Skip to main content
Log in

Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A population of 114 recombinant inbred lines (RILs), derived from the cross Opata85 × W7984, was used to genetically analyze the response of wheat to salt stress. This analysis resulted in the identification of 47 QTL mapping to all wheat chromosomes except 1B, 1D, 4B, 5D and 7D. Of these QTL, 10 were effective during the germination stage, and 37 at the seedling stage. Many of the traits related to salt tolerance mapped to common chromosome intervals, such as Xglk683–Xcdo460 on chromosome 3A, Xfbb168–Xbcd147 on chromosome 3B, Xcdo1081–Xfbb226 on chromosome 4DL and Xpsr106–Xfbb283 on chromosome 6DL. QTL located in the interval Xcdo1081–Xfbb226 (chromosome 4DL) were effective during the germination stage, whereas those in the interval Xfbb231.1–Xmwg916 (chromosome 6DL) were relevant to the seedling stage. The QTL in the intervals Xglk683–Xcdo460 (chromosome 3AS) and Xfbb168–Xbcd147 (chromosome 3BL) were effective at both the germination and seedling stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates LS (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Chiang HH, Dandekar AM (1995) Regulation of proline accumulation in Arabidopsis thaliana during development and in response to desiccation. Plant Cell Environ 18:1280–1290

    Article  CAS  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Dubcovsky J, Santa G, Epstein E, Luo MC, Dvorak J (1996) Mapping of the K/Na discrimination locus Knal in wheat. Theor Appl Genet 92:448–454

    Article  CAS  Google Scholar 

  • Dvorak J, Noaman MM, Gorham G (1994) Enhancement of the salt tolerance of Triticum turgiduml L. by the Knal locus transferred from the Triticum aestivum L. chromosome 4D by homologous recombination. Theor Appl Genet 87:872–877

    Google Scholar 

  • Ellis RP, Forster DC, Gordorn DC, Handley LL, Keith RP (2002) Phenotype/ genotype association for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot 53:1163–1173

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Foolad MR (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Jones RA (1993) Mapping salt tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192

    Article  CAS  Google Scholar 

  • Gong JM, He P, Qian Q, Chen LS, Zhu LH, Chen SY (1998) Mapping QTLs related salt tolerance in rice. Sci Bull 43:1847–1850

    Google Scholar 

  • Gorham J, Hardy C, Wyn Jones RG, Joppa LR, Law CN (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588

    Article  CAS  Google Scholar 

  • Gorham J, Wyn Jones RG, Bristol A (1990) Partial characterization of the trait for enhanced K/Na discrimination in the D genome of wheat. Planta 180:590–597

    Article  CAS  Google Scholar 

  • Gu XY, Mei MT, Yan XL (2000) Preliminary detection of quantitative trait loci for salt tolerance in rice. Chinese J Rice Sci 14:65–70

    Google Scholar 

  • Hanson AD, Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33:163–203

    Article  CAS  Google Scholar 

  • Koyama M, Levesley A, Koebner R, Flowers T,Yeo A (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    Article  PubMed  CAS  Google Scholar 

  • Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol II. Academic Press, London

  • Lee GJ, Boerma HR, Villagarcia MR, Zhou X, Carter TE, Li Z, Gibbs MO (2004) A major QTL conditioning salt tolerance in S-100 soybean and descent cultivars. Theor Appl Genet 109:1610–1619

    Article  PubMed  CAS  Google Scholar 

  • Lin HX, Zhu MZ, Yano M (2004) QTL for Na and K uptake of the shoot and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  PubMed  CAS  Google Scholar 

  • Lin HX,Yanagihara S, Zhuang JY, Senboku T, Zheng K, Yashima S (1998) Identification of QTL for salt tolerance in rice via molecular markers. Chinese J Rice Sci 12:72–78

    Google Scholar 

  • Liu X, Shi J, Zhang XY (2001) Screening salt tolerance germplasms and tagging the tolerance gene(s) using microsatellite (SSR) markers in wheat. Acta Bot Sin 48:948–954

    Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crop and the role of physiologically based selection traits. Plant Soil 247:93–105

    Article  CAS  Google Scholar 

  • Ober ES, Sharp RE (1994) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. Plant Physiol 105:981–987

    PubMed  CAS  Google Scholar 

  • Paterson AH (1995) Molecular dissection of quantitative traits: progress and prospects. Genome Res 5:321–333

    PubMed  CAS  Google Scholar 

  • Quesada V, Garcia-Martinez S, Piqueras P (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963

    Article  PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessinbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring X SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:965–990

    Article  CAS  Google Scholar 

  • Schreiner TE, Zozor Y (1998) Salinity influences photosynthetic carbohydrates in leaves of salt stress olive plants. Aust J Plant Physiol 25:571–579

    Article  Google Scholar 

  • Serrano R, Glaxiola R (1994) Microbial models and salt stress tolerance in plants. Crit Rev Plant Sci 13:121–138

    CAS  Google Scholar 

  • Shan SH, Gorham J, Forster BP, Wyn Jones RG (1987) Salt tolerance in the Triticeae: the contribution of the D genome to cation selectivity in hexaploid wheat. J Exp Bot 38:254–269

    Google Scholar 

  • Thomas JC, McElwain EF, Bohnert HJ (1992) Convergent induction of osmotic stress responses. Plant Physiol 100:416–423

    Article  PubMed  CAS  Google Scholar 

  • Thornley JHM (1998) Modeling shoot: root relations: the only way forward? Ann Bot 81:165–171

    Article  Google Scholar 

  • Veldbloom L, Lee RM, Woodman WL (1994) Molecular marker facilitated studies in an elite maize population: linkage analysis and determination of QTL for morphological traits. Theor Appl Genet 88:7–16

    Google Scholar 

  • Winicov I (1998) New molecular approaches to improving salt tolerance in crop plants. Ann Bot 82:703–710

    Article  CAS  Google Scholar 

  • Wyn Jones RG, Gorham J, McDonnell E (1984) Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants: strategies of crop improvement. Wiley, New York, pp 189–203

    Google Scholar 

  • Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153

    Article  PubMed  CAS  Google Scholar 

  • Yokoi S, Bressan RB, Hasegawa PM (2002) Salt stress tolerance of plants In: Iwanaga M (ed) Genetic engineering of crop plants for abiotic stress pp 25–33. (JIRCAS Working Report No. 23)

  • Yoshiro M, Kazuyoshi T (1997) Mapping quantitative trait loci for salt tolerance at germination stage and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272

    Article  Google Scholar 

  • Zerihun A, Gutschick VP, Bassirirad H (2000) Compensatory roles of nitrogen uptake and photosynthetic N2 use efficiency in determining plant growth response to elevated CO2: evaluation using a functional balance model. Ann Bot 86:723– 30

    Article  CAS  Google Scholar 

  • Zhang GY, Guo Y, Cheng SL, Chen SY (1995) RFLP tagging of a salt tolerance gene in rice. Plant Sci 110:227–334

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Project 973 (2004CB 117200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizeng Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Zhou, E., Huo, N. et al. Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153, 109–117 (2007). https://doi.org/10.1007/s10681-006-9247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9247-8

Keywords

Navigation