Skip to main content
Log in

Detection of QTLs for grain protein content in durum wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 20 June 2006

Abstract

Grain protein content (GPC) of durum wheat (Triticum turgidum L. var. durum) is an important trait for the nutritional value of grain and for influencing the technological property of flour. Protein content is a quantitative trait negatively correlated with grain yield, thus increase in protein quantity usually results in yield reduction. This study was initiated to introgress alleles for high GPC from var. dicoccoides into durum wheat germplasm by the backcross inbred line (BIL) method and to identify molecular markers linked to high GPC alleles not associated with depressing effects on yield. The backcross line 3BIL-85 with high GPC and similar grain yield to the recurrent parent was backcrossed to Latino, and the generations F2, F3 and F4 were evaluated for GPC and yield per spike (GYS) in three field trials. Three QTLs with major effects on GPC were detected on chromosome arms 2AS, 6AS and 7BL, identified by the markers Xcfa2164, XP39M37 (250) and Xgwm577 , respectively. Multiple regression analysis indicated that the three QTLs explained all the genetic variances of the trait. The high GPC parental line 3BIL-85 was not significantly different from the recurrent parent Latino for GYS, but the phenotypic correlation coefficient between GPC and GYS had negative values (from −0.02 to −0.28) in each trial, although it was statistically significant only in the F3 progeny trial. No co-located QTL for GYS was detected, excluding the hypothesis that the putative QTLs for GPC were indirect QTLs for low grain yield. The negative protein-yield response could be due to: (a) co-location of grain yield per spike QTLs with reduced phenotypic effects not detectable by the experimental design or statistical procedures, or to (b) opposite pleiotropic gene effects due to the major bio-energetic requirements for synthesis of protein then carbohydrates. Mapping loci by BILs should enable the production of near-isogenic lines in which the individual effects of each QTL can be examined in detail without confounding variations due to other putative QTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bathia CR, Rabson R (1987) Relationship of grain yield and nutritional quality. In: Nutritional quality of cereal grains: genetic and agronomic improvement. Agronomy Monograph no. 28, ASA-CSSA-SSSA, Madison, WI 53711, USA, pp 11–43

  • Blanco A, De Giovanni C, Laddomada B, Sciancalepore A, Simeone R, Devos KM, Gale MD (1996) Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breed 115:310–316

    Article  Google Scholar 

  • Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R (2002) Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol 48:615–623

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Gadaleta A, Simeone R (2003) Variation for yield and quality components in durum wheat backcross inbred lines derived from ssp. dicoccoides. Aust J Agric Res 54:163–170

    Google Scholar 

  • Blanco A, Simeone R, Cenci A, Gadaleta A, Tanzarella OA, Porceddu E, Salvi S, Tuberosa R, Figliuolo G, Spagnoletti P, Roder MS, Korzun V (2004) Extention of the “Messapia x dicoccoides” linkage map of Triticum turgidum (L.) Thell. Cell Mol Biol Lett 9:529–541

    PubMed  CAS  Google Scholar 

  • Borner A, Schumann E, Furste A, Coster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • D’Egidio MG, Mariani BM, Nardi S, Novaro P, Cubadda R (1990) Chemical and technological variables and their relationships: a predictive value equation for pasta cooking quality. Cereal Chem 67:275–281

    Google Scholar 

  • Dholakia BB, Ammiraju JSS, Sandra DK, Singh H, Katti MV, Lagu MD, Tamhankar SA, Rao VS, Gupta VS, Dhaliwal HS, Ranjekar PK (2001) Molecular marker analysis of protein content using PCR-based marker in wheat. Biochem Genet 39:325–338

    Article  PubMed  CAS  Google Scholar 

  • El-Assal SE, Alonso-Blanco C, Peeters AJM, Raz V, Koorneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele for CRY2. Nat Genet 29:435–440

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpter KB, Tanksley SD (2000) Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder MS, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Joppa LR, Cantrell RG (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064

    Article  CAS  Google Scholar 

  • Joppa LR, Du C, Hart GE, Hareland GA (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    Article  CAS  Google Scholar 

  • Konzak CF (1977) Genetic control of the content, aminoacid composition and processing properties of proteins in wheat. Adv Genet 19:407–582

    Article  PubMed  CAS  Google Scholar 

  • Korzun V, Röder MS, Wandekake K, Pasqualone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MapMaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lecomte L, Saliba-Colombani V, Gautier A, Gomez-Jimenez MC, Duffé P, Buret M, Causse M (2004) Fine mapping of QTLs on cromosome 2 affecting the fruit architecture and composition of tomato. Mol Breed 13:1–14

    Article  CAS  Google Scholar 

  • Levy AA, Feldman M (1989) Location of genes for high grain protein percentage and other quantitative traits in wild wheat, T. turgidum var. dicoccoides. Euphytica 41:113–122

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesselli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Olmos S, Diestelfeld A, Chicaiza O, Schatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    Article  PubMed  CAS  Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Prasad M, Kumar N, Kulwal PL, Roder MS, Balyan HS, Dhaliwal HS, Roy JK, Gupta PK (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106:659–667

    PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy PH, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Simmonds NW (1995) The relation between yield and protein in cereal grain. J Sci Food Agric 67:309–315

    Article  CAS  Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of b-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    Article  CAS  Google Scholar 

  • Snape JW, Hyne V, Aitken K (1995) Targeting genes in wheat using marker-mediated approaches. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genetics Symp, Beijing, 20–25 July 1993, China Agric Scientech Press, Beijing, China pp 749–759

  • Somers JD, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and gene affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    Article  CAS  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Cadalen T, Tixier MH, Joudrier P, Gautier MF, Branlard G, Bernard S, Boeuf C, Bernard M (1999) Detection of QTL for bread making quality in wheat using molecular markers. In: Scarascia Mugnozza GT, Porceddu E, Pagnotta MA (eds) Genetics and breeding for crop quality and resistance. Kluwer , Netherlands, pp 361–366

    Google Scholar 

  • Stein IS, Sears RG, Hoseney RC, Cox TS, Gill BS (1992) Chromosomal location of genes influencing grain protein concentration and mixogram properties in Plainsman V winter wheat. Crop Sci 32:573–580

    Article  CAS  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity encodes the α-subunity of protein CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC, (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Vos P, Herges R, Blecker M, Reijans M, Van De Lee T, Hores M, Frijters A, Pop J, Pelman J, Kuiper M, Zabeau M (1995) AFLP a new technique for DNA fingerprinting. Nucl Acid Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Wehrhahn C, Allard RW (1965) The detection and measurement of the effects of individual genes involved in the inheritance of a quantitative character in wheat. Genetics 51:109–119

    PubMed  CAS  Google Scholar 

  • Zanetti S, Winzeler M, Feulillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research project was supported by grants from Ministero della Ricerca Scientifica e Tecnologica, project ‘PRIN 2003’ and from Ministero delle Politiche Agricole, Alimentari e Forestali, project ‘FRUMISIS’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blanco.

Additional information

Communicated by G. Wenzel

An erratum to this article can be found at http://dx.doi.org/10.1007/s00122-006-0313-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, A., Simeone, R. & Gadaleta, A. Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet 112, 1195–1204 (2006). https://doi.org/10.1007/s00122-006-0221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0221-6

Keywords

Navigation