram, S., Govindan, V. (2020). Improving Wheat Nutritional Quality through Biofortification. In: Igrejas, G., Ikeda, T., Guzmán, C. (eds) Wheat Quality For Improving Processing And Human Health. Springer, Cham. https://doi.org/10.1007/978-3-030-34163-3_9

Download citation

Publish with us

Policies and ethics