Skip to main content

H2-Metabolizing Prokaryotes

  • Reference work entry

Abstract

The reversible splitting of H2 into protons and electrons is a key process in the metabolism of many prokaryotes and has been studied extensively in a wide range of bacteria and archaea. Environmental H2 is an energy source for aerobic H2 oxidizers, methanogens, acetogens, and sulfate reducers and is a source of reducing power for anoxygenic phototrophs. H2 is released as a terminal metabolic product of both facultative and obligate fermenters. It is a byproduct of N2 fixation and phosphite oxidation. The H2-consuming and H2-evolving processes of microorganisms impact the global atmospheric H2 balance. N2 fixation in seas and lakes is a significant source of atmospheric H2. Soils are a major H2 sink. Entirely H2-based microbial ecosystems are widespread on the planet. The most important of them consists of the granitic layers of the planet’s crust, which on aggregate harbor a huge fraction of the total biomass on Earth. More spectacular are the submarine hydrothermal vents spewing H2-rich fluids. Current scenarios of pre- and protobiotic evolution envisage such sites as the cradle of terrestrial life. Based on their metal content, hydrogenases, the enzymes which catalyze the splitting of H2, can be divided into three groups of independent phylogenetic origin: [NiFe], [FeFe], and [Fe] hydrogenases. Three-dimensional structures available for representatives of all three groups reveal some remarkable features of these enzymes. The actual catalyst is a NiFe or Fe metallocomplex encased in a protein. Tunnels in the protein allow H2 to access or egress from the active site. A series of FeS clusters form an electrical circuit connecting the active site with binding sites (for cytochromes, pyridine nucleotides, and other redox partners) at the surface of the enzyme. The assembly and insertion of the active-site metallocomplex into the hydrogenase apoenzyme is an intricate, multistep process requiring several specialized accessory proteins. The genetic determinants for the hydrogenase catalytic components and for the accessory proteins are solitary or clustered. The mechanisms governing the expression of hydrogenase genes vary depending on physiological context. In obligate fermenters, for instance, expression of hydrogenase genes is typically constitutive. In facultative H2 oxidizers, on the other hand, hydrogenase gene expression is controlled by H2-sensing regulatory proteins. The diversity of metabolic processes involving H2 as an intermediate and the ubiquitous occurrence of hydrogenases in microbes testify to the importance of H2 metabolism in primeval cellular life forms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Basset R, Bader KP (1998) Physiological analyses of the hydrogen gas exchange in cyanobacteria. J Photochem Photobiol B 43:146–151

    Article  CAS  Google Scholar 

  • Abram JW, Nedwell DB (1978) Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediment. Arch Microbiol 117:93–97

    Article  PubMed  CAS  Google Scholar 

  • Achtnich C, Bak F, Conrad R (1995a) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils 19:65–72

    Article  CAS  Google Scholar 

  • Achtnich C, Schuhmann A, Wind T, Conrad R (1995b) Role of interspecies H2 transfer to sulfate and ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbiol Ecol 16:61–70

    Article  CAS  Google Scholar 

  • Adams MW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145

    Article  PubMed  CAS  Google Scholar 

  • Adams MW, Hall DO (1977) Isolation of the membrane-bound hydrogenase from Rhodospirillum rubrum. Biochem Biophys Res Commun 77:730–737

    Article  PubMed  CAS  Google Scholar 

  • Adams MW, Hall DO (1979a) Properties of the solubilized membrane-bound hydrogenase from the photosynthetic bacterium Rhodospirillum rubrum. Arch Biochem Biophys 195:288–299

    Article  PubMed  CAS  Google Scholar 

  • Adams MW, Hall DO (1979b) Purification of the membrane-bound hydrogenase of Escherichia coli. Biochem J 183:11–22

    PubMed  CAS  Google Scholar 

  • Adams MW, Stiefel EI (1998) Biological hydrogen production: not so elementary. Science 282:1842–1843

    Article  PubMed  CAS  Google Scholar 

  • Adams MW, Eccleston E, Howard JB (1989) Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum. Proc Natl Acad Sci USA 86:4932–4936

    Article  PubMed  CAS  Google Scholar 

  • Adams MW, Holden JF, Menon AL, Schut GJ, Grunden AM, Hou C, Hutchins AM, Jenney FE Jr, Kim C, Ma K, Pan G, Roy R, Sapra R, Story SV, Verhagen MF (2001) Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183:716–724

    Article  PubMed  CAS  Google Scholar 

  • Afting C, Hochheimer A, Thauer RK (1998) Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2. Arch Microbiol 169:206–210

    Article  PubMed  CAS  Google Scholar 

  • Afting C, Kremmer E, Brucker C, Hochheimer A, Thauer RK (2000) Regulation of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis. Arch Microbiol 174:225–232

    Article  PubMed  CAS  Google Scholar 

  • Aggag M, Schlegel HG (1973) Studies on a gram-positive hydrogen bacterium, Nocardia opaca strain 1b.1. Description and physiological characterization. Arch Mikrobiol 88:299–318

    Article  PubMed  CAS  Google Scholar 

  • Agron PG, Monson EK, Ditta GS, Helinski DR (1994) Oxygen regulation of expression of nitrogen-fixation genes in Rhizobium meliloti. Res Microbiol 145:454–459

    Article  PubMed  CAS  Google Scholar 

  • Alain K, Pignet P, Zbinden M, Quillevere M, Duchiron F, Donval JP, Lesongeur F, Raguenes G, Crassous P, Querellou J, Cambon-Bonavita MA (2002) Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1621–1628

    Article  PubMed  CAS  Google Scholar 

  • Albracht SPJ (1994) Nickel hydrogenases: in search of the active site. Biochim Biophys Acta 1188:167–204

    Article  PubMed  Google Scholar 

  • Albracht SPJ (2001) Spectroscopy—the functional puzzle. In: Cammack R, Frey M, Robson R (eds) Hydrogen as a fuel: learning from nature. Taylor & Francis, London, pp 110–158

    Google Scholar 

  • Albracht SPJ, Hedderich R (2000) Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH–ubiquinone oxidoreductase (Complex I). FEBS Lett 485:1–6

    Article  PubMed  CAS  Google Scholar 

  • Alex LA, Reeve JN, Orme-Johnson WH, Walsh CT (1990) Cloning, sequence determination, and expression of the genes encoding the subunits of the nickel-containing 8-hydroxy-5-deazaflavin reducing hydrogenase from Methanobacterium thermoautotrophicum delta H. Biochemistry 29:7237–7244

    Article  PubMed  CAS  Google Scholar 

  • Anderson L, Fuller RC (1967) Photosynthesis in Rhodospirillum rubrum. I. Autotrophic carbon dioxide fixation. Plant Physiol 42:487–490

    Article  PubMed  CAS  Google Scholar 

  • Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647

    Article  PubMed  CAS  Google Scholar 

  • Antal TK, Oliveira P, Lindblad P (2006) The bidirectional hydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803. Int J Hydrogen Energy 31:1439–1444

    Article  CAS  Google Scholar 

  • Appel J, Schulz R (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? J Photochem Photobiol B 47:1–11

    Article  CAS  Google Scholar 

  • Appel J, Phunpruch S, Steinmüller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173:333–338

    Article  PubMed  CAS  Google Scholar 

  • Aragno M, Schlegel HG (1977) Alcaligenes ruhlandii (Packer and Vishniac) comb. nov., a peritrichous hydrogen bacterium previously assigned to pseudomonas. Int J Syst Bacteriol 27:279–281

    Article  Google Scholar 

  • Aragno M, Schlegel HG (1978) Aquaspirillum autotrophicum, a new species of hydrogen-oxidizing, facultatively autotrophic bacteria. Int J Syst Bacteriol 28:112–116

    Article  Google Scholar 

  • Aragno M, Schlegel HG (1992) The mesophilic hydrogen-oxidizing (knallgas) bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer, New York, pp 344–384

    Google Scholar 

  • Arp DJ (1992) Hydrogen recycling in symbiotic bacteria. In: Stacey GS, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 432–460

    Google Scholar 

  • Aspen AJ, Wolin MJ (1966) Solubilization and reconstitution of a particulate hydrogenase from Vibrio succinogenes. J Biol Chem 241:4152–4156

    PubMed  CAS  Google Scholar 

  • Atlung T, Knudsen K, Heerfordt L, Brondsted L (1997) Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation. J Bacteriol 179:2141–2146

    PubMed  CAS  Google Scholar 

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267

    Article  PubMed  CAS  Google Scholar 

  • Atta M, Meyer J (2000) Characterization of the gene encoding the [Fe]-hydrogenase from Megasphaera elsdenii. Biochim Biophys Acta 1476:368–371

    Article  PubMed  CAS  Google Scholar 

  • Bader KP, Abdel-Basset R (1999) Mass spectrometric analysis of hydrogen photoevolution in the filamentous non-heterocystous cyanobacterium Oscillatoria chalybea. In: Peschek GA, Löffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer/Plenum, New York, pp 603–609

    Chapter  Google Scholar 

  • Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49

    Article  PubMed  CAS  Google Scholar 

  • Bagley KA, Van Garderen CJ, Chen M, Duin EC, Albracht SP, Woodruff WH (1994) Infrared studies on the interaction of carbon monoxide with divalent nickel in hydrogenase from Chromatium vinosum. Biochemistry 33:9229–9236

    Article  PubMed  CAS  Google Scholar 

  • Bagley KA, Duin EC, Roseboom W, Albracht SP, Woodruff WH (1995) Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum. Biochemistry 34:5527–5535

    Article  PubMed  CAS  Google Scholar 

  • Bagyinka C, Kovacs KL, Rak E (1982) Localization of hydrogenase in Thiocapsa roseopersicina photosynthetic membrane. Biochem J 202:255–258

    PubMed  CAS  Google Scholar 

  • Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361

    Article  CAS  Google Scholar 

  • Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Pierik AJ, Netz DJ, Muhlenhoff U, Lill R (2004) The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. EMBO J 23:2105–2115

    Article  PubMed  CAS  Google Scholar 

  • Ballantine SP, Boxer DH (1985) Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J Bacteriol 163:454–459

    PubMed  CAS  Google Scholar 

  • Ballantine SP, Boxer DH (1986) Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur J Biochem 156:277–284

    Article  PubMed  CAS  Google Scholar 

  • Baltazar CSA, Marques MC, Soares CM, DeLacey AM, Pereira IAC, Matias PM (2011) Nickel–iron–selenium hydrogenases—an overview. Eur J Inorg Chem 2011:948–962

    Article  CAS  Google Scholar 

  • Baltazar CS, Teixeira VH, Soares CM (2012) Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach. J Biol Inorg Chem 17(4):543–555

    Article  PubMed  CAS  Google Scholar 

  • Baron SF, Ferry JG (1989a) Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase from Methanobacterium formicicum. J Bacteriol 171:3846–3853

    PubMed  CAS  Google Scholar 

  • Baron SF, Ferry JG (1989b) Reconstitution and properties of a coenzyme F420-mediated formate hydrogenlyase system in Methanobacterium formicicum. J Bacteriol 171:3854–3859

    PubMed  CAS  Google Scholar 

  • Baron SF, Williams DS, May HD, Patel PS, Aldrich HC, Ferry JG (1989) Immunogold localization of coenzyme-F420-reducing formate dehydrogenase and coenzyme-F420-reducing hydrogenase in Methanobacterium formicicum. Arch Microbiol 151:307–313

    Article  CAS  Google Scholar 

  • Bartha R, Ordal EJ (1965) Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains. J Bacteriol 89:1015–1019

    PubMed  CAS  Google Scholar 

  • Barton RM, Worman HJ (1999) Prenylated prelamin A interacts with Narf, a novel nuclear protein. J Biol Chem 274:30008–30018

    Article  PubMed  CAS  Google Scholar 

  • Battaglia-Brunet F, Joulian C, Garrido F, Dictor MC, Morin D, Coupland K, Barrie Johnson D, Hallberg KB, Baranger P (2006) Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 89:99–108

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten J, Reh M, Schlegel HG (1974) Taxonomic studies on some gram-positive coryneform hydrogen bacteria. Arch Microbiol 100:207–217

    Article  CAS  Google Scholar 

  • Belay N, Sparling R, Daniels L (1986) Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus. Appl Environ Microbiol 52:1080–1085

    PubMed  CAS  Google Scholar 

  • Ben-Bassat A, Lamed R, Zeikus JG (1981) Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 146:192–199

    PubMed  CAS  Google Scholar 

  • Berghöfer Y, Agha-Amiri K, Klein A (1994) Selenium is involved in the negative regulation of the expression of selenium-free [NiFe] hydrogenases in Methanococcus voltae. Mol Gen Genet 242:369–373

    Article  PubMed  Google Scholar 

  • Bernalier A, Rochet V, Leclerc M, Dore J, Pochart P (1996a) Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans. Curr Microbiol 33:94–99

    Article  PubMed  CAS  Google Scholar 

  • Bernalier A, Willems A, Leclerc M, Rochet V, Collins MD (1996b) Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch Microbiol 166:176–183

    Article  PubMed  CAS  Google Scholar 

  • Bernhard M, Schwartz E, Rietdorf J, Friedrich B (1996) The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. J Bacteriol 178:4522–4529

    PubMed  CAS  Google Scholar 

  • Bernhard M, Benelli B, Hochkoeppler A, Zannoni D, Friedrich B (1997) Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. Eur J Biochem 248:179–186

    Article  PubMed  CAS  Google Scholar 

  • Bernhard M, Friedrich B, Siddiqui RA (2000) Ralstonia eutropha TF93 is blocked in tat-mediated protein export. J Bacteriol 182:581–588

    Article  PubMed  CAS  Google Scholar 

  • Bernhard M, Buhrke T, Bleijlevens B, De Lacey AL, Fernandez VM, Albracht SP, Friedrich B (2001) The H2 sensor of Ralstonia eutropha. Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase. J Biol Chem 276:15592–15597

    Article  PubMed  CAS  Google Scholar 

  • Bertram PA, Thauer RK (1994) Thermodynamics of the formylmethanofuran dehydrogenase reaction in Methanobacterium thermoautotrophicum. Eur J Biochem 226:811–818

    Article  PubMed  CAS  Google Scholar 

  • Binder U, Maier T, Böck A (1996) Nickel incorporation into hydrogenase 3 from Escherichia coli requires the precursor form of the large subunit. Arch Microbiol 165:69–72

    Article  PubMed  CAS  Google Scholar 

  • Bingemann R, Klein A (2000) Conversion of the central [4Fe-4S] cluster into a [3Fe-4S] cluster leads to reduced hydrogen-uptake activity of the F420-reducing hydrogenase of Methanococcus voltae. Eur J Biochem 267:6612–6618

    Article  PubMed  CAS  Google Scholar 

  • Black LK, Fu C, Maier RJ (1994) Sequences and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J Bacteriol 176:7102–7106

    PubMed  CAS  Google Scholar 

  • Blamey JM, Mukund S, Adams MWW (1994) Properties of a thermostable 4Fe-ferredoxin from the hyperthermophilic bacterium Thermotoga maritima. FEMS Microbiol Lett 121:165–170

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Article  PubMed  CAS  Google Scholar 

  • Bleijlevens B, Buhrke T, van der Linden E, Friedrich B, Albracht SP (2004) The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem 279:46686–46691

    Article  PubMed  CAS  Google Scholar 

  • Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21

    Article  PubMed  Google Scholar 

  • Blokesch M, Paschos A, Theodoratou E, Bauer E, Hube M, Huth S, Bock A (2002) Metal insertion into NiFe-hydrogenases. Biochem Soc Trans 30:674–680

    Article  PubMed  CAS  Google Scholar 

  • Blokesch M, Paschos A, Bauer A, Reissmann S, Drapal N, Böck A (2004) Analysis of the transcarbamoylation-dehydration reaction catalyzed by the hydrogenase maturation proteins HypF and HypE. Eur J Biochem 271:3428–3436

    Article  PubMed  CAS  Google Scholar 

  • Blotevogel KH, Fischer U, Mocha M, Jannsen S (1985) Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch Microbiol 142:211–217

    Article  CAS  Google Scholar 

  • Blumentals II, Itoh M, Olson GJ, Kelly RM (1990) Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1255–1262

    PubMed  CAS  Google Scholar 

  • Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–71

    Article  PubMed  CAS  Google Scholar 

  • Bogorov LV (1974) Properties of Thiocapsa roseopersicina strain BBS isolated from estuary of white sea. Mikrobiologiya 43:326–332

    CAS  Google Scholar 

  • Böhm R, Sauter M, Böck A (1990) Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 4:231–243

    Article  PubMed  Google Scholar 

  • Boison G, Schmitz O, Mikheeva L, Shestakov S, Bothe H (1996) Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium Anacystis nidulans. FEBS Lett 394:153–158

    Article  PubMed  CAS  Google Scholar 

  • Bomar M, Hippe H, Schink B (1991) Lithotrophic growth and hydrogen metabolism by Clostridium magnum. FEMS Microbiol Lett 67:347–349

    Article  PubMed  CAS  Google Scholar 

  • Bone DH (1960) Localization of hydrogen activating enzymes in Pseudomonas saccharophila. Biochem Biophys Res Commun 3:211–214

    Article  PubMed  CAS  Google Scholar 

  • Bone DH, Bernstein S, Vishniac W (1963) Purification and some properties of different forms of hydrogen dehydrogenase. Biochim Biophys Acta 67:581–588

    Article  PubMed  CAS  Google Scholar 

  • Bonjour F, Aragno M (1984) Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithoautotrophic, hydrogen oxidizing sporeformer from a geothermal area. Arch Microbiol 139:397–401

    Article  CAS  Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    PubMed  CAS  Google Scholar 

  • Bornstein BT, Barker HA (1948) The nutrition of Clostridium kluyveri. J Bacteriol 55:223–230

    PubMed  CAS  Google Scholar 

  • Bothe H, Tennigkeit J, Eisbrenner G (1977) Utilization of molecular hydrogen by blue-green alga Anabaena cylindrica. Arch Microbiol 114:43–49

    Article  PubMed  CAS  Google Scholar 

  • Bott M, Thauer RK (1987) Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria. Eur J Biochem 168:407–412

    Article  PubMed  CAS  Google Scholar 

  • Brandis A, Thauer RK (1981) Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. J Gen Microbiol 126:249–252

    CAS  Google Scholar 

  • Braun K, Gottschalk G (1981) Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch Microbiol 128:294–298

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    Article  PubMed  CAS  Google Scholar 

  • Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270

    Article  PubMed  CAS  Google Scholar 

  • Brazzolotto X, Rubach JK, Gaillard J, Gambarelli S, Atta M, Fontecave M (2006) The [Fe-Fe]-hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an iron-sulfur cluster. J Biol Chem 281:769–774

    Article  PubMed  CAS  Google Scholar 

  • Brecht M, van Gastel M, Buhrke T, Friedrich B, Lubitz W (2003) Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy. J Am Chem Soc 125:13075–13083

    Article  PubMed  CAS  Google Scholar 

  • Brewin NJ (1984) Hydrogenase and energy efficiency in nitrogen-fixing symbionts. In: Verma DPS, Hohn T (eds) Genes involved in plant-microbe interactions. Springer, New York, pp 179–203

    Chapter  Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA, Switzer JM, Seitz HJ (1988) Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch Microbiol 150:282–288

    Article  CAS  Google Scholar 

  • Brisbarre N, Fardeau ML, Cueff V, Cayol JL, Barbier G, Cilia V, Ravot G, Thomas P, Garcia JL, Ollivier B (2003) Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol 53:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Brito B, Martinez M, Fernandez D, Rey L, Cabrera E, Palacios JM, Imperial J, Ruiz-Argueso T (1997) Hydrogenase genes from Rhizobium leguminosarum bv. viciae are controlled by the nitrogen fixation regulatory protein NifA. Proc Natl Acad Sci USA 94:6019–6024

    Article  PubMed  CAS  Google Scholar 

  • Brito B, Prieto RI, Cabrera E, Mandrand-Berthelot MA, Imperial J, Ruiz-Argueso T, Palacios JM (2010) Rhizobium leguminosarum hupE encodes a nickel transporter required for hydrogenase activity. J Bacteriol 192:925–935

    Article  PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  PubMed  CAS  Google Scholar 

  • Bronder M, Mell H, Stupperich E, Kroger A (1982) Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch Microbiol 131:216–223

    Article  PubMed  CAS  Google Scholar 

  • Brøndsted L, Atlung T (1994) Anaerobic regulation of the hydrogenase 1 (hya) operon of Escherichia coli. J Bacteriol 176:5423–5428

    PubMed  Google Scholar 

  • Brøndsted L, Atlung T (1996) Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli. J Bacteriol 178:1556–1564

    PubMed  Google Scholar 

  • Brugna M, Nitschke W, Toci R, Bruschi M, Giudici-Orticoni MT (1999) First evidence for the presence of a hydrogenase in the sulfur-reducing bacterium Desulfuromonas acetoxidans. J Bacteriol 181:5505–5508

    PubMed  CAS  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol 59:20–31

    Article  PubMed  CAS  Google Scholar 

  • Bryant FO, Adams MW (1989) Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem 264:5070–5079

    PubMed  CAS  Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    PubMed  CAS  Google Scholar 

  • Brysch K, Schneider C, Fuchs G, Widdel F (1987) Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch Microbiol 148:264–274

    Article  CAS  Google Scholar 

  • Buckel W, Thauer RK (2012) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta, in press, 10.1016/j.bbabio.2012.07.002

    Google Scholar 

  • Buhrke T, Bleijlevens B, Albracht SP, Friedrich B (2001) Involvement of hyp gene products in maturation of the H2-sensing [NiFe] hydrogenase of Ralstonia eutropha. J Bacteriol 183:7087–7093

    Article  PubMed  CAS  Google Scholar 

  • Buhrke T (2002) Der H2-Sensor von Ralstonia eitropha: Struktur-Funktions- Beziehungen einer neuartigen [NiFe]-Hydrogenase. Ph D thesis. Humboldt-Universität zu Berlin, Berlin, Germany

    Google Scholar 

  • Buhrke T, Lenz O, Porthun A, Friedrich B (2004) The H2-sensing complex of Ralstonia eutropha: interaction between a regulatory [NiFe] hydrogenase and a histidine protein kinase. Mol Microbiol 51:1677–1689

    Article  PubMed  CAS  Google Scholar 

  • Buhrke T, Lenz O, Krauss N, Friedrich B (2005) Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site. J Biol Chem 280:23791–23796

    Article  PubMed  CAS  Google Scholar 

  • Bui ET, Johnson PJ (1996) Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol Biochem Parasitol 76:305–310

    Article  PubMed  CAS  Google Scholar 

  • Bulen WA, Burns RC, Le Comte JR (1965a) Nitrogen fixation—hydrosulfite as electron donor with cell-free preparations of Azotobacter vinelandii and Rhodospirillum rubrum. Proc Natl Acad Sci USA 53:532–539

    Article  PubMed  CAS  Google Scholar 

  • Bulen WA, Le Comte JR, Burns RC, Hinkson J (1965b) Nitrogen fixation studies with aerobic and photosynthetic bacteria. In: San Pietro A (ed) Non-heme iron proteins: role in energy conversion. Antioch, Yellow Springs, pp 261–274

    Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou LX, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk HP, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Burgdorf T, De Lacey AL, Friedrich B (2002) Functional analysis by site-directed mutagenesis of the NAD(+)-reducing hydrogenase from Ralstonia eutropha. J Bacteriol 184:6280–6288

    Article  PubMed  CAS  Google Scholar 

  • Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SP, Friedrich B (2005) The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 187:3122–3132

    Article  PubMed  CAS  Google Scholar 

  • Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvier P, Mandelco L, Woese CR, Stetter KO (1990a) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269

    Article  PubMed  CAS  Google Scholar 

  • Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990b) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13:24–28

    Article  Google Scholar 

  • Bürstel I, Hummel P, Siebert E, Wisitruangsakul N, Zebger I, Friedrich B, Lenz O (2011) Probing the origin of the metabolic precursor of the CO ligand in the catalytic center of [NiFe] hydrogenase. J Biol Chem 286:44937–44944

    Article  PubMed  CAS  Google Scholar 

  • Buurman G, Shima S, Thauer RK (2000) The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor. FEBS Lett 485:200–204

    Article  PubMed  CAS  Google Scholar 

  • Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    PubMed  CAS  Google Scholar 

  • Caffrey SM, Park HS, Voordouw JK, He Z, Zhou J, Voordouw G (2007) Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:6159–6167

    Article  PubMed  CAS  Google Scholar 

  • Cammack R (2001) The catalytic machinery. In: Cammack R, Frey M, Robson R (eds) Hydrogen as a fuel: learning from nature. Taylor & Francis, London, pp 159–180

    Chapter  Google Scholar 

  • Cammack R, Patil DS, Aguirre R, Hatchikian EC (1982) Redox properties of the ESR-detectable nickel in hydrogenase from Desulfovibrio gigas. FEBS Lett 142:289–292

    Article  CAS  Google Scholar 

  • Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468

    Article  PubMed  CAS  Google Scholar 

  • Carrasco CD, Buettner JA, Golden JW (1995) Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci USA 92:791–795

    Article  PubMed  CAS  Google Scholar 

  • Carrasco CD, Holliday SD, Hansel A, Lindblad P, Golden JW (2005) Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. J Bacteriol 187:6031–6038

    Article  PubMed  CAS  Google Scholar 

  • Casalot L, Rousset M (2001) Maturation of the [NiFe] hydrogenases. Trends Microbiol 9:228–237

    Article  PubMed  CAS  Google Scholar 

  • Casalot L, De Luca G, Dermoun Z, Rousset M, de Philip P (2002a) Evidence for a fourth hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 184:853–856

    Article  PubMed  CAS  Google Scholar 

  • Casalot L, Valette O, De Luca G, Dermoun Z, Rousset M, de Philip P (2002b) Construction and physiological studies of hydrogenase depleted mutants of Desulfovibrio fructosovorans. FEMS Microbiol Lett 214:107

    Article  PubMed  CAS  Google Scholar 

  • Catling DC (2006) Comment on “A hydrogen-rich early Earth atmosphere”. Science 311:38

    Article  PubMed  CAS  Google Scholar 

  • Cendron L, Berto P, D’Adamo S, Vallese F, Govoni C, Posewitz MC, Giacometti GM, Costantini P, Zanotti G (2011) Crystal structure of HydF scaffold protein provides insights into [FeFe]-hydrogenase maturation. J Biol Chem 286:43944–43950

    Article  PubMed  CAS  Google Scholar 

  • Chan KH, Lee KM, Wong KB (2012) Interaction between hydrogenase maturation factors HypA and HypB is required for [NiFe]-hydrogenase maturation. PLoS One 7:e32592

    Article  PubMed  CAS  Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Charlou JL, Donval JP, Douville E, Jean-Baptiste P, Radford-Knoery J, Fouquet Y, Dapoigny A, Stievenard M (2000) Compared geochemical signatures and the evolution of Menez Gwen (37°50′N) and Lucky Strike (37°17′N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chem Geol 171:49–75

    Article  CAS  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the rainbow hydrothermal field (36o 14' N, MAR). Chem Geol 191:345–359

    Article  CAS  Google Scholar 

  • Charlou JL, Donval JP, Konn C, Ondréas H, Fouquet Y, Jean-Baptiste P, Fourré E (2010) High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In: Rona PA, Devey CW, Dyment J, Murton BJ (eds) Diversity of hydrothermal systems on slow spreading ocean ridges, vol 188. AGU, Washington, DC

    Chapter  Google Scholar 

  • Chen JS, Blanchard DK (1978) Isolation and properties of a unidirectional H2-oxidizing hydrogenase from the strictly anaerobic N2-fixing bacterium Clostridium pasteurianum W5. Biochem Biophys Res Commun 84:1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Mortenson LE (1974) Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochim Biophys Acta 371:283–298

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Yoch DC (1987) Regulation of two nickel-requiring (inducible and constitutive) hydrogenases and their coupling to nitrogenase in Methylosinus trichosporium OB3b. J Bacteriol 169:4778–4783

    PubMed  CAS  Google Scholar 

  • Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:275–278

    Article  PubMed  CAS  Google Scholar 

  • Clark JE, Ragsdale SW, Ljungdahl LG, Wiegel J (1982) Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum. J Bacteriol 151:507–509

    PubMed  CAS  Google Scholar 

  • Coates JD, Bhupathiraju VK, Achenbach LA, Mclnerney MJ, Lovley DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:581–588

    PubMed  CAS  Google Scholar 

  • Cohen J, Kim K, King P, Seibert M, Schulten K (2005a) Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Kim K, Posewitz M, Ghirardi ML, Schulten K, Seibert M, King P (2005b) Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]-hydrogenase. Biochem Soc Trans 33:80–82

    Article  PubMed  CAS  Google Scholar 

  • Colbeau A, Vignais PM (1992) Use of hupS::lacZ gene fusion to study regulation of hydrogenase expression in Rhodobacter capsulatus: stimulation by H2. J Bacteriol 174:4258–4264

    PubMed  CAS  Google Scholar 

  • Colbeau A, Chabert J, Vignais PM (1983) Purification, molecular properties and localization in the membrane of the hydrogenase of Rhodopseudomonas capsulata. Biochim Biophys Acta 748:116–127

    Article  CAS  Google Scholar 

  • Colbeau A, Kovács KL, Chabert J, Vignais PM (1994) Cloning and sequence of the structural (hupSLC) and accessory (hupDHI) genes for hydrogenase biosynthesis in Thiocapsa roseopersicina. Gene 140:25–31

    Article  PubMed  CAS  Google Scholar 

  • Colbeau A, Elsen S, Tomiyama M, Zorin NA, Dimon B, Vignais PM (1998) Rhodobacter capsulatus HypF is involved in regulation of hydrogenase synthesis through the HupUV proteins. Eur J Biochem 251:65–71

    Article  PubMed  CAS  Google Scholar 

  • Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM (2006) Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 30:872–905

    Article  PubMed  CAS  Google Scholar 

  • Conrad R (1984) Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases (H2, CO, CH4). In: Klug MG, Reddy, CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington DC, pp 461–467

    Google Scholar 

  • Conrad R (1988) Biogeochemistry and ecophysiology of atmospheric CO and H2. Adv Microb Ecol 10:231–283

    Article  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    PubMed  CAS  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  • Conrad R, Seiler W (1979) Role of hydrogen bacteria during the decomposition of hydrogen by soil. FEMS Microbiol Lett 6:143–145

    Article  CAS  Google Scholar 

  • Conrad R, Seiler W (1981) Decomposition of atmospheric hydrogen by soil-microorganisms and soil enzymes. Soil Biol Biochem 13:43–49

    Article  CAS  Google Scholar 

  • Conrad R, Seiler W (1985) Influence of temperature, moisture and organic carbon on the flux of H2 and CO between soil and atmosphere. Field studies in subtropical regions. J Geophys Res 90:5699–6709

    Article  CAS  Google Scholar 

  • Conrad R, Aragno M, Seiler W (1983a) Production and consumption of hydrogen in a eutrophic lake. Appl Environ Microbiol 45:502–510

    PubMed  CAS  Google Scholar 

  • Conrad R, Aragno M, Seiler W (1983b) The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen. FEMS Microbiol Lett 18:207–210

    Article  CAS  Google Scholar 

  • Conrad R, Bonjour F, Aragno M (1985) Aerobic and anaerobic microbial consumption of hydrogen in geothermal spring water. FEMS Microbiol Lett 29:201–205

    Article  CAS  Google Scholar 

  • Conrad R, Schink B, Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in-situ conditions. FEMS Microbiol Ecol 38:353–360

    Article  CAS  Google Scholar 

  • Conrad R, Schütz H, Babbel M (1987) Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol Ecol 45:281–289

    Article  CAS  Google Scholar 

  • Constant P, Poissant L, Villemur R (2008) Isolation of Streptomyces sp. PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H2. ISME J 2:1066–1076

    Article  PubMed  CAS  Google Scholar 

  • Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R (2011) Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl Environ Microbiol 77:6027–6035

    Article  PubMed  CAS  Google Scholar 

  • Coppi MV, O’Neil RA, Lovley DR (2004) Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens. J Bacteriol 186:3022–3028

    Article  PubMed  CAS  Google Scholar 

  • Cornish AJ, Gartner K, Yang H, Peters JW, Hegg EL (2011) Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum. J Biol Chem 286:38341–38347

    Article  PubMed  CAS  Google Scholar 

  • Corre E, Reysenbach AL, Prieur D (2001) Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335

    PubMed  CAS  Google Scholar 

  • Cracknell JA, Wait AF, Lenz O, Friedrich B, Armstrong FA (2009) A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases. Proc Natl Acad Sci USA 106:20681–20686

    Article  PubMed  Google Scholar 

  • Csáki R, Hanczár T, Bodrossy L, Murrell JC, Kovács KL (2001) Molecular characterization of structural genes coding for a membrane bound hydrogenase in Methylococcus capsulatus (Bath). FEMS Microbiol Lett 205:203–207

    PubMed  Google Scholar 

  • Cunningham SD, Kapulnik Y, Phillips DA (1986) Distribution of hydrogen-metabolizing bacteria in Alfalfa field soil. Appl Environ Microbiol 52:1091–1095

    PubMed  CAS  Google Scholar 

  • Cypionka H, Dilling W (1986) Intracellular-localization of the hydrogenase in Desulfotomaculum orientis. FEMS Microbiol Lett 36:257–260

    Article  CAS  Google Scholar 

  • Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471

    PubMed  CAS  Google Scholar 

  • Daumas S, Cord-Ruwisch R, Garcia JL (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Van Leeuwenhoek 54:165–178

    Article  PubMed  CAS  Google Scholar 

  • Davis DH, Stanier RY, Doudoroff M, Mandel M (1970) Taxonomic studies on some gram negative polarly flagellated “hydrogen bacteria” and related species. Arch Mikrobiol 70:1–13

    Article  PubMed  CAS  Google Scholar 

  • de Bok FA, Roze EH, Stams AJ (2002) Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans. Antonie Van Leeuwenhoek 81:283–291

    Article  PubMed  Google Scholar 

  • De Lacey AL, Fernandez VM, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107:4304–4330

    Article  PubMed  CAS  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  PubMed  CAS  Google Scholar 

  • Dementin S, Burlat B, De Lacey AL, Pardo A, Adryanczyk-Perrier G, Guigliarelli B, Fernandez VM, Rousset M (2004) A glutamate is the essential proton transfer gate during the catalytic cycle of the [NiFe] hydrogenase. J Biol Chem 279:10508–10513

    Article  PubMed  CAS  Google Scholar 

  • Dementin S, Belle V, Bertrand P, Guigliarelli B, Adryanczyk-Perrier G, De Lacey AL, Fernandez VM, Rousset M, Leger C (2006) Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter- and intramolecular electron transfers. J Am Chem Soc 128:5209–5218

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U (1995) Different structure and expression of the operons encoding the membrane-bound hydrogenases from Methanosarcina mazei Go1. Arch Microbiol 164:370–376

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Blaut M, Schmidt B, Gottschalk G (1992) Purification and properties of a F420-nonreactive, membrane-bound hydrogenase from Methanosarcina strain Go1. Arch Microbiol 157:505–511

    PubMed  CAS  Google Scholar 

  • Deppenmeier U, Blaut M, Lentes S, Herzberg C, Gottschalk G (1995) Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b. Eur J Biochem 227:261–269

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Lienard T, Gottschalk G (1999) Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457:291–297

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Baumer S, Jacobi C, Bruggemann H, Lienard T, Christmann A, Bomeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    PubMed  CAS  Google Scholar 

  • Dernedde J, Eitinger M, Friedrich B (1993) Analysis of a pleiotropic gene region involved in formation of catalytically active hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol 159:545–553

    Article  PubMed  CAS  Google Scholar 

  • Dernedde J, Eitinger T, Patenge N, Friedrich B (1996) hyp gene products in Alcaligenes eutrophus are part of a hydrogenase-maturation system. Eur J Biochem 235:351–358

    Article  PubMed  CAS  Google Scholar 

  • Dias AV, Mulvihill CM, Leach MR, Pickering IJ, George GN, Zamble DB (2008) Structural and biological analysis of the metal sites of Escherichia coli hydrogenase accessory protein HypB. Biochemistry 47:11981–11991

    Article  PubMed  CAS  Google Scholar 

  • Diekert G, Wohlfarth G (1994) Metabolism of homocetogens. Antonie Van Leeuwenhoek 66:209–221

    Article  PubMed  CAS  Google Scholar 

  • Dischert W, Vignais PM, Colbeau A (1999) The synthesis of Rhodobacter capsulatus HupSL hydrogenase is regulated by the two-component HupT/HupR system. Mol Microbiol 34:995–1006

    Article  PubMed  CAS  Google Scholar 

  • Dixon RO (1968) Hydrogenase in pea root nodule bacteroids. Arch Mikrobiol 62:272–283

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt U, Blaut M (1996) Purification and characterization of a membrane-bound hydrogenase from Sporomusa sphaeroides involved in energy-transducing electron transport. Arch Microbiol 165:141–147

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Wu L, Kettlewell B, Caldwell CD, Layzell DB (2003) Hydrogen fertilization of soils—is this a benefit of legumes in rotation? Plant Cell Environ 26:1875–1879

    Article  CAS  Google Scholar 

  • Drake HL (1982) Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J Bacteriol 150:702–709

    PubMed  CAS  Google Scholar 

  • Drake HL (1994) Acetogenesis, acetogenic bacteria and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York, pp 3–62

    Chapter  Google Scholar 

  • Drews J, Imhoff JF (1991) Phototrophic purple bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic, London, pp 51–97

    Google Scholar 

  • Driesener RC, Challand MR, McGlynn SE, Shepard EM, Boyd ES, Broderick JB, Peters JW, Roach PL (2010) [FeFe]-hydrogenase cyanide ligands derived from S-adenosylmethionine-dependent cleavage of tyrosine. Angew Chem Int Ed Engl 49:1687–1690

    Article  PubMed  CAS  Google Scholar 

  • Drobner E, Huber H, Stetter KO (1990) Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol 56:2922–2923

    PubMed  CAS  Google Scholar 

  • Drobner E, Huber H, Rachel R, Stetter KO (1992) Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 157:213–217

    Article  PubMed  CAS  Google Scholar 

  • Dross F, Geisler V, Lenger R, Theis F, Krafft T, Fahrenholz F, Kojro E, Duchêne A, Tripier D, Juvenal K, Kröger A (1992) The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur J Biochem 206:93–102

    Article  PubMed  CAS  Google Scholar 

  • Dross F, Geisler V, Lenger R, Theis F, Krafft T, Fahrenholz F, Kojro E, Duchêne A, Tripier D, Juvenal K, Kröger A (1993) The quinone-reactive Ni/Fe-hydrogenase of Wolinella Succinogenes. Eur J Biochem 214:949–950

    PubMed  CAS  Google Scholar 

  • Dubini A, Pye RL, Jack RL, Palmer T, Sargent F (2002) How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int J Hydrogen Energy 27:1413–1420

    Article  CAS  Google Scholar 

  • Duché O, Elsen S, Cournac L, Colbeau A (2005) Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O2 sensitive without affecting its transductory activity. FEBS J 272:3899–3908

    Article  PubMed  Google Scholar 

  • Duchow A, Douglas HC (1949) Rhodomicrobium vannielii, a new photoheterotrophic bacterium. J Bacteriol 58:409–416

    PubMed  CAS  Google Scholar 

  • Duffus BR, Hamilton TL, Shepard EM, Boyd ES, Peters JW, Broderick JB (2012) Radical AdoMet enzymes in complex metal cluster biosynthesis. Biochim Biophys Acta in press, 10.1016/j.bbapap.2012.01.002

    Google Scholar 

  • Durmowicz MC, Maier RJ (1997) Roles of HoxX and HoxA in biosynthesis of hydrogenase in Bradyrhizobium japonicum. J Bacteriol 179:3676–3682

    PubMed  CAS  Google Scholar 

  • Eberhardt U (1966) On the hydrogen-activating system of Hydrogenomonas H 16. I. Distribution of the hydrogenase activity between two cellular fractions. Arch Mikrobiol 53:288–302

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt U (1969) On chemolithotrophy and hydrogenase of a gram-positive knallgas bacterium. Arch Mikrobiol 66:91–104

    Article  PubMed  CAS  Google Scholar 

  • Eberz G, Friedrich B (1991) Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus. J Bacteriol 173:1845–1854

    PubMed  CAS  Google Scholar 

  • Eberz G, Hogrefe C, Kortlüke C, Kamienski A, Friedrich B (1986) Molecular cloning of structural and regulatory hydrogenase (hox) genes of Alcaligenes eutrophus H16. J Bacteriol 168:636–641

    PubMed  CAS  Google Scholar 

  • Edwards MR (1998) From a soup or a seed? Trends Ecol Evol 13:178–181

    Article  PubMed  CAS  Google Scholar 

  • Efremov RG, Sazanov LA (2012) The coupling mechanism of respiratory complex I—A structural and evolutionary perspective. Biochim Biophys Acta 1817:1785–1795

    Google Scholar 

  • Eisenmann E, Beuerle J, Sulger K, Kroneck PMH, Schumacher W (1995) Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron-donor coupled to respiratory reduction of nitrate to ammonia. Arch Microbiol 164:180–185

    Article  CAS  Google Scholar 

  • Eitinger T, Suhr J, Moore L, Smith JA (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18:399–405

    Article  PubMed  CAS  Google Scholar 

  • Elsen S, Richaud P, Colbeau A, Vignais PM (1993) Sequence analysis and interposon mutagenesis of the hupT gene, which encodes a sensor protein involved in repression of hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 175:7404–7412

    PubMed  CAS  Google Scholar 

  • Elsen S, Colbeau A, Chabert J, Vignais PM (1996) The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 178:5174–5181

    PubMed  CAS  Google Scholar 

  • Elsen S, Dischert W, Colbeau A, Bauer CE (2000) Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system. J Bacteriol 182:2831–2837

    Article  PubMed  CAS  Google Scholar 

  • Elsen S, Duché O, Colbeau A (2003) Interaction between the H2 sensor HupUV and the histidine kinase HupT controls HupSL hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 185:7111–7119

    Article  PubMed  CAS  Google Scholar 

  • Emerich DW, Ruiz-Argueso T, Ching TM, Evans HJ (1979) Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J Bacteriol 137:153–160

    PubMed  CAS  Google Scholar 

  • Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    Article  CAS  Google Scholar 

  • Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, biochemistry, and genetics of the uptake hydrogenase in rhizobia. Annu Rev Microbiol 41:335–361

    Article  PubMed  CAS  Google Scholar 

  • Ewart GD, Smith GD (1989) Purification and properties of soluble hydrogenase from the cyanobacterium Anabaena cylindrica. Arch Biochem Biophys 268:327–337

    Article  PubMed  CAS  Google Scholar 

  • Fallon RD (1982) Influences of pH, temperature, and moisture on gaseous tritium uptake in surface soils. Appl Environ Microbiol 44:171–178

    PubMed  CAS  Google Scholar 

  • Fauque G, Teixeira M, Moura I, Lespinat PA, Xavier AV, Dervartanian DV, Peck HD, Legall J, Moura JG (1984) Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800). Eur J Biochem 142:21–28

    Article  PubMed  CAS  Google Scholar 

  • Fauque G, Peck HD Jr, Moura JJ, Huynh BH, Berlier Y, DerVartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I, Le Gall J (1988) The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev 4:299–344

    PubMed  CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    PubMed  CAS  Google Scholar 

  • Fdez Galvan I, Volbeda A, Fontecilla-Camps JC, Field MJ (2008) A QM/MM study of proton transport pathways in a [NiFe] hydrogenase. Proteins 73:195–203

    Article  PubMed  CAS  Google Scholar 

  • Fernandez VM, Hatchikian EC, Cammack R (1985) Properties and reactivation of two different deactivated forms of Desulfovibrio gigas hydrogenase. Biochim Biophys Acta 832:69–79

    Article  CAS  Google Scholar 

  • Ferry JG, Lessner DJ (2008) Methanogenesis in marine sediments. Ann N Y Acad Sci 1125:147–157

    Article  PubMed  CAS  Google Scholar 

  • Ferry JG, Smith PH, Wolfe RS (1974) Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungate. Int J Syst Bacteriol 24:465–469

    Article  CAS  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • Fichtner C, Laurich C, Bothe E, Lubitz W (2006) Spectroelectrochemical characterization of the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F. Biochemistry 45:9706–9716

    Article  PubMed  CAS  Google Scholar 

  • Fiebig K, Friedrich B (1989) Purification of the F420-reducing hydrogenase from Methanosarcina barkeri (strain Fusaro). Eur J Biochem 184:79–88

    Article  PubMed  CAS  Google Scholar 

  • Filipiak M, Hagen WR, Veeger C (1989) Hydrodynamic, structural and magnetic properties of Megasphaera elsdenii Fe hydrogenase reinvestigated. Eur J Biochem 185:547–553

    Article  PubMed  CAS  Google Scholar 

  • Finster K, Liesack W, Tindall BJ (1997) Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. Int J Syst Bacteriol 47:1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Fischer F, Zillig W, Stetter KO, Schreiber G (1983) Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature 301:511–513

    Article  PubMed  CAS  Google Scholar 

  • Fischer J, Quentmeier A, Kostka S, Kraft R, Friedrich CG (1996) Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans. Arch Microbiol 165:289–296

    Article  PubMed  CAS  Google Scholar 

  • Flint HJ (1997) The rumen microbial ecosystem—some recent developments. Trends Microbiol 5:483–488

    Article  PubMed  CAS  Google Scholar 

  • Flores GE, Campbell JH, Kirshtein JD, Meneghin J, Podar M, Steinberg JI, Seewald JS, Tivey MK, Voytek MA, Yang ZK, Reysenbach AL (2011) Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol 13:2158–2171

    Article  PubMed  CAS  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132

    Article  PubMed  CAS  Google Scholar 

  • Fontaine FE, Peterson WH, McCoy E, Johnson MJ, Ritter GJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol 43:701–715

    PubMed  CAS  Google Scholar 

  • Fontecilla-Camps JC (1996) The active site of Ni-Fe hydrogenases: model chemistry and crystallographic results. J Biol Inorg Chem 1:91–98

    Article  CAS  Google Scholar 

  • Fontecilla-Camps JC, Frey M, Garcin E, Higuchi Y, Montet Y, Nicolet Y, Volbeda A (2001) Molecular architectures. In: Cammack R, Frey M, Robson R (eds) Hydrogen as a fuel: learning from nature. Taylor & Francis, London, pp 93–109

    Google Scholar 

  • Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303

    Article  PubMed  CAS  Google Scholar 

  • Ford CM, Garg N, Garg RP, Tibelius KH, Yates MG, Arp DJ, Seefeldt LC (1990) The identification, characterization, sequencing and mutagenesis of the genes (hupSL) encoding the small and large subunits of the H2-uptake hydrogenase of Azotobacter chroococcum. Mol Microbiol 4:999–1008

    Article  PubMed  CAS  Google Scholar 

  • Forzi L, Sawers RG (2007) Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 20:565–578

    Article  PubMed  CAS  Google Scholar 

  • Forzi L, Koch J, Guss AM, Radosevich CG, Metcalf WW, Hedderich R (2005) Assignment of the [4Fe-4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants. FEBS J 272:4741–4753

    Article  PubMed  CAS  Google Scholar 

  • Forzi L, Hellwig P, Thauer RK, Sawers RG (2007) The CO and CN ligands to the active site Fe in [NiFe]-hydrogenase of Escherichia coli have different metabolic origins. FEBS Lett 581:3317–3321

    Article  PubMed  CAS  Google Scholar 

  • Fournier M, Dermoun Z, Durand MC, Dolla A (2004) A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J Biol Chem 279:1787–1793

    Article  PubMed  CAS  Google Scholar 

  • Fox JA, Livingston DJ, Ormejohnson WH, Walsh CT (1987) 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. 1. Purification and characterization. Biochemistry 26:4219–4227

    Article  PubMed  CAS  Google Scholar 

  • Fox JD, He Y, Shelver D, Roberts GP, Ludden PW (1996a) Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol 178:6200–6208

    PubMed  CAS  Google Scholar 

  • Fox JD, Kerby RL, Roberts GP, Ludden PW (1996b) Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme. J Bacteriol 178:1515–1524

    PubMed  CAS  Google Scholar 

  • Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway de Macario E, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Frey M (1998) Nickel-iron hydrogenases: structural and functional properties. Struct Bond 90:97–126

    Article  Google Scholar 

  • Frey AD, Bailey JE, Kallio PT (2000) Expression of Alcaligenes eutrophus flavohemoprotein and engineered Vitreoscilla hemoglobin-reductase fusion protein for improved hypoxic growth of Escherichia coli. Appl Environ Microbiol 66:98–104

    Article  PubMed  CAS  Google Scholar 

  • Frey M, Fontecilla-Camps JC, Volbeda A (2001) Nickel-iron hydrogenases. In: Messerschmidt A, Huber R, Poulos T, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 880–896

    Google Scholar 

  • Friedrich CG (1982) Depression of hydrogenase during limitation of electron donors and derepression of ribulosebisphosphate carboxylase during carbon limitation of Alcaligenes eutrophus. J Bacteriol 149:203–210

    PubMed  CAS  Google Scholar 

  • Friedrich B, Schwartz E (1993) Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu Rev Microbiol 47:351–383

    Article  PubMed  CAS  Google Scholar 

  • Friedrich B, Heine E, Finck A, Friedrich CG (1981a) Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. J Bacteriol 145:1144–1149

    PubMed  CAS  Google Scholar 

  • Friedrich B, Hogrefe C, Schlegel HG (1981b) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205

    PubMed  CAS  Google Scholar 

  • Friedrich B, Bernhard M, Dernedde J, Eitinger T, Lenz O, Massanz C, Schwartz E (1996) Hydrogen oxidation by Alcaligenes. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer, Dordrecht, pp 110–117

    Chapter  Google Scholar 

  • Friedrich T, Brors B, Hellwig P, Kintscher L, Rasmussen T, Scheide D, Schulte U, Mantele W, Weiss H (2000) Characterization of two novel redox groups in the respiratory NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta 1459:305–309

    Article  PubMed  CAS  Google Scholar 

  • Friedrich B, Fritsch J, Lenz O (2011) Oxygen-tolerant hydrogenases in hydrogen-based technologies. Curr Opin Biotechnol 22:358–364

    Article  PubMed  CAS  Google Scholar 

  • Frielingsdorf S, Schubert T, Pohlmann A, Lenz O, Friedrich B (2011) A trimeric supercomplex of the oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha H16. Biochemistry 50:10836–10843

    Article  PubMed  CAS  Google Scholar 

  • Fritsch J, Lenz O, Friedrich B (2011a) The maturation factors HoxR and HoxT contribute to oxygen tolerance of membrane-bound [NiFe] hydrogenase in Ralstonia eutropha H16. J Bacteriol 193:2487–2497

    Article  PubMed  CAS  Google Scholar 

  • Fritsch J, Scheerer P, Frielingsdorf S, Kroschinsky S, Friedrich B, Lenz O, Spahn CM (2011b) The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479:249–252

    Article  PubMed  CAS  Google Scholar 

  • Fritsche E, Paschos A, Beisel HG, Bock A, Huber R (1999) Crystal structure of the hydrogenase maturating endopeptidase HYBD from Escherichia coli. J Mol Biol 288:989–998

    Article  PubMed  CAS  Google Scholar 

  • Fröbel J, Rose P, Müller M (2012) Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 367:1029–1046

    Article  PubMed  CAS  Google Scholar 

  • Fu DJ, Broude NE, Koster H, Smith CL, Cantor CR (1995) A DNA sequencing strategy that requires only five bases of known terminal sequence for priming. Proc Natl Acad Sci USA 92:10162–10166

    Article  PubMed  CAS  Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39:181–213

    Article  CAS  Google Scholar 

  • Fuchs G, Stupperich E (1985) Evolution of autotrophic CO2 fixation in: evolution of prokaryotes. In: Schleifer KH, Stackebrandt E (eds), FEMS symposium No. 29. Academic Press, London, pp 235–251

    Google Scholar 

  • Gadkari D, Schricker K, Acker G, Kroppenstedt RM, Meyer O (1990) Streptomyces thermoautotrophicus sp. nov., a thermophilic CO-oxidizing and H2-oxidizing obligate chemolithoautotroph. Appl Environ Microbiol 56:3727–3734

    PubMed  CAS  Google Scholar 

  • Gaffron H (1935) On the metabolism of the purple bacteria II. Biochem Z 275:301–319

    CAS  Google Scholar 

  • Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Struct Fold Des 7:557–566

    Article  CAS  Google Scholar 

  • Gasper R, Scrima A, Wittinghofer A (2006) Structural insights into HypB, a GTP-binding protein that regulates metal binding. J Biol Chem 281:27492–27502

    Article  PubMed  CAS  Google Scholar 

  • Genthner BRS, Friedman SD, Devereux R (1997) Reclassification of Desulfovibrio desulfuricans Norway 4 as Desulfomicrobium norvegicum comb. nov. and confirmation of Desulfomicrobium escambiense (corrig, formerly “escambium”) as a new species in the genus Desulfomicrobium. Int J Syst Bacteriol 47:889–892

    Article  CAS  Google Scholar 

  • Gest H (1951) Enzymatic oxidation of molecular hydrogen by bacterial extracts. Fed Proc 10:188

    Google Scholar 

  • Gest H (1954) Oxidation and evolution of molecular hydrogen by microorganisms. Bacteriol Rev 18:43–73

    PubMed  CAS  Google Scholar 

  • Gest H, Kamen MD (1949a) Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109:558–559

    Article  PubMed  CAS  Google Scholar 

  • Gest H, Kamen MD (1949b) Photochemical production of molecular hydrogen by growing cultures of photosynthetic bacteria. J Bacteriol 58:239–245

    CAS  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    Article  PubMed  CAS  Google Scholar 

  • Gihring TM, Moser DP, Lin L-H, Davidson M, Onstott TC, Morgan L, Milleson M, Kieft TL, Trimarco E, Balkwill DL, Dollhopf ME (2006) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430

    Article  CAS  Google Scholar 

  • Gitlitz PH, Krasna AI (1975) Structural and catalytic properties of hydrogenase from Chromatium. Biochemistry 14:2561–2568

    Article  PubMed  CAS  Google Scholar 

  • Goenka A, Voordouw JK, Lubitz W, Gartner W, Voordouw G (2005) Construction of a [NiFe]-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem Soc Trans 33:59–60

    Article  PubMed  CAS  Google Scholar 

  • Gogotov IN (1968) Hydrogen excretion and carbon assimilation by purple bacteria in relation to light intensity. Dokl Akad Nauk SSSR 183:954–956

    PubMed  CAS  Google Scholar 

  • Gogotov IN (1984) Hydrogenases of purple bacteria: properties and regulation of synthesis. Arch Microbiol 140:86–90

    Article  CAS  Google Scholar 

  • Gogotov IN, Zorin NA, Bogorov LV (1974) Metabolism of hydrogen and nitrogen fixation capacity of Thiocapsa roseopersicina. Mikrobiologiya 43:5–10

    CAS  Google Scholar 

  • Gogotov IN, Zorin NA, Kondrat’eva EN (1976) Purification and properties of hydrogenase from phototrophic bacterium Thiocapsa roseopersicina. Biokhimiia 41:836–842

    PubMed  CAS  Google Scholar 

  • Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049

    Article  PubMed  CAS  Google Scholar 

  • Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. J Am Chem Soc 131:14979–14989

    Article  PubMed  CAS  Google Scholar 

  • Goodman TG, Hoffman PS (1983) Hydrogenase activity in catalase-positive strains of Campylobacter spp. J Clin Microbiol 18:825–829

    PubMed  CAS  Google Scholar 

  • Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O (2011) A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 7:310–318

    Article  PubMed  CAS  Google Scholar 

  • Gorrell TE, Uffen RL (1977) Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness. J Bacteriol 131:533–543

    PubMed  CAS  Google Scholar 

  • Gorrell TE, Uffen RL (1978) Reduction of nicotinamide adenine dinucleotide by pyruvate:lipoate oxidoreductase in anaerobic, dark-grown Rhodospirillum rubrum mutant C. J Bacteriol 134:830–836

    PubMed  CAS  Google Scholar 

  • Gorwa MF, Croux C, Soucaille P (1996) Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol 178:2668–2675

    PubMed  CAS  Google Scholar 

  • Gössner AS, Devereux R, Ohnemüller N, Acker G, Stackebrandt E, Drake HL (1999) Thermicanus aegyptius gen. nov., sp. nov., isolated from oxic soil, a fermentative microaerophile that grows commensally with the thermophilic acetogen Moorella thermoacetica. Appl Environ Microbiol 65:5124–5133

    PubMed  Google Scholar 

  • Götz D, Banta A, Beveridge TJ, Rushdi AI, Simoneit BR, Reysenbach AL (2002) Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320

    Article  PubMed  CAS  Google Scholar 

  • Graf EG, Thauer RK (1981) Hydrogenase from Methanobacterium thermoautotrophicum. FEBS Lett 136:165–169

    Article  CAS  Google Scholar 

  • Gray CT, Gest H (1965) Biological formation of molecular hydrogen. Science 148:186–192

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Simon J, Lancaster CR, Kroger A (1998) Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2. Mol Microbiol 30:639–646

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Simon J, Kroger A (1999) The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from Wolinella succinogenes. Arch Microbiol 172:227–232

    Article  PubMed  CAS  Google Scholar 

  • Grzeszik C, Lübbers M, Reh M, Schlegel HG (1997a) Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology 143:1271–1286

    Article  PubMed  CAS  Google Scholar 

  • Grzeszik C, Ross K, Schneider K, Reh M, Schlegel HG (1997b) Location, catalytic activity, and subunit composition of NAD-reducing hydrogenases of some Alcaligenes strains and Rhodococcus opacus MR22. Arch Microbiol 167:172–176

    Article  CAS  Google Scholar 

  • Guiral M, Aubert C, Giudici-Orticoni MT (2005a) Hydrogen metabolism in the hyperthermophilic bacterium Aquifex aeolicus. Biochem Soc Trans 33:22–24

    Article  PubMed  CAS  Google Scholar 

  • Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nivol C, Giudici-Orticoni MT (2005b) A membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus. J Biol Chem 280:42004–42015

    Article  PubMed  CAS  Google Scholar 

  • Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J (2005) LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 58:810–823

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez D, Hernando Y, Palacios JM, Imperial J, Ruiz-Argueso T (1997) FnrN controls symbiotic nitrogen fixation and hydrogenase activities in Rhizobium leguminosarum biovar viciae UPM791. J Bacteriol 179:5264–5270

    PubMed  CAS  Google Scholar 

  • Guyoneaud R, Matheron R, Liesack W, Imhoff JF, Caumette P (1997) Thiorhodococcus minus, gen. nov., sp. nov., A new purple sulfur bacterium isolated from coastal lagoon sediments. Arch Microbiol 168:16–23

    Article  PubMed  CAS  Google Scholar 

  • Hafenbradl D, Keller M, Dirmeier R, Rachel R, Rossnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., A novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166:308–314

    Article  PubMed  CAS  Google Scholar 

  • Halboth S, Klein A (1992) Methanococcus voltae harbors four gene clusters potentially encoding two [NiFe] and two [NiFeSe] hydrogenases, each of the cofactor F420-reducing or F420-non-reducing types. Mol Gen Genet 233:217–224

    Article  PubMed  CAS  Google Scholar 

  • Hanczar T, Csaki R, Bodrossy L, Murrell JC, Kovacs KL (2002) Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism. Arch Microbiol 177:167–172

    Article  PubMed  CAS  Google Scholar 

  • Hanus FJ, Maier RJ, Evans HJ (1979) Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with hydrogen gas. Proc Natl Acad Sci USA 76:1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214:475–481

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222:769–774

    Article  PubMed  CAS  Google Scholar 

  • Happe RP, Roseboom W, Pierik AJ, Albracht SP, Bagley KA (1997) Biological activation of hydrogen. Nature 385:126

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Schutz K, Bohme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631

    Article  PubMed  CAS  Google Scholar 

  • Häring V, Klüber HD, Conrad R (1994) Localization of atmospheric H2-oxidizing soil hydrogenases in different particle fractions of soil. Biol Fertil Soils 18:109–114

    Article  Google Scholar 

  • Harker AR, Xu LS, Hanus FJ, Evans HJ (1984) Some properties of the nickel-containing hydrogenase of chemolithotrophically grown Rhizobium japonicum. J Bacteriol 159:850–856

    PubMed  CAS  Google Scholar 

  • Harker AR, Lambert GR, Hanus FJ, Evans HJ (1985) Further evidence that two unique subunits are essential for expression of hydrogenase activity in Rhizobium japonicum. J Bacteriol 164:187–191

    PubMed  CAS  Google Scholar 

  • Harmsen HJ, Kengen KM, Akkermans AD, Stams AJ (1995) Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichment cultures. Syst Appl Microbiol 18:67–73

    Article  CAS  Google Scholar 

  • Haselkorn R, Buikema WJ (1992) Nitrogen fixation in cyanobacteria. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, London, pp 166–190

    Google Scholar 

  • Hatchikian EC, Zeikus JG (1983) Characterization of a new type of dissimilatory sulfite reductase present in Thermodesulfobacterium commune. J Bacteriol 153:1211–1220

    PubMed  CAS  Google Scholar 

  • Hatchikian EC, Chaigneau M, Le Gall J (1976) Analysis of gas production by growing cultures of three species of sulfate-reducing bacteria. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. E. Goltze, Gottingen, pp 109–118

    Google Scholar 

  • Hatchikian EC, Bruschi M, Le Gall J (1978) Characterization of the periplasmic hydrogenase from Desulfovibrio gigas. Biochem Biophys Res Commun 82:451–461

    Article  PubMed  CAS  Google Scholar 

  • Hatchikian EC, Magro V, Forget N, Nicolet Y, Fontecilla-Camps JC (1999) Carboxy-terminal processing of the large subunit of [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757. J Bacteriol 181:2947–2952

    PubMed  CAS  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermoacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Hayashi NR, Ishida T, Yokota A, Kodama T, Igarashi Y (1999) Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 49:783–786

    Article  PubMed  Google Scholar 

  • Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 291–301

    Google Scholar 

  • He SH, Teixeira M, LeGall J, Patil DS, Moura I, Moura JJ, DerVartanian DV, Huynh BH, Peck HD Jr (1989) EPR studies with 77Se-enriched (NiFeSe) hydrogenase of Desulfovibrio baculatus. Evidence for a selenium ligand to the active site nickel. J Biol Chem 264:2678–2682

    PubMed  CAS  Google Scholar 

  • Hedderich R, Forzi L (2005) Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10:92–104

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1999) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381

    Article  Google Scholar 

  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559

    Article  PubMed  CAS  Google Scholar 

  • Hennecke H (1990) Nitrogen fixation genes involved in the Bradyrhizobium japonicum-soybean symbiosis. FEBS Lett 268:422–426

    Article  PubMed  CAS  Google Scholar 

  • Hernando Y, Palacios JM, Imperial J, Ruiz-Argueso T (1995) The hypBFCDE operon from Rhizobium leguminosarum biovar viciae is expressed from an Fnr-type promoter that escapes mutagenesis of the fnrN gene. J Bacteriol 177:5661–5669

    PubMed  CAS  Google Scholar 

  • Herrero A, Muro-Pastor AM, Valladares A, Flores E (2004) Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28:469–487

    Article  PubMed  CAS  Google Scholar 

  • Heyer H, Stal L, Krumbein WE (1989) Simultaneous heterolactic and acetate fermentation in the marine cyanobacterium oscillatoria-limosa incubated anaerobically in the dark. Arch Microbiol 151:558–564

    Article  CAS  Google Scholar 

  • Hidalgo E, Palacios JM, Murillo J, Ruiz-Argueso T (1992) Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae. J Bacteriol 174:4130–4139

    PubMed  CAS  Google Scholar 

  • Higuchi Y, Yagi T, Yasuoka N (1997) Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure 5:1671–1680

    Article  PubMed  CAS  Google Scholar 

  • Hiromoto T, Ataka K, Pilak O, Vogt S, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Shima S, Ermler U (2009a) The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett 583:585–590

    Article  PubMed  CAS  Google Scholar 

  • Hiromoto T, Warkentin E, Moll J, Ermler U, Shima S (2009b) The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activation. Angew Chem Int Ed Engl 48:6457–6460

    Article  PubMed  CAS  Google Scholar 

  • Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327

    Article  PubMed  CAS  Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321

    Article  PubMed  CAS  Google Scholar 

  • Holo H, Sirevag R (1986) Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus. Arch Microbiol 145:173–180

    Article  CAS  Google Scholar 

  • Horch M, Lauterbach L, Saggu M, Hildebrandt P, Lendzian F, Bittl R, Lenz O, Zebger I (2010) Probing the active site of an O2-tolerant NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 by in situ EPR and FTIR spectroscopy. Angew Chem Int Ed Engl 49:8026–8029

    Article  PubMed  CAS  Google Scholar 

  • Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I (2012) NAD(H)-coupled hydrogen cycling – structure-function relationships of bidirectional [NiFe] hydrogenases. FEBS Lett 586:545–556

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1709

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases—ancient enzymes in modern eukaryotes. Trends Biochem Sci 27:148–153

    Article  PubMed  CAS  Google Scholar 

  • Houchins JP, Burris RH (1981a) Comparative characterization of two distinct hydrogenases from Anabaena sp. strain 7120. J Bacteriol 146:215–221

    PubMed  CAS  Google Scholar 

  • Houchins JP, Burris RH (1981b) Occurrence and localization of two distinct hydrogenases in the heterocystous cyanobacterium Anabaena sp. strain 7120. J Bacteriol 146:209–214

    PubMed  CAS  Google Scholar 

  • Howarth DC, Codd GA (1985) The uptake and production of molecular-hydrogen by unicellular cyanobacteria. J Gen Microbiol 131:1561–1569

    CAS  Google Scholar 

  • Hube M, Blokesch M, Böck A (2002) Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 184:3879–3885

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Thomm M, Konig H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50

    Article  Google Scholar 

  • Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  • Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch Microbiol 149:95–101

    Article  CAS  Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. nov. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38–47

    Article  Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111

    Article  CAS  Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacterium. Syst Appl Microbiol 15:340–351

    Article  Google Scholar 

  • Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583

    PubMed  CAS  Google Scholar 

  • Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000a) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100

    Article  PubMed  Google Scholar 

  • Huber R, Huber H, Stetter KO (2000b) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24:615–623

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Diller S, Horn C, Rachel R (2002) Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52:1859–1865

    Article  PubMed  CAS  Google Scholar 

  • Hügler M, Petersen JM, Dubilier N, Imhoff JF, Sievert SM (2011) Pathways of carbon and energy metabolism of the epibiotic community associated with the deep-sea hydrothermal vent shrimp Rimicaris exoculata. PLoS One 6:e16018

    Article  PubMed  CAS  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic, New York

    Google Scholar 

  • Huynh BH, Patil DS, Moura I, Teixeira M, Moura JJ, DerVartanian DV, Czechowski MH, Prickril BC, Peck HD Jr, LeGall J (1987) On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas. Mössbauer and redox-titration studies. J Biol Chem 262:795–800

    PubMed  CAS  Google Scholar 

  • Hyndman LA, Burris RH, Wilson PW (1953) Properties of hydrogenase from Azotobacter vinelandii. J Bacteriol 65:522–531

    PubMed  CAS  Google Scholar 

  • Ide T, Baumer S, Deppenmeier U (1999) Energy conservation by the H2:heterodisulfide oxidoreductase from Methanosarcina mazei Gö1: identification of two proton-translocating segments. J Bacteriol 181:4076–4080

    PubMed  CAS  Google Scholar 

  • Igarashi Y, Kodama T, Minoda Y (1980) Identification and characterization of a new amylolytic hydrogen bacterium, Pseudomonas hydrogenovora. Agric Biol Chem 44:1277–1281

    Article  CAS  Google Scholar 

  • Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F (2004) Coordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–3972

    Article  PubMed  CAS  Google Scholar 

  • Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114

    Article  PubMed  CAS  Google Scholar 

  • Jacobs NJ, Wolin MJ (1963) Electron-transport system of Vibrio succinogenes.1. Enzymes and cytochromes of electron-transport system. Biochim Biophys Acta 69:18–28

    Article  PubMed  CAS  Google Scholar 

  • Jacobson FS, Daniels L, Fox JA, Walsh CT, Orme-Johnson WH (1982) Purification and properties of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. J Biol Chem 257:3385–3388

    PubMed  CAS  Google Scholar 

  • Jankielewicz A, Klimmek O, Kroger A (1995) The electron transfer from hydrogenase and formate dehydrogenase to polysulfide reductase in the membrane of Wolinella succinogenes. Biochim Biophys Acta 1231:157–162

    Article  Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW, Huber R, Belkins S, Stetter KO (1988) Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch Microbiol 150:103–104

    Article  Google Scholar 

  • Jansen K, Thauer RK, Widdel F, Fuchs G (1984) Carbon assimilation pathways in sulfate-reducing bacteria: formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol 138:257–262

    Article  CAS  Google Scholar 

  • Jayasinghearachchi HS, Lal B (2011) Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int J Syst Evol Microbiol 61:554–560

    Article  PubMed  CAS  Google Scholar 

  • Jeanthon C, L’Haridon S, Reysenbach AL, Vernet M, Messner P, Sleytr UB, Prieur D (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919

    Article  PubMed  CAS  Google Scholar 

  • Jeanthon C, L’Haridon S, Reysenbach AL, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213 T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49:583–589

    Article  PubMed  Google Scholar 

  • Jenney FE Jr, Adams MW (2008) Hydrogenases of the model hyperthermophiles. Ann N Y Acad Sci 1125:252–266

    Article  PubMed  CAS  Google Scholar 

  • Jin SLC, Blanchard DK, Chen JS (1983) 2 hydrogenases with distinct electron-carrier specificity and subunit composition in Methanobacterium formicicum. Biochim Biophys Acta 748:8–20

    Article  CAS  Google Scholar 

  • Jochimsen B, Peinemann-Simon S, Völker H, Stüben D, Botz R, Stoffers P, Dando PR, Thomm M (1997) Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece. Extremophiles 1:67–73

    Article  PubMed  CAS  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983a) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  CAS  Google Scholar 

  • Jones WJ, Paynter MJB, Gupta R (1983b) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt-marsh sediment. Arch Microbiol 135:91–97

    Article  Google Scholar 

  • Jones AK, Lenz O, Strack A, Buhrke T, Friedrich B (2004) NiFe hydrogenase active site biosynthesis: identification of Hyp protein complexes in Ralstonia eutropha. Biochemistry 43:13467–13477

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen BB (1989) Biogeochemistry of chemoautotrophic bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech/Springer, Madison, pp 117–146

    Google Scholar 

  • Jorgensen BB (2001) Biogeochemistry. Space for hydrogen. Nature 412:286–287 and 289

    Article  PubMed  CAS  Google Scholar 

  • Joyner AE, Winter WT, Godbout DM (1977) Studies on some characteristics of hydrogen production by cell-free extracts of rumen anaerobic bacteria. Can J Microbiol 23:346–353

    Article  PubMed  CAS  Google Scholar 

  • Jungermann K, Schön G (1974) Pyruvate formate lyase in Rhodospirillum rubrum Ha adapted to anaerobic dark conditions. Arch Microbiol 99:109–116

    Article  PubMed  CAS  Google Scholar 

  • Juszczak A, Aono S, Adams MW (1991) The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J Biol Chem 266:13834–13841

    PubMed  CAS  Google Scholar 

  • Kaesler B, Schönheit P (1989) The role of sodium ions in methanogenesis. Formaldehyde oxidation to CO2 and 2H2 in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na+/CO2. Eur J Biochem 184:223–232

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen AH, Spring S, Schumann P, Kroppenstedt RM, Puhakka JA (2006) Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. Int J Syst Evol Microbiol 56:2603–2608

    Article  PubMed  CAS  Google Scholar 

  • Kämpf C, Pfennig N (1980) Capacity of chromatiaceae for chemotropic growth—specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127:125–135

    Article  Google Scholar 

  • Kämpf C, Pfennig N (1986) Isolation and characterization of some chemoautotrophic chromatiaceae. J Basic Microbiol 26:507–515

    Article  Google Scholar 

  • Kane MD, Brauman A, Breznak JA (1991) Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch Microbiol 156:99–104

    Article  CAS  Google Scholar 

  • Kane MD, Breznak JA (1991) Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol 156:91–98

    Article  PubMed  CAS  Google Scholar 

  • Kärst U, Suetin S, Friedrich CG (1987) Purification and properties of a protein linked to the soluble hydrogenase of hydrogen-oxidizing bacteria. J Bacteriol 169:2079–2085

    PubMed  Google Scholar 

  • Kaserer H (1906) Die Oxydation des Wasserstoffes durch Mikroorganismen. Centr Bakteriol Parasitenk 16:681–696

    CAS  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002a) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742

    Article  PubMed  CAS  Google Scholar 

  • Kashefi K, Tor JM, Holmes DE, Gaw Van Praagh CV, Reysenbach AL, Lovley DR (2002b) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF, Holland HD, Kump LR (1992) Atmospheric evolution: the rise of oxygen. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 159–163

    Google Scholar 

  • Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1984) Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34:5–10

    Article  CAS  Google Scholar 

  • Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307:1428–1434

    Article  PubMed  CAS  Google Scholar 

  • Keltjens JT, Vogels GD (1993) Conversion of methanol and methylamines to methane and carbon dioxide. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 253–303

    Chapter  Google Scholar 

  • Kentemich T, Bahnweg M, Mayer F, Bothe H (1989) Localization of the reversible hydrogenase in cyanobacteria. Z Naturforsch C 44:384–391

    CAS  Google Scholar 

  • Kerby R, Zeikus JG (1983) Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr Microbiol 8:27–30

    Article  CAS  Google Scholar 

  • Kiessling M, Meyer O (1982) Profitable oxidation of carbon monoxide or hydrogen during heterotrophic growth of Pseudomonas carboxydoflava. FEMS Microbiol Lett 13:333–338

    Article  CAS  Google Scholar 

  • King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172

    Article  PubMed  CAS  Google Scholar 

  • Kiss E, Kos PB, Vass I (2009) Transcriptional regulation of the bidirectional hydrogenase in the cyanobacterium Synechocystis 6803. J Biotechnol 142:31–37

    Article  PubMed  CAS  Google Scholar 

  • Kleihues L, Lenz O, Bernhard M, Buhrke T, Friedrich B (2000) The H2 sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J Bacteriol 182:2716–2724

    Article  PubMed  CAS  Google Scholar 

  • Klemme J-H, Schlegel HG (1967) Light-dependent pyridine nucleotide reduction with molecarhydrogen by subcellular photopigment particles from Rhodopseudomonas capsulata. Z Naturforsch B 22:899–900

    PubMed  CAS  Google Scholar 

  • Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological-characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208

    Article  CAS  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Venter JC et al (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    Article  PubMed  CAS  Google Scholar 

  • Knüttel K, Schneider K, Schlegel HG, Müller A (1989) The membrane-bound hydrogenase from Paracoccus denitrificans. Purification and molecular characterization. Eur J Biochem 179:101–108

    Article  PubMed  Google Scholar 

  • Knüttel K, Schneider K, Erkens A, Plass W, Müller A, Bill E, Trautwein AX (1994) Redox properties of the metal centres in the membrane-bound hydrogenase from Alcaligenes eutrophus CH34. Bull Pol Acad Sci Chem 42:495–511

    Google Scholar 

  • Kodama T, Igarashi Y, Minoda Y (1975) Isolation and culture conditions of a bacterium grown on hydrogen and carbon dioxide. Agric Biol Chem 39:77–82

    Article  CAS  Google Scholar 

  • Kohlmiller EF Jr, Gest H (1951) A comparative study of the light and dark fermentations of organic acids by Rhodospirillum rubrum. J Bacteriol 61:269–282

    PubMed  CAS  Google Scholar 

  • Kojima N, Fox JA, Hausinger RP, Daniels L, Orme-Johnson WH, Walsh C (1983) Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci USA 80:378–382

    Article  PubMed  CAS  Google Scholar 

  • Kondratieva EN, Gogotov IN (1983) Production of molecular hydrogen in microorganisms. Adv Biochem Eng Biotechnol 28:139–190

    CAS  Google Scholar 

  • Kortlüke C, Horstmann K, Schwartz E, Rohde M, Binsack R, Friedrich B (1992) A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 174:6277–6289

    PubMed  Google Scholar 

  • Kotelnikova S, Pedersen K (1998) Distribution and activity of methanogens and homoacetogens in deep granitic aquifers at Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 26:121–134

    CAS  Google Scholar 

  • Kotelnikova S, Macario AJ, Pedersen K (1998) Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48:357–367

    Article  PubMed  Google Scholar 

  • Kotsyurbenko OR, Simankova MV, Nozhevnikova AN, Zhilina TN, Bolotina NP, Lysenko AM, Osipov GA (1995) New species of psychrophilic acetogens—Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. Arch Microbiol 163:29–34

    Article  CAS  Google Scholar 

  • Kovacs KL, Bagyinka C, Serebriakova LT (1983) Distribution and orientation of hydrogenase in various photosynthetic bacteria. Curr Microbiol 9:215–218

    Article  CAS  Google Scholar 

  • Kovács KL, Fodor B, Kovács ÁT, Csanádi G, Maróti G, Balogh J, Arvani S, Rákhely G (2002) Hydrogenases, accessory genes and the regulation of [NiFe] hydrogenase biosynthesis in Thiocapsa roseopersicina. Int J Hydrogen Energy 27:1463–1469

    Article  Google Scholar 

  • Kovács AT, Rákhely G, Balogh J, Maróti G, Cournac L, Carrier P, Mészáros LS, Peltier G, Kovács KL (2005a) Hydrogen independent expression of hupSL genes in Thiocapsa roseopersicina BBS. FEBS J 272:4807–4816

    Article  PubMed  CAS  Google Scholar 

  • Kovács AT, Rákhely G, Browning DF, Fülöp A, Maróti G, Busby SJ, Kovács KL (2005b) An FNR-type regulator controls the anaerobic expression of hyn hydrogenase in Thiocapsa roseopersicina. J Bacteriol 187:2618–2627

    Article  PubMed  CAS  Google Scholar 

  • Kovács KL, Kovács AT, Maróti G, Mészáros LS, Balogh J, Latinovics D, Fülöp A, David R, Doroghazi E, Rákhely G (2005c) The hydrogenases of Thiocapsa roseopersicina. Biochem Soc Trans 33:61–63

    Article  PubMed  Google Scholar 

  • Krasna AI (1979) Hydrogenase—properties and applications. Enzyme Microb Technol 1:165–172

    Article  CAS  Google Scholar 

  • Krasna AI (1980) Regulation of hydrogenase activity in enterobacteria. J Bacteriol 144:1094–1097

    PubMed  CAS  Google Scholar 

  • Krasna AI (1984) Mutants of Escherichia coli with altered hydrogenase activity. J Gen Microbiol 130:779–787

    PubMed  CAS  Google Scholar 

  • Kristjansson JK, Schonheit P, Thauer RK (1982) Different ks-values for hydrogen of methanogenic bacteria and sulfate reducing bacteria—an explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131:278–282

    Article  CAS  Google Scholar 

  • Kroger A, Innerhofer A (1976) Function of b cytochromes in electron-transport from formate to fumarate of Vibrio succinogenes. Eur J Biochem 69:497–506

    Article  Google Scholar 

  • Krylova NI, Janssen PH, Conrad R (1997) Turnover of propionate in methanogenic paddy soil. FEMS Microbiol Ecol 23:107–117

    Article  CAS  Google Scholar 

  • Kryukov VR, Savelyeva ND, Pusheva MA (1983) Calderobacterium hydrogenophilum nov. gen., nov. sp., an extremely thermophilic hydrogen bacterium and its hydrogenase activity. Mikrobiologiya 52:781–788

    CAS  Google Scholar 

  • Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107:4152–4205

    Article  PubMed  CAS  Google Scholar 

  • Kucho K, Okamoto K, Tsuchiya Y, Nomura S, Nango M, Kanehisa M, Ishiura M (2005) Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187:2190–2199

    Article  PubMed  CAS  Google Scholar 

  • Kühnemund H (1971) Zur Verwertung von molekularem Wasserstoff durch Micrococcus denitrificans. PhD thesis. Universität Göttingen. Göttingen, Germany

    Google Scholar 

  • Kuhner CH, Frank C, Griesshammer A, Schmittroth M, Acker G, Gössner A, Drake HL (1997) Sporomusa silvacetica sp, nov., an acetogenic bacterium isolated from aggregated forest soil. Int J Syst Bacteriol 47:352–358

    Article  PubMed  CAS  Google Scholar 

  • Künkel A, Vorholt JA, Thauer RK, Hedderich R (1998) An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem 252:467–476

    Article  PubMed  Google Scholar 

  • Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. Arch Microbiol 156:239–247

    Article  CAS  Google Scholar 

  • Küsel K, Dorsch T, Acker G, Stackebrandt E, Drake HL (2000) Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Syst Evol Microbiol 50:537–546

    Article  PubMed  Google Scholar 

  • L’Haridon SL, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya E, Stackebrandt E, Jeanthon C (2001) Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in western Siberia. Int J Syst Evol Microbiol 51:1327–1334

    Google Scholar 

  • L’Haridon S, Reysenbach AL, Banta A, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935

    Article  PubMed  CAS  Google Scholar 

  • L’Haridon S, Reysenbach AL, Tindall BJ, Schönheit P, Banta A, Johnsen U, Schumann P, Gambacorta A, Stackebrandt E, Jeanthon C (2006) Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. Int J Syst Evol Microbiol 56:2843–2852

    Article  PubMed  CAS  Google Scholar 

  • La Favre JS, Focht DD (1983) Conservation in soil of H2 liberated from N2 fixation by Hup nodules. Appl Environ Microbiol 46:304–311

    PubMed  Google Scholar 

  • Laanbroek HJ, Abee T, Voogd IL (1982) Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch Microbiol 133:178–184

    Article  CAS  Google Scholar 

  • Lalucat J, Pares R, Schlegel HG (1982) Pseudomonas taeniospiralis sp. nov., an R-body-containing hydrogen bacterium. Int J Syst Bacteriol 32:332–338

    Article  Google Scholar 

  • Lambert GR, Smith GD (1980) Hydrogen metabolism by filamentous cyanobacteria. Arch Biochem Biophys 205:36–50

    Article  PubMed  CAS  Google Scholar 

  • Lampreia J, Fauque G, Speich N, Dahl C, Moura I, Truper HG, Moura JJ (1991) Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus. Biochem Biophys Res Commun 181:342–347

    Article  PubMed  CAS  Google Scholar 

  • Lancaster CR (2001) Succinate:quinone oxidoreductases—what can we learn from Wolinella succinogenes quinol:fumarate reductase? FEBS Lett 504:133–141

    Article  PubMed  CAS  Google Scholar 

  • Laska S, Lottspeich F, Kletzin A (2003) Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology 149:2357–2371

    Article  PubMed  CAS  Google Scholar 

  • Lauerer G, Kristjansson JK, Langworthy TA, König H, Stetter KO (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105

    Article  Google Scholar 

  • Lauterbach L, Idris Z, Vincent KA, Lenz O (2011a) Catalytic properties of the isolated diaphorase fragment of the NAD-reducing [NiFe]-hydrogenase from Ralstonia eutropha. PLoS One 6:e25939

    Article  PubMed  CAS  Google Scholar 

  • Lauterbach L, Liu JA, Horch M, Hummel P, Schwarze A, Haumann M, Vincent KA, Lenz O, Zebger I (2011b) The hydrogenase subcomplex of the NAD+-Reducing [NiFe] hydrogenase from Ralstonia eutropha—insights into catalysis and redox interconversions. Eur J Inorg Chem 2011(7):1067–1079

    Article  CAS  Google Scholar 

  • Leach MR, Zamble DB (2007) Metallocenter assembly of the hydrogenase enzymes. Curr Opin Chem Biol 11:159–165

    Article  PubMed  CAS  Google Scholar 

  • Leclerc M, Colbeau A, Cauvin B, Vignais PM (1988) Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus. Mol Gen Genet 214:97–107

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Wilson PW (1943) Hydrogenase and nitrogenase in Azotobacter. J Biol Chem 151:377–385

    CAS  Google Scholar 

  • Lehman RM, Roberto FF, Earley D, Bruhn DF, Brink SE, O’Connell SP, Delwiche ME, Colwell FS (2001) Attached and unattached bacterial communities in a 120-meter corehole in an acidic, crystalline rock aquifer. Appl Environ Microbiol 67:2095–2106

    Article  PubMed  CAS  Google Scholar 

  • Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui, a new thermophilic, hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol 129:275–280

    Article  CAS  Google Scholar 

  • Leitao E, Oxelfelt F, Oliveira P, Moradas-Ferreira P, Tamagnini P (2005) Analysis of the hupSL operon of the nonheterocystous cyanobacterium Lyngbya majuscula CCAP 1446/4: regulation of transcription and expression under a light–dark regimen. Appl Environ Microbiol 71:4567–4576

    Article  PubMed  CAS  Google Scholar 

  • Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B Chem Phys Meteorol 50:128–150

    Article  Google Scholar 

  • Lemon BJ, Peters JW (1999) Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969–12973

    Article  PubMed  CAS  Google Scholar 

  • Lenz O, Friedrich B (1998) A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci USA 95:12474–12479

    Article  PubMed  CAS  Google Scholar 

  • Lenz O, Schwartz E, Dernedde J, Eitinger M, Friedrich B (1994) The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 176:4385–4393

    PubMed  CAS  Google Scholar 

  • Lenz O, Strack A, Tran-Betcke A, Friedrich B (1997) A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species. J Bacteriol 179:1655–1663

    PubMed  CAS  Google Scholar 

  • Lenz O, Bernhard M, Buhrke T, Schwartz E, Friedrich B (2002) The hydrogen-sensing apparatus in Ralstonia eutropha. J Mol Microbiol Biotechnol 4:255–562

    PubMed  CAS  Google Scholar 

  • Lenz O, Zebger I, Hamann J, Hildebrandt P, Friedrich B (2007) Carbamoylphosphate serves as the source of CN, but not of the intrinsic CO in the active site of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha. FEBS Lett 581:3322–3326

    Article  PubMed  CAS  Google Scholar 

  • Lenz O, Ludwig M, Schubert T, Bürstel I, Ganskow S, Goris T, Schwarze A, Friedrich B (2010) H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Chemphyschem 11:1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426

    Article  PubMed  CAS  Google Scholar 

  • Lill SO, Siegbahn PE (2009) An autocatalytic mechanism for NiFe-hydrogenase: reduction to Ni(I) followed by oxidative addition. Biochemistry 48:1056–1066

    Article  PubMed  CAS  Google Scholar 

  • Lindblad P, Sellstedt A (1990) Occurrence and localization of an uptake hydrogenase in the filamentous heterocystous cyanobacterium Nostoc PCC 73102. Protoplasma 159:9–15

    Article  CAS  Google Scholar 

  • Lipscomb GL, Keese AM, Cowart DM, Schut GJ, Thomm M, Adams MW, Scott RA (2009) SurR: a transcriptional activator and repressor controlling hydrogen and elemental sulphur metabolism in Pyrococcus furiosus. Mol Microbiol 71:332–349

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl L, Wood HG (1982) Acetate biosynthesis. In: Dolphin D (ed) B12. Wiley, New York, pp 166–202

    Google Scholar 

  • Longnecker K, Reysenbach A (2001) Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293

    PubMed  CAS  Google Scholar 

  • Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964

    PubMed  CAS  Google Scholar 

  • Lovley DR, Chapelle FH (1996) Hydrogen-based microbial ecosystems in the Earth. Science 272:896b

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Klug MJ (1982) Intermediary metabolism of organic-matter in the sediments of a eutrophic lake. Appl Environ Microbiol 43:552–560

    PubMed  CAS  Google Scholar 

  • Lovley DR, Klug MJ (1983) Sulfate reducers can out-compete methanogens at fresh-water sulfate concentrations. Appl Environ Microbiol 45:187–192

    PubMed  CAS  Google Scholar 

  • Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic-analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol 43:1373–1379

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJ, Lonergan DJ (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706

    PubMed  CAS  Google Scholar 

  • Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Schubert T, Zebger I, Wisitruangsakul N, Saggu M, Strack A, Lenz O, Hildebrandt P, Friedrich B (2009) Concerted action of two novel auxiliary proteins in assembly of the active site in a membrane-bound [NiFe] hydrogenase. J Biol Chem 284:2159–2168

    Article  PubMed  CAS  Google Scholar 

  • Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA (2011) Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. J Am Chem Soc 133:16881–16892

    Article  PubMed  CAS  Google Scholar 

  • Lupton FS, Conrad R, Zeikus JG (1984) Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. J Bacteriol 159:843–849

    PubMed  CAS  Google Scholar 

  • Lutz S, Bohm R, Beier A, Bock A (1990) Characterization of divergent NtrA-dependent promoters in the anaerobically expressed gene cluster coding for hydrogenase 3 components of Escherichia coli. Mol Microbiol 4:13–20

    Article  PubMed  CAS  Google Scholar 

  • Lutz S, Jacobi A, Schlensog V, Böhm R, Sawers G, Böck A (1991) Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol Microbiol 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Lyon EJ, Shima S, Boecher R, Thauer RK, Grevels FW, Bill E, Roseboom W, Albracht SP (2004a) Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J Am Chem Soc 126:14239–14248

    Article  PubMed  CAS  Google Scholar 

  • Lyon EJ, Shima S, Buurman G, Chowdhuri S, Batschauer A, Steinbach K, Thauer RK (2004b) UV-A/blue-light inactivation of the ‘metal-free’ hydrogenase (Hmd) from methanogenic archaea. Eur J Biochem 271:195–204

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Schicho RN, Kelly RM, Adams MW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci USA 90:5341–5344

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Adams MW (1994) Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J Bacteriol 176:6509–6517

    PubMed  CAS  Google Scholar 

  • Ma K, Weiss R, Adams MW (2000) Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J Bacteriol 182:1864–1871

    Article  PubMed  CAS  Google Scholar 

  • Maden BEH (1995) No soup for starters—autotrophy and the origins of metabolism. Trends Biochem Sci 20:337–341

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Gest H (1978) Growth of a photosynthetic bacterium anaerobically in darkness, supported by “oxidant-dependent” sugar fermentation. Arch Microbiol 117:119–122

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137:524–530

    PubMed  CAS  Google Scholar 

  • Magalon A, Böck A (2000) Analysis of the HypC-hycE complex, a key intermediate in the assembly of the metal center of the Escherichia coli hydrogenase 3. J Biol Chem 275:21114–21120

    Article  PubMed  CAS  Google Scholar 

  • Magalon A, Blokesch M, Zehelein E, Böck A (2001) Fidelity of metal insertion into hydrogenases. FEBS Lett 499:73–76

    Article  PubMed  CAS  Google Scholar 

  • Mah RA (1980) Isolation and characterization of Methanococcus mazei. Curr Microbiol 3:321–326

    Article  Google Scholar 

  • Maier T, Böck A (1996a). Nickel incorporation into hydrogenases. In: Hausinger RP, Eichhorn GL, Marzilli LG (eds) Mechanisms of Metallocenter Assembly. VCH Publishers. New York, NY. 173–192

    Google Scholar 

  • Maier T, Böck A (1996) Generation of active [NiFe] hydrogenase in vitro from a nickel-free precursor form. Biochemistry 35:10089–10093

    Article  PubMed  CAS  Google Scholar 

  • Maier T, Lottspeich F, Bock A (1995) GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur J Biochem 230:133–138

    Article  PubMed  CAS  Google Scholar 

  • Maier RJ, Fu C, Gilbert J, Moshiri F, Olson J, Plaut AG (1996a) Hydrogen uptake hydrogenase in Helicobacter pylori. FEMS Microbiol Lett 141:71–76

    Article  PubMed  CAS  Google Scholar 

  • Maier T, Binder U, Böck A (1996b) Analysis of the hydA locus of Escherichia coli: two genes (hydN and hypF) involved in formate and hydrogen metabolism. Arch Microbiol 165:333–341

    Article  PubMed  CAS  Google Scholar 

  • Maimaiti J, Zhang Y, Yang J, Cen YP, Layzell DB, Peoples M, Dong Z (2007) Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ Microbiol 9:435–444

    Article  PubMed  CAS  Google Scholar 

  • Major TA, Liu Y, Whitman WB (2010) Characterization of energy-conserving hydrogenase B in Methanococcus maripaludis. J Bacteriol 192:4022–4030

    Article  PubMed  CAS  Google Scholar 

  • Malik KA, Claus D (1979) Xanthobacter flavus, a new species of nitrogen-fixing hydrogen bacteria. Int J Syst Bacteriol 29:283–287

    Article  Google Scholar 

  • Malik KA, Schlegel HG (1981) Chemolithoautotrophic growth of bacteria able to grow under N2-fixing conditions. FEMS Microbiol Lett 11:63–67

    Article  CAS  Google Scholar 

  • Malik B, Su WW, Wald HL, Blumentals II, Kelly RM (1989) Growth and gas-production for hyperthermophilic archaebacterium, Pyrococcus furiosus. Biotechnol Bioeng 34:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Malki S, Saimmaime I, De Luca G, Rousset M, Dermoun Z, Belaich JP (1995) Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 177:2628–2636

    PubMed  CAS  Google Scholar 

  • Malki S, De Luca G, Fardeau ML, Rousset M, Belaich JP, Dermoun Z (1997) Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans. Arch Microbiol 167:38–45

    Article  PubMed  CAS  Google Scholar 

  • Maness PC, Huang J, Smolinski S, Tek V, Vanzin G (2005) Energy generation from the CO oxidation-hydrogen production pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 71:2870–2874

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Maróti G, Fodor BD, Rákhely G, Kovács AT, Arvani S, Kovács KL (2003) Accessory proteins functioning selectively and pleiotropically in the biosynthesis of [NiFe] hydrogenases in Thiocapsa roseopersicina. Eur J Biochem 270:2218–2227

    Article  PubMed  CAS  Google Scholar 

  • Maróti J, Farkas A, Nagy IK, Maróti G, Kondorosi E, Rákhely G, Kovács KL (2010) A second soluble Hox-type NiFe enzyme completes the hydrogenase set in Thiocapsa roseopersicina BBS. Appl Environ Microbiol 76:5113–5123

    Article  PubMed  CAS  Google Scholar 

  • Marques MC, Coelho R, De Lacey AL, Pereira IA, Matias PM (2010) The three-dimensional structure of [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough: a hydrogenase without a bridging ligand in the active site in its oxidised, “as-isolated” state. J Mol Biol 396:893–907

    Article  PubMed  CAS  Google Scholar 

  • Martin WF (2012) Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation. FEBS Lett 586:485–493

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Muller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  PubMed  CAS  Google Scholar 

  • Martin DR, Lundie LL, Kellum R, Drake HL (1983) Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum. Curr Microbiol 8:337–340

    Article  CAS  Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 362:1887–1925

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell MJ (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    PubMed  CAS  Google Scholar 

  • Martinez M, Brito B, Imperial J, Ruiz-Argueso T (2004) Characterization of a new internal promoter (P3) for Rhizobium leguminosarum hydrogenase accessory genes hupGHIJ. Microbiology 150:665–675

    Article  PubMed  CAS  Google Scholar 

  • Massanz C, Friedrich B (1999) Amino acid replacements at the H2-activating site of the NAD-reducing hydrogenase from Alcaligenes eutrophus. Biochemistry 38:14330–14337

    Article  PubMed  CAS  Google Scholar 

  • Massanz C, Fernandez VM, Friedrich B (1997) C-terminal extension of the H2-activating subunit, HoxH, directs maturation of the NAD-reducing hydrogenase in Alcaligenes eutrophus. Eur J Biochem 245:441–448

    Article  PubMed  CAS  Google Scholar 

  • Massanz C, Schmidt S, Friedrich B (1998) Subforms and in vitro reconstitution of the NAD-reducing hydrogenase of Alcaligenes eutrophus. J Bacteriol 180:1023–1029

    PubMed  CAS  Google Scholar 

  • Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, Le Gall J, Carrondo MA (2001) [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 A and modelling studies of its interaction with the tetrahaem cytochrome c3. J Biol Inorg Chem 6:63–81

    Article  PubMed  CAS  Google Scholar 

  • Matias PM, Coelho AV, Valente FM, Placido D, LeGall J, Xavier AV, Pereira IA, Carrondo MA (2002) Sulfate respiration in Desulfovibrio vulgaris Hildenborough. Structure of the 16-heme cytochrome c HmcA AT 2.5-A resolution and a view of its role in transmembrane electron transfer. J Biol Chem 277:47907–47916

    Article  PubMed  CAS  Google Scholar 

  • Matias PM, Pereira IA, Soares CM, Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol 89:292–329

    Article  PubMed  CAS  Google Scholar 

  • McCrae RE, Hanus J, Evans HJ (1978) Properties of the hydrogenase system in Rhizobium japonicum bacteroids. Biochem Biophys Res Commun 80:384–390

    Article  PubMed  CAS  Google Scholar 

  • McGlynn SE, Ruebush SS, Naumov A, Nagy LE, Dubini A, King PW, Broderick JB, Posewitz MC, Peters JW (2007) In vitro activation of [FeFe] hydrogenase: new insights into hydrogenase maturation. J Biol Inorg Chem 12:443–447

    Article  PubMed  CAS  Google Scholar 

  • McGlynn SE, Shepard EM, Winslow MA, Naumov AV, Duschene KS, Posewitz MC, Broderick WE, Broderick JB, Peters JW (2008) HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis. FEBS Lett 582:2183–2187

    Article  PubMed  CAS  Google Scholar 

  • McGlynn SE, Mulder DW, Shepard EM, Broderick JB, Peters JW (2009) Hydrogenase cluster biosynthesis: organometallic chemistry nature’s way. Dalton Trans 2009(22):4274–4285

    Article  CAS  Google Scholar 

  • McGlynn SE, Boyd ES, Shepard EM, Lange RK, Gerlach R, Broderick JB, Peters JW (2010) Identification and characterization of a novel member of the radical AdoMet enzyme superfamily and implications for the biosynthesis of the Hmd hydrogenase active site cofactor. J Bacteriol 192:595–598

    Article  PubMed  CAS  Google Scholar 

  • McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty-acids in syntrophic association with methanogens. Arch Microbiol 122:129–135

    Article  CAS  Google Scholar 

  • McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981a) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    PubMed  CAS  Google Scholar 

  • McInerney MJ, Mackie RI, Bryant MP (1981b) Syntrophic association of a butyrate-degrading bacterium and methanosarcina enriched from bovine rumen fluid. Appl Environ Microbiol 41:826–828

    PubMed  CAS  Google Scholar 

  • McIntosh CL, Germer F, Schulz R, Appel J, Jones AK (2011) The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 works bidirectionally with a bias to H2 production. J Am Chem Soc 133:11308–11319

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  PubMed  CAS  Google Scholar 

  • Menon AL, Robson RL (1994) In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii. J Bacteriol 176:291–295

    PubMed  CAS  Google Scholar 

  • Menon NK, Robbins J, Peck HD, Chatelus CY, Choi ES, Przybyla AE (1990) Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames. J Bacteriol 172:1969–1977

    PubMed  CAS  Google Scholar 

  • Menon NK, Robbins J, Wendt JC, Shanmugam KT, Przybyla AE (1991) Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 173:4851–4861

    PubMed  CAS  Google Scholar 

  • Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD, Przybyla AE (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423

    PubMed  CAS  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Vangijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  PubMed  CAS  Google Scholar 

  • Meuer J, Bartoschek S, Koch J, Kunkel A, Hedderich R (1999) Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur J Biochem 265:325–335

    Article  PubMed  CAS  Google Scholar 

  • Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci USA 99:5632–5637

    Article  PubMed  CAS  Google Scholar 

  • Meyer O (1989) Aerobic, carbon monoxide-oxidizing bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech/Springer, Madison, pp 331–350

    Google Scholar 

  • Meyer J, Gagnon J (1991) Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry 30:9697–9704

    Article  PubMed  CAS  Google Scholar 

  • Meyer O, Schlegel HG (1978) Reisolation of carbon-monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (kistner) comb. nov. Arch Microbiol 118:35–43

    Article  PubMed  CAS  Google Scholar 

  • Mikheeva LE, Schmitz O, Shestakov SV, Bothe H (1995) Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities. Z Naturforsch C 50:505–510

    CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on earth. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Miller TL, Wolin MJ (1973) Formation of hydrogen and formate by Ruminococcus albus. J Bacteriol 116:836–846

    PubMed  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1979) Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr 32:164–172

    PubMed  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    Article  PubMed  CAS  Google Scholar 

  • Miller TL, Wolin MJ, Zhao HX, Bryant MP (1986) Characteristics of methanogens isolated from bovine rumen. Appl Environ Microbiol 51:201–202

    PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Bonch-Osmolovskaya EA (2006) Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 10:85–96

    Article  PubMed  Google Scholar 

  • Miroshnichenko ML, Bonch-Osmolovskaya EA, Neuner A, Kostrikina NA, Chernych NA, Alekseev VA (1989) Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262

    Article  Google Scholar 

  • Miroshnichenko ML, Gongadze GA, Lysenko AM, Bonch-Osmolovskaya EA (1994) Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand). Arch Microbiol 161:88–93

    CAS  Google Scholar 

  • Miroshnichenko ML, Rainey FA, Hippe H, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA (1998) Desulfurella kamchatkensis sp. nov. and Desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments. Int J Syst Bacteriol 48:475–479

    Article  PubMed  Google Scholar 

  • Miroshnichenko ML, Rainey FA, Rhode M, Bonch-Osmolovskaya EA (1999) Hippea maritima gen. nov., sp. nov., a new genus of thermophilic, sulfur-reducing bacterium from submarine hot vents. Int J Syst Bacteriol 49:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Kostrikina NA, L’Haridon S, Jeanthon C, Hippe H, Stackebrandt E, Bonch-Osmolovskaya EA (2002) Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Kostrikina NA, Chernyh NA, Pimenov NV, Tourova TP, Antipov AN, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA (2003a) Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, L’Haridon S, Jeanthon C, Antipov AN, Kostrikina NA, Tindall BJ, Schumann P, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA (2003b) Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, L’Haridon S, Nercessian O, Antipov AN, Kostrikina NA, Tindall BJ, Schumann P, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003c) Vulcanithermus mediatlanticus gen. nov., sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Slobodkin AI, Kostrikina NA, L’Haridon S, Nercessian O, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003d) Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53:1637–1641

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, L’Haridon S, Schumann P, Spring S, Bonch-Osmolovskaya EA, Jeanthon C, Stackebrandt E (2004) Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54:41–45

    Article  PubMed  CAS  Google Scholar 

  • Moezelaar R, Stal LJ (1994) Fermentation in the unicellular cyanobacterium Microcystis PCC7806. Arch Microbiol 162:63–69

    Article  CAS  Google Scholar 

  • Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chthonoplastes. Appl Environ Microbiol 62:1752–1758

    PubMed  CAS  Google Scholar 

  • Moller D, Schauder R, Fuchs G, Thauer RK (1987) Acetate oxidation to CO2 via a citric-acid cycle involving an atp-citrate lyase—a mechanism for the synthesis of atp via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148:202–207

    Article  Google Scholar 

  • Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC (1997) Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, Lopez-Garcia P (1998) Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47:517–530

    Article  PubMed  CAS  Google Scholar 

  • Mountfort DO, Brulla WJ, Krumholz LR, Bryant MP (1984) Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacteriol 34:216–217

    Article  Google Scholar 

  • Moussard H, L’Haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Reysenbach AL, Jeanthon C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233

    Article  PubMed  CAS  Google Scholar 

  • Moyer CL, Dobbs FC, Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol 61:1555–1562

    PubMed  CAS  Google Scholar 

  • Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature 465:248–251

    Article  PubMed  CAS  Google Scholar 

  • Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19:1038–1052

    Article  PubMed  CAS  Google Scholar 

  • Müller M (1993) The hydrogenosome. J Gen Microbiol 139:2879–2889

    Article  PubMed  Google Scholar 

  • Muller S, Klein A (2001) Coordinate positive regulation of genes encoding [NiFe] hydrogenases in Methanococcus voltae. Mol Genet Genomics 265:1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Mura GM, Pedroni P, Pratesi C, Galli G, Serbolisca L, Grandi G (1996) The [Ni-Fe] hydrogenase from the thermophilic bacterium Acetomicrobium flavidum. Microbiology 142:829–836

    Article  PubMed  CAS  Google Scholar 

  • Murry MA, Lopez MF (1989) Interaction between hydrogenase, nitrogenase, and respiratory activities in a Frankia isolate from Alnus rubra. Can J Microbiol 35:636–641

    Article  PubMed  CAS  Google Scholar 

  • Muth E, Morschel E, Klein A (1987) Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae. Eur J Biochem 169:571–577

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K, Horikoshi K, Sako Y (2003) Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Inagaki F, Takai K, Horikoshi K, Sako Y (2005a) Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the epsilon-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:599–605

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y (2005b) Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the epsilon-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:925–933

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H (1939) Further studies on hydrogen metabolism in purple bacteria and a comment on the mutual relationship between Thio- and Athirhodacea. Acta Phochim 11:109–125

    CAS  Google Scholar 

  • Nakamura H (1941) Further studies on bacterial photosynthesis. Acta Phochim 12:43–64

    Google Scholar 

  • Nakos G, Mortenson LE (1971) Structural properties of hydrogenase from Clostridium pasteurianum W5. Biochemistry 10:2442–2449

    Article  PubMed  CAS  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. CRC Crit Rev Microbiol 24:61–84

    Article  CAS  Google Scholar 

  • Nealson KH, Inagaki F, Takai K (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 13:405–410

    Article  PubMed  CAS  Google Scholar 

  • Nelson LM, Salminen SO (1982) Uptake hydrogenase activity and ATP formation in Rhizobium leguminosarum bacteroids. J Bacteriol 151:989–995

    PubMed  CAS  Google Scholar 

  • Nercessian O, Bienvenu N, Moreira D, Prieur D, Jeanthon C (2005) Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 7:118–132

    Article  PubMed  CAS  Google Scholar 

  • Nesbit AD, Giel JL, Rose JC, Kiley PJ (2009) Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. J Mol Biol. 387:28–41

    Article  PubMed  CAS  Google Scholar 

  • Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207

    Article  Google Scholar 

  • Nicolet Y, Fontecilla-Camps JC (2012) Structure-function relationships in [FeFe]-hydrogenase active site maturation. J Biol Chem 287:13532–13540

    Article  PubMed  CAS  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23

    Article  PubMed  CAS  Google Scholar 

  • Nicolet Y, Lemon BJ, Fontecilla-Camps JC, Peters JW (2000) A novel FeS cluster in Fe-only hydrogenases. Trends Biochem Sci 25:138–143

    Article  PubMed  CAS  Google Scholar 

  • Nicolet Y, Rubach JK, Posewitz MC, Amara P, Mathevon C, Atta M, Fontecave M, Fontecilla-Camps JC (2008) X-ray structure of the [FeFe]-hydrogenase maturase HydE from Thermotoga maritima. J Biol Chem 283:18861–18872

    Article  PubMed  CAS  Google Scholar 

  • Niklewski W (1910) On the oxidation of hydrogen by microorganisms. Jahrb Wiss Bot 48:113–142

    Google Scholar 

  • Nilsen RK, Beeder J, Thorstenson T, Torsvik T (1996) Distribution of thermophilic marine sulfate reducers in north sea oil field waters and oil reservoirs. Appl Environ Microbiol 62:1793–1798

    PubMed  CAS  Google Scholar 

  • Nisbet EG, Fowler CMR (1999) Archaean metabolic evolution of microbial mats. Proc R Soc Lond B 266:2375–2382

    Article  Google Scholar 

  • Nishihara H, Igarashi Y, Kodama T (1989) Isolation of an obligately chemolithoautotrophic, halophilic and aerobic hydrogen-oxidizing bacterium from marine environment. Arch Microbiol 152:39–43

    Article  CAS  Google Scholar 

  • Nishihara H, Igarashi Y, Kodama T (1990) A new isolate of Hydrogenobacter, an obligately chemolithoautotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot-spring. Arch Microbiol 153:294–298

    Article  CAS  Google Scholar 

  • Nishihara H, Igarashi Y, Kodama T (1991) Hydrogenovibrio marinus gen. nov., sp. nov., a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 41:130–133

    Article  Google Scholar 

  • Nishihara H, Miyashita Y, Aoyama K, Kodama T, Igarashi Y, Takamura Y (1997) Characterization of an extremely thermophilic and oxygen-stable membrane-bound hydrogenase from a marine hydrogen-oxidizing bacterium Hydrogenovibrio marinus. Biochem Biophys Res Commun 232:766–770

    Article  PubMed  CAS  Google Scholar 

  • Nivière V, Wong SL, Voordouw G (1992) Site-directed mutagenesis of the hydrogenase signal peptide consensus box prevents export of a beta-lactamase fusion protein. J Gen Microbiol 138:2173–2183

    Article  PubMed  Google Scholar 

  • Noll I, Muller S, Klein A (1999) Transcriptional regulation of genes encoding the selenium-free [NiFe]-hydrogenases in the archaeon Methanococcus voltae involves positive and negative control elements. Genetics 152:1335–1341

    PubMed  CAS  Google Scholar 

  • Nouailler M, Morelli X, Bornet O, Chetrit B, Dermoun Z, Guerlesquin F (2006) Solution structure of HndAc: a thioredoxin-like domain involved in the NADP-reducing hydrogenase complex. Protein Sci 15:1369–1378

    Article  PubMed  CAS  Google Scholar 

  • Odom JM, Peck HD (1981) Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147:161–169

    PubMed  CAS  Google Scholar 

  • Oelgeschläger E, Rother M (2008) Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch Microbiol 190:257–269

    Article  PubMed  CAS  Google Scholar 

  • Oelmüller U, Schlegel HG, Friedrich CG (1990) Differential stability of mRNA species of Alcaligenes eutrophus soluble and particulate hydrogenases. J Bacteriol 172:7057–7064

    PubMed  Google Scholar 

  • Ogata H, Mizoguchi Y, Mizuno N, Miki K, Adachi SI, Yasuoka N, Yagi T, Yamauchi O, Hirota S, Higuchi Y (2002) Structural studies of the carbon monoxide complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F: suggestion for the initial activation site for dihydrogen. J Am Chem Soc 124:11628–11635

    Article  PubMed  CAS  Google Scholar 

  • Ogata H, Lubitz W, Higuchi Y (2009) [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Dalton Trans 2009(37):7577–7587

    Article  CAS  Google Scholar 

  • Ohi K, Takada N, Komemushi S, Okazaki M, Miura Y (1979) A new species of hydrogen-utilizing bacterium. J Gen Appl Microbiol 25:53–58

    Article  CAS  Google Scholar 

  • Oliveira P, Lindblad P (2005) LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 251:59–66

    Article  PubMed  CAS  Google Scholar 

  • Oliveira P, Lindblad P (2008) An AbrB-Like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803. J Bacteriol 190:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Oliveira P, Lindblad P (2009) Transcriptional regulation of the cyanobacterial bidirectional Hox-hydrogenase. Dalton Trans 2009(45):9990–9996

    Article  CAS  Google Scholar 

  • Oliveira P, Leitao E, Tamagnini P, Moradas-Ferreira P, Oxelfelt F (2004) Characterization and transcriptional analysis of hupSLW in Gloeothece sp. ATCC 27152: an uptake hydrogenase from a unicellular cyanobacterium. Microbiology 150:3647–3655

    Article  PubMed  CAS  Google Scholar 

  • Ollivier B, Fardeau ML, Cayol JL, Magot M, Patel BK, Prensier G, Garcia JL (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828

    Article  PubMed  Google Scholar 

  • Olson JW, Maier RJ (2002) Molecular hydrogen as an energy source for Helicobacter pylori. Science 298:1788–1790

    Article  PubMed  CAS  Google Scholar 

  • Olson JW, Fu C, Maier RJ (1997) The HypB protein from Bradyrhizobium japonicum can store nickel and is required for the nickel-dependent transcriptional regulation of hydrogenase. Mol Microbiol 24:119–128

    Article  PubMed  CAS  Google Scholar 

  • Olson JW, Mehta NS, Maier RJ (2001) Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol Microbiol 39:176–182

    Article  PubMed  CAS  Google Scholar 

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in an estuarine environment. Appl Environ Microbiol 44:1270–1276

    PubMed  CAS  Google Scholar 

  • Ormerod JG, Gest H (1962) Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. Bacteriol Rev 26:51–66

    PubMed  CAS  Google Scholar 

  • Ovtsyna AO, Schultze M, Tikhonovich IA, Spaink HP, Kondorosi E, Kondorosi A, Staehelin C (2000) Nod factors of Rhizobium leguminosarum bv. viciae and their fucosylated derivatives stimulate a nod factor cleaving activity in pea roots and are hydrolyzed in vitro by plant chitinases at different rates. Mol Plant Microbe Interact 13:799–807

    Article  PubMed  CAS  Google Scholar 

  • Packer L, Vishniac W (1955) Chemosynthetic fixation of carbon dioxide and characteristics of hydrogenase in resting cell suspensions of Hydrogenomonas ruhlandii nov. spec. J Bacteriol 70:216–223

    PubMed  CAS  Google Scholar 

  • Palacios JM, Murillo J, Leyva A, Ditta G, Ruiz-Argueso T (1990) Differential expression of hydrogen uptake (hup) genes in vegetative and symbiotic cells of Rhizobium leguminosarum. Mol Gen Genet 221:363–370

    Article  PubMed  CAS  Google Scholar 

  • Palacios JM, Manyani H, Martinez M, Ureta AC, Brito B, Bascones E, Rey L, Imperial J, Ruiz-Argueso T (2005) Genetics and biotechnology of the H2-uptake [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae, a legume endosymbiotic bacterium. Biochem Soc Trans 33:94–96

    Article  PubMed  CAS  Google Scholar 

  • Palleroni NJ, Palleroni AV (1978) Alcaligenes latus, a new species of hydrogen-utilizing bacteria. Int J Syst Bacteriol 28:416–424

    Article  Google Scholar 

  • Pandelia ME, Fourmond V, Tron-Infossi P, Lojou E, Bertrand P, Leger C, Giudici-Orticoni MT, Lubitz W (2010) Membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J Am Chem Soc 132:6991–7004

    Article  PubMed  CAS  Google Scholar 

  • Pandelia ME, Nitschke W, Infossi P, Giudici-Orticoni MT, Bill E, Lubitz W (2011) Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus. Proc Natl Acad Sci USA 108:6097–6102

    Article  PubMed  CAS  Google Scholar 

  • Pandelia ME, Infossi P, Stein M, Giudici-Orticoni MT, Lubitz W (2012) Spectroscopic characterization of the key catalytic intermediate Ni-C in the O2-tolerant [NiFe] hydrogenase I from Aquifex aeolicus: evidence of a weakly bound hydride. Chem Commun (Camb) 48:823–825

    Article  CAS  Google Scholar 

  • Pandey AS, Harris TV, Giles LJ, Peters JW, Szilagyi RK (2008) Dithiomethylether as a ligand in the hydrogenase H-cluster. J Am Chem Soc 130:4533–4540

    Article  PubMed  CAS  Google Scholar 

  • Paper W, Jahn U, Hohn MJ, Kronner M, Nather DJ, Burghardt T, Rachel R, Stetter KO, Huber H (2007) Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. Int J Syst Evol Microbiol 57:803–808

    Article  PubMed  CAS  Google Scholar 

  • Park SS, DeCicco BT (1974) Autotrophic growth with hydrogen of Mycobacterium gordonae and another scotochromogenic Mycobacterium. Int J Syst Bacteriol 24:338–345

    Article  Google Scholar 

  • Parkin A, Goldet G, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2008) The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. J Am Chem Soc 130:13410–13416

    Article  PubMed  CAS  Google Scholar 

  • Paschos A, Glass RS, Böck A (2001) Carbamoylphosphate requirement for synthesis of the active center of [NiFe]-hydrogenases. FEBS Lett 488:9–12

    Article  PubMed  CAS  Google Scholar 

  • Paynter MJ, Hungate RE (1968) Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95:1943–1951

    PubMed  CAS  Google Scholar 

  • Peck HD, Gest H (1957) Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J Bacteriol 73:706–721

    PubMed  CAS  Google Scholar 

  • Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414

    Article  CAS  Google Scholar 

  • Pedersen K, Arlinger J, Ekendahl S, Hallbeck L (1996) 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Äspö Hard Rock Laboratory, Sweden. FEMS Microbiol Ecol 19:249–262

    CAS  Google Scholar 

  • Pedroni P, Della Volpe A, Galli G, Mura GM, Pratesi C, Grandi G (1995) Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: evidence for a relationship to bacterial sulfite reductases. Microbiology 141:449–458

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa FO, Döbereiner J, Yates MG (1980) Hydrogen-dependent growth and autotrophic carbon dioxide fixation in Derxia. J Gen Microbiol 119:547–551

    CAS  Google Scholar 

  • Perez-Rodriguez I, Ricci J, Voordeckers JW, Starovoytov V, Vetriani C (2010) Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 60:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Rodríguez I, Grosche A, Massenburg L, Starovoytov V, Lutz RA, Vetriani C (2011) Phorcysia thermohydrogeniphila gen. nov., sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent on the East Pacific Rise. Int J Syst Evol Microbiol doi:10.1099/ijs.0.035642-0

    Google Scholar 

  • Peschek GA (1979) Anaerobic hydrogenase activity in Anacystis nidulans. H2-dependent photoreduction and related reactions. Biochim Biophys Acta 548:187–202

    Article  PubMed  CAS  Google Scholar 

  • Peters JW (1999) Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol 9:670–676

    Article  PubMed  CAS  Google Scholar 

  • Peters JW, Fisher K, Dean DR (1995) Nitrogenase structure and function: a biochemical-genetic perspective. Annu Rev Microbiol 49:335–366

    Article  PubMed  CAS  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Petkun S, Shi R, Li Y, Asinas A, Munger C, Zhang L, Waclawek M, Soboh B, Sawers RG, Cygler M (2011) Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites. Structure 19:1773–1783

    Article  PubMed  CAS  Google Scholar 

  • Pezacka E, Wood HG (1984) The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate. Arch Microbiol 137:63–69

    Article  PubMed  CAS  Google Scholar 

  • Phelps TJ, Zeikus JG (1984) Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl Environ Microbiol 48:1088–1095

    PubMed  CAS  Google Scholar 

  • Pierik AJ, Hulstein M, Hagen WR, Albracht SP (1998) A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur J Biochem 258:572–578

    Article  PubMed  CAS  Google Scholar 

  • Pierik AJ, Roseboom W, Happe RP, Bagley KA, Albracht SP (1999) Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)2CO, biology’s way to activate H2. J Biol Chem 274:3331–3337

    Article  PubMed  CAS  Google Scholar 

  • Pihl TD, Maier RJ (1991) Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii. J Bacteriol 173:1839–1844

    PubMed  CAS  Google Scholar 

  • Pihl TD, Schicho RN, Kelly RM, Maier RJ (1989) Characterization of hydrogen-uptake activity in the hyperthermophile Pyrodictium brockii. Proc Natl Acad Sci USA 86:138–141

    Article  PubMed  CAS  Google Scholar 

  • Pikuta EV, Zhilina TN, Zavarzin GA, Kostrikina NA, Osipov GA, Rainey FA (1998) Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Mikrobiologiya 67:123–131

    Google Scholar 

  • Pikuta EV, Marsic D, Itoh T, Bej AK, Tang J, Whitman WB, Ng JD, Garriott OK, Hoover RB (2007) Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:1612–1618

    Article  PubMed  CAS  Google Scholar 

  • Pilkington SJ, Skehel JM, Gennis RB, Walker JE (1991) Relationship between mitochondrial NADH-ubiquinone reductase and a bacterial NAD-reducing hydrogenase. Biochemistry 30:2166–2175

    Article  PubMed  CAS  Google Scholar 

  • Pinkwart M, Schneider K, Schlegel HG (1983) Purification and properties of the membrane-bound hydrogenase from N2-fixing Alcaligenes latus. Biochim Biophys Acta 745:267–278

    Article  PubMed  CAS  Google Scholar 

  • Pinske C, Sawers G (2011) Iron restriction induces preferential down-regulation of H2-consuming over H2-evolving reactions during fermentative growth of Escherichia coli. BMC Microbiol 11:196

    Article  PubMed  CAS  Google Scholar 

  • Pinske C, Kruger S, Soboh B, Ihling C, Kuhns M, Braussemann M, Jaroschinsky M, Sauer C, Sargent F, Sinz A, Sawers RG (2011) Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron-sulfur cluster-containing small subunit. Arch Microbiol 193:893–903

    Article  PubMed  CAS  Google Scholar 

  • Pinske C, McDowall JS, Sargent F, Sawers RG (2012) Analysis of hydrogenase 1 levels reveals an intimate link between carbon and hydrogen metabolism in Escherichia coli K-12. Microbiology 158:856–868

    Article  PubMed  CAS  Google Scholar 

  • Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R, Stetter KO (1991) Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Syst Appl Microbiol 14:245–253

    Article  Google Scholar 

  • Podzuweit HG, Schneider K, Schlegel HG (1983) Autotrophic growth and hydrogenase activity of Pseudomonas saccharophila strains. FEMS Microbiol Lett 19:169–173

    Article  CAS  Google Scholar 

  • Pohorelic BK, Voordouw JK, Lojou E, Dolla A, Harder J, Voordouw G (2002) Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J Bacteriol 184:679–686

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004a) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML (2004b) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16:2151–2163

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Smith RD, Ginley AR, Ghirardi ML, Seibert M (2005) Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii. Biochem Soc Trans 33:102–104

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1952) Competitive and non-competitive inhibitors of bacterial sulphate reduction. J Gen Microbiol 6:128–142

    Article  PubMed  CAS  Google Scholar 

  • Przybyla AE, Robbins J, Menon N, Peck HD (1992) Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev 8:109–135

    PubMed  CAS  Google Scholar 

  • Pusheva MA, Rainina EI, Borodulina NP, Ryabokon AM, Makhlis TA, Kotsyurbenko OR (1991) Acetate formation from hydrogen and carbon-dioxide by a thermophilic homoacetic bacterium Acetogenium kivui. Microbiology 60:422–426

    Google Scholar 

  • Qadri SM, Hoare DS (1968) Formic hydrogenlyase and photoassimilation of formate by a strain of Rhodopseudomonas palustris. J Bacteriol 95:2344–2357

    PubMed  CAS  Google Scholar 

  • Ragsdale SW, Ljungdahl LG (1984) Hydrogenase from Acetobacterium woodii. Arch Microbiol 139:361–365

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898

    Article  PubMed  CAS  Google Scholar 

  • Rákhely G, Colbeau A, Garin J, Vignais PM, Kovács KL (1998) Unusual organization of the genes coding for HydSL, the stable [NiFe]hydrogenase in the photosynthetic bacterium Thiocapsa roseopersicina BBS. J Bacteriol 180:1460–1465

    PubMed  Google Scholar 

  • Rákhely G, Zhou ZH, Adams MW, Kovács KL (1999) Biochemical and molecular characterization of the [NiFe] hydrogenase from the hyperthermophilic archaeon, Thermococcus litoralis. Eur J Biochem 266:1158–1165

    Article  PubMed  Google Scholar 

  • Rákhely G, Kovács AT, Maróti G, Fodor BD, Csanadi G, Latinovics D, Kovács KL (2004) Cyanobacterial-type, heteropentameric, NAD+-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl Environ Microbiol 70:722–728

    Article  PubMed  CAS  Google Scholar 

  • Rákhely G, Laurinavichene TV, Tsygankov AA, Kovács KL (2007) The role of Hox hydrogenase in the H2 metabolism of Thiocapsa roseopersicina. Biochim Biophys Acta 1767:671–676

    Article  PubMed  CAS  Google Scholar 

  • Rangarajan ES, Asinas A, Proteau A, Munger C, Baardsnes J, Iannuzzi P, Matte A, Cygler M (2008) Structure of [NiFe] hydrogenase maturation protein HypE from Escherichia coli and its interaction with HypF. J Bacteriol 190:1447–1458

    Article  PubMed  CAS  Google Scholar 

  • Ravot G, Magot M, Fardeau ML, Patel BK, Prensier G, Egan A, Garcia JL, Ollivier B (1995) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int J Syst Bacteriol 45:308–314

    Article  PubMed  CAS  Google Scholar 

  • Reeve JN, Beckler GS, Cram DS, Hamilton PT, Brown JW, Krzycki JA, Kolodziej AF, Alex L, Orme-Johnson WH, Walsh CT (1989) A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain delta H encodes a polyferredoxin. Proc Natl Acad Sci USA 86:3031–3035

    Article  PubMed  CAS  Google Scholar 

  • Reissmann S, Hochleitner E, Wang H, Paschos A, Lottspeich F, Glass RS, Böck A (2003) Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science 299:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Rey L, Fernandez D, Brito B, Hernando Y, Palacios JM, Imperial J, Ruiz-Argueso T (1996) The hydrogenase gene cluster of Rhizobium leguminosarum bv. viciae contains an additional gene (hypX), which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickel-dependent hydrogenase processing and activity. Mol Gen Genet 252:237–248

    PubMed  CAS  Google Scholar 

  • Reysenbach AL, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806

    Article  PubMed  CAS  Google Scholar 

  • Rhee TS, Brenninkmeijer CAM, Röckmann T (2006) The overwhelming role of soils in the global atmospheric hydrogen cycle. Atmos Chem Phys Disscuss 6:1611–1625

    Article  CAS  Google Scholar 

  • Richard DJ, Sawers G, Sargent F, McWalter L, Boxer DH (1999) Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 145:2903–2912

    PubMed  CAS  Google Scholar 

  • Ricke SC, Martin SA, Nisbet DJ (1996) Ecology, metabolism, and genetics of ruminal selenomonads. Crit Rev Microbiol 22:27–65

    Article  PubMed  CAS  Google Scholar 

  • Rieder R, Cammack R, Hall DO (1984) Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4). Eur J Biochem 145:637–643

    Article  PubMed  CAS  Google Scholar 

  • Rieu-Lesme F, Morvan B, Collins MD, Fonty G, Willems A (1996) A new H2/CO2-using acetogenic bacterium from the rumen: description of Ruminococcus schinkii sp. nov. FEMS Microbiol Lett 140:281–286

    PubMed  CAS  Google Scholar 

  • Robinson JA, Tiedje JM (1982) Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. Appl Environ Microbiol 44:1374–1384

    PubMed  CAS  Google Scholar 

  • Robinson JA, Tiedje JM (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch Microbiol 137:26–32

    Article  CAS  Google Scholar 

  • Rodrigue A, Chanal A, Beck K, Muller M, Wu LF (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274:13223–13228

    Article  PubMed  CAS  Google Scholar 

  • Roelofsen PA (1934) On the metabolism of the purple sulphur bacteria. Proc K Ned Akad Wet 37:660–669

    Google Scholar 

  • Romesser JA, Wolfe RS, Mayer F, Spiess E, Walter-Mauruschat A (1979) Methanogenium, a novel genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch Microbiol 121:147–153

    Article  CAS  Google Scholar 

  • Rossi M, Pollock WB, Reij MW, Keon RG, Fu R, Voordouw G (1993) The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol 175:4699–4711

    PubMed  CAS  Google Scholar 

  • Rossmann R, Sauter M, Lottspeich F, Böck A (1994) Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur J Biochem 220:377–384

    Article  PubMed  CAS  Google Scholar 

  • Roussel EG, Konn C, Charlou JL, Donval JP, Fouquet Y, Querellou J, Prieur D, Bonavita MA (2011) Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol Ecol 77:647–665

    Article  PubMed  CAS  Google Scholar 

  • Rousset M, Dermoun Z, Hatchikian CE, Belaich JP (1990) Cloning and sequencing of the locus encoding the large and small subunit genes of the periplasmic [NiFe]hydrogenase from Desulfovibrio fructosovorans. Gene 94:95–101

    Article  PubMed  CAS  Google Scholar 

  • Rousset M, Magro V, Forget N, Guigliarelli B, Belaich JP, Hatchikian EC (1998a) Heterologous expression of the Desulfovibrio gigas [NiFe] hydrogenase in Desulfovibrio fructosovorans MR400. J Bacteriol 180:4982–4986

    PubMed  CAS  Google Scholar 

  • Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998b) [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis. Proc Natl Acad Sci USA 95:11625–11630

    Article  PubMed  CAS  Google Scholar 

  • Rozanova EP, Nazina TN, Galushko AS (1988) Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Mikrobiologiya (Moskva) 57:634–641

    CAS  Google Scholar 

  • Rubach JK, Brazzolotto X, Gaillard J, Fontecave M (2005) Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Lett 579:5055–5060

    Article  PubMed  CAS  Google Scholar 

  • Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29:358–363

    Article  PubMed  CAS  Google Scholar 

  • Ryde U, Greco C, De Gioia L (2010) Quantum refinement of [FeFe] hydrogenase indicates a dithiomethylamine ligand. J Am Chem Soc 132:4512–4513

    Article  PubMed  CAS  Google Scholar 

  • Saggu M, Zebger I, Ludwig M, Lenz O, Friedrich B, Hildebrandt P, Lendzian F (2009) Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. J Biol Chem 284:16264–16276

    Article  PubMed  CAS  Google Scholar 

  • Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, Smith RL, Sanford WE, Callaghan RL, Mitton JB, Spear JR (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microbiol 74:143–152

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y (2008) Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929–936

    Article  PubMed  Google Scholar 

  • Sakai S, Takaki Y, Shimamura S, Sekine M, Tajima T, Kosugi H, Ichikawa N, Tasumi E, Hiraki AT, Shimizu A, Kato Y, Nishiko R, Mori K, Fujita N, Imachi H, Takai K (2011) Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One 6:e22898

    Article  PubMed  CAS  Google Scholar 

  • Santiago B, Meyer O (1997) Purification and molecular characterization of the H2 uptake membrane-bound NiFe-hydrogenase from the carboxidotrophic bacterium Oligotropha carboxidovorans. J Bacteriol 179:6053–6060

    PubMed  CAS  Google Scholar 

  • Sapra R, Verhagen MFJM, Adams MWW (2000) Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 182:3423–3428

    Article  PubMed  CAS  Google Scholar 

  • Sapra R, Bagramyan K, Adams MW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 100:7545–7550

    Article  PubMed  CAS  Google Scholar 

  • Sasikala K, Ramana CV, Rao PR, Kovács KL (1993) Anoxygenic photosynthetic bacteria: physiology and advances in hydrogen production technology. Adv Appl Microbiol 68:211–295

    Article  Google Scholar 

  • Sass H, Cypionka H (2004) Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. Syst Appl Microbiol 27:541–548

    Article  PubMed  Google Scholar 

  • Sattley WM, Madigan MT (2010) Temperature and nutrient induced responses of Lake Fryxell sulfate-reducing prokaryotes and description of Desulfovibrio lacusfryxellense, sp. nov., a pervasive, cold-active, sulfate-reducing bacterium from Lake Fryxell, Antarctica. Extremophiles 14:357–366

    Article  PubMed  Google Scholar 

  • Sauter M, Bohm R, Bock A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532

    Article  PubMed  CAS  Google Scholar 

  • Savant DV, Shouche YS, Prakash S, Ranade DR (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52:1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Sawers G (1994) The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek 66:57–88

    Article  PubMed  CAS  Google Scholar 

  • Sawers G, Boxer DH (1986) Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12. Eur J Biochem 156:265–275

    Article  PubMed  CAS  Google Scholar 

  • Sawers G, Ballantine SP, Boxer DH (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331

    PubMed  CAS  Google Scholar 

  • Sayavedra-Soto LA, Powell GK, Evans HJ, Morris RO (1988) Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. Proc Natl Acad Sci USA 85:8395–8399

    Article  PubMed  CAS  Google Scholar 

  • Schäfer T, Schönheit P (1991) Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalyzed by an acetyl-CoA synthetase (ADP-forming). Arch Microbiol 155:366–377

    Article  Google Scholar 

  • Schauder R, Preuss A, Jetten M, Fuchs G (1989) Oxidative and reductive acetyl coa carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch Microbiol 151:84–89

    Article  CAS  Google Scholar 

  • Scheifinger CC, Linehan B, Wolin MJ (1975) H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl Microbiol 29:480–483

    PubMed  CAS  Google Scholar 

  • Schenk A, Aragno M (1979) Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular-hydrogen. J Gen Microbiol 115:333–341

    Article  Google Scholar 

  • Schick M, Xie X, Ataka K, Kahnt J, Linne U, Shima S (2012) Biosynthesis of the iron-guanylylpyridinol cofactor of [Fe]-hydrogenase in methanogenic archaea as elucidated by stable-isotope labeling. J Am Chem Soc 134:3271–3280

    Article  PubMed  CAS  Google Scholar 

  • Schink B (1982) Isolation of a hydrogenase-cytochrome b complex from cytoplasmic membranes of Xanthobacter autotrophicus GZ29. FEMS Microbiol Lett 13:289–293

    Article  CAS  Google Scholar 

  • Schink B, Schlegel HG (1979) The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purification, and biochemical properties. Biochim Biophys Acta 567:315–324

    Article  PubMed  CAS  Google Scholar 

  • Schink B, Stieb M (1983) Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913

    PubMed  CAS  Google Scholar 

  • Schlensog V, Bock A (1990) Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli. Mol Microbiol 4:1319–1327

    Article  PubMed  CAS  Google Scholar 

  • Schlensog V, Lutz S, Bock A (1994) Purification and DNA-binding properties of FHLA, the transcriptional activator of the formate hydrogenlyase system from Escherichia coli. J Biol Chem 269:19590–19596

    PubMed  CAS  Google Scholar 

  • Schmidt U, Conrad R (1993) Hydrogen, carbon monoxide, and methane dynamics in Lake Constance. Limnol Oceanogr 38:1214–1226

    Article  CAS  Google Scholar 

  • Schmitz O, Bothe H (1996) NAD(P)+-dependent hydrogenase activity in extracts from the cyanobacterium Anacystis nidulans. FEMS Microbiol Lett 135:97–101

    CAS  Google Scholar 

  • Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F, Bothe H (1995) Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria. Eur J Biochem 233:266–276

    Article  PubMed  CAS  Google Scholar 

  • Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289:765–768

    Article  PubMed  CAS  Google Scholar 

  • Schmitz O, Boison G, Bothe H (2001) Quantitative analysis of expression of two circadian clock-controlled gene clusters coding for the bidirectional hydrogenase in the cyanobacterium Synechococcus sp. PCC7942. Mol Microbiol 41:1409–1417

    Article  PubMed  CAS  Google Scholar 

  • Schmitz O, Boison G, Salzmann H, Bothe H, Schutz K, Wang SH, Happe T (2002) HoxE—a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim Biophys Acta 1554:66–74

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16. Biochim Biophys Acta 452:66–80

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Schlegel HG (1977) Localization and stability of hydrogenases from aerobic hydrogen bacteria. Arch Microbiol 112:229–238

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Rudolph V, Schlegel HG (1973) Description and physiological characterization of a coryneform hydrogen bacterium, strain-14 g. Arch Mikrobiol 93:179–193

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Cammack R, Schlegel HG (1984a) Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca 1b. Eur J Biochem 142:75–84

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Schlegel HG, Jochim K (1984b) Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1 b. Eur J Biochem 138:533–541

    Article  PubMed  CAS  Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 63:48–56

    Article  Google Scholar 

  • Schön G (1968) Function of reserve-material for adaptive utilization of fructose and synthesis of bacteriochlorophyll in anaerobic dark and light cultures of Rhodospirillum rubrum. Arch Mikrobiol 63:362–375

    Article  PubMed  Google Scholar 

  • Schön G, Biedermann M (1973) Growth and adaptive hydrogen production of Rhodospirillum rubrum (f1) in anaerobic dark cultures. Biochim Biophys Acta 304:65–75

    Article  PubMed  Google Scholar 

  • Schönheit P, Kristjansson JK, Thauer RK (1982) Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch Microbiol 132:285–288

    Article  Google Scholar 

  • Schrenk MO, Kelley DS, Bolton SA, Baross JA (2004) Low archaeal diversity linked to subseafloor geochemical processes at the Lost City hydrothermal field, Mid-Atlantic Ridge. Environ Microbiol 6:1086–1095

    Article  PubMed  CAS  Google Scholar 

  • Schropp SJ, Scranton MI, Schwarz JR (1987) Dissolved hydrogen, facultatively anaerobic, hydrogen-producing bacteria, and potential production rates in the western North Atlantic Ocean and Gulf of Mexico. Limnol Oceanogr 32:386–402

    Article  Google Scholar 

  • Schubert KR, Evans HJ (1976) Hydrogen evolution; a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Natl Acad Sci USA 73:1207–1211

    Article  PubMed  CAS  Google Scholar 

  • Schubert T, Lenz O, Krause E, Volkmer R, Friedrich B (2007) Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 66:453–467

    Article  PubMed  CAS  Google Scholar 

  • Schuler S, Conrad R (1990) Soils contain 2 different activities for oxidation of hydrogen. FEMS Microbiol Ecol 73:77–83

    Article  CAS  Google Scholar 

  • Schuler S, Conrad R (1991a) Hydrogen oxidation activities in soil as influenced by pH, temperature, moisture, and season. Biol Fertil Soils 12:127–130

    Article  CAS  Google Scholar 

  • Schuler S, Conrad R (1991b) Hydrogen oxidation in soil following rhizobial H2 production due to N2 fixation by a Vicia faba-Rhizobium leguminosarum symbiosis. Biol Fertil Soils 11:190–195

    Article  CAS  Google Scholar 

  • Schultz JE, Weaver PF (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149:181–190

    PubMed  CAS  Google Scholar 

  • Schumacher W, Kroneck PMH, Pfennig N (1992) Comparative systematic study on Spirillum 5175, campylobacter and Wolinella species—description of Spirillum 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch Microbiol 158:287–293

    Article  CAS  Google Scholar 

  • Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457

    Article  PubMed  CAS  Google Scholar 

  • Schut GJ, Bridger SL, Adams MW (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 189:4431–4441

    Article  PubMed  CAS  Google Scholar 

  • Schut GJ, Nixon WJ, Lipscomb GL, Scott RA, Adams MW (2012) Mutational analyses of the enzymes involved in the metabolism of hydrogen by the hyperthermophilic archaeon Pyrococcus furiosus. Front Microbiol 3:163

    Article  PubMed  Google Scholar 

  • Schütz H, Conrad R, Goodwin S, Seiler W (1988) Emission of hydrogen from deep and shallow freshwater environments. Biogeochemistry 5:295–311

    Article  Google Scholar 

  • Schwartz E, Gerischer U, Friedrich B (1998) Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 180:3197–3204

    PubMed  CAS  Google Scholar 

  • Schwartz E, Buhrke T, Gerischer U, Friedrich B (1999) Positive transcriptional feedback controls hydrogenase expression in Alcaligenes eutrophus H16. J Bacteriol 181:5684–5692

    PubMed  CAS  Google Scholar 

  • Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383

    Article  PubMed  CAS  Google Scholar 

  • Seefeldt LC, Arp DJ (1986) Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing alpha beta dimer. Biochimie 68:25–34

    Article  PubMed  CAS  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2012) Electron transfer in nitrogenase catalysis. Curr Opin Chem Biol 16:19–25

    Article  PubMed  CAS  Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.—facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564

    Article  Google Scholar 

  • Segerer AH, Trincone A, Gahrtz M, Stetter KO (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order sulfolobales. Int J Syst Bacteriol 41:495–501

    Article  Google Scholar 

  • Seiler W (1978) The influence of the biosphere on the atmospheric CO and H2 cycles. In: Krumbein W (ed) Environmental biogeochemistry and geomicrobiology. Ann Arbor Science Publishing, Ann Arbor, pp 773–810

    Google Scholar 

  • Self WT, Hasona A, Shanmugam KT (2004) Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol 186:580–587

    Article  PubMed  CAS  Google Scholar 

  • Sellstedt A (1989) Occurrence and activity of hydrogenase in symbiotic Frankia from field-collected Alnus incana. Physiol Plant 75:304–308

    Article  CAS  Google Scholar 

  • Serebryakova LT, Zorin NA, Lindblad P (1994) Reversible hydrogenase in Anabaena variabilis ATCC 29413. Arch Microbiol 161:140–144

    Google Scholar 

  • Serebryakova LT, Medina M, Zorin NA, Gogotov IN, Cammack R (1996) Reversible hydrogenase of Anabaena variabilis ATCC 29413: catalytic properties and characterization of redox centres. FEBS Lett 383:79–82

    Article  PubMed  CAS  Google Scholar 

  • Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson WC, Deboy RT, Khouri HM, Kolonay JF, Dodson RJ, Daugherty SC, Brinkac LM, Sullivan SA, Madupu R, Nelson KE, Kang KH, Impraim M, Tran K, Robinson JM, Forberger HA, Fraser CM, Zinder SH, Heidelberg JF (2005) Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307:105–108

    Article  PubMed  CAS  Google Scholar 

  • Setzke E, Hedderich R, Heiden S, Thauer RK (1994) H2: heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum. Composition and properties. Eur J Biochem 220:139–148

    Article  PubMed  CAS  Google Scholar 

  • Shah NN, Clark DS (1990) Partial-purification and characterization of 2 hydrogenases from the extreme thermophile Methanococcus jannaschii. Appl Environ Microbiol 56:858–863

    PubMed  CAS  Google Scholar 

  • Sharak-Genthner BR, Bryant MP (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476

    PubMed  CAS  Google Scholar 

  • Shepard EM, Duffus BR, George SJ, McGlynn SE, Challand MR, Swanson KD, Roach PL, Cramer SP, Peters JW, Broderick JB (2010a) [FeFe]-hydrogenase maturation: HydG-catalyzed synthesis of carbon monoxide. J Am Chem Soc 132:9247–9249

    Article  PubMed  CAS  Google Scholar 

  • Shepard EM, McGlynn SE, Bueling AL, Grady-Smith CS, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB (2010b) Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proc Natl Acad Sci USA 107:10448–10453

    Article  PubMed  CAS  Google Scholar 

  • Shiba H, Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1984) Effect of organic-compounds on the growth of an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus tk-6. Agr Biol Chem (Tokyo) 48:2809–2813

    Article  CAS  Google Scholar 

  • Shima S, Suzuki KI (1993) Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth. Int J Syst Bacteriol 43:703–708

    Article  Google Scholar 

  • Shima S, Lyon EJ, Thauer RK, Mienert B, Bill E (2005) Mössbauer studies of the iron-sulfur cluster-free hydrogenase: the electronic state of the mononuclear Fe active site. J Am Chem Soc 127:10430–10435

    Article  PubMed  CAS  Google Scholar 

  • Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321:572–575

    Article  PubMed  CAS  Google Scholar 

  • Shima S, Schick M, Kahnt J, Ataka K, Steinbach K, Linne U (2012) Evidence for acyl-iron ligation in the active site of [Fe]-hydrogenase provided by mass spectrometry and infrared spectroscopy. Dalton Trans 41:767–771

    Article  PubMed  CAS  Google Scholar 

  • Shlimon AG, Friedrich MW, Niemann H, Ramsing NB, Finster K (2004) Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 54:759–763

    Article  PubMed  CAS  Google Scholar 

  • Shomura Y, Yoon KS, Nishihara H, Higuchi Y (2011) Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479:253–256

    Article  PubMed  CAS  Google Scholar 

  • Siefert E, Pfennig N (1979) Chemoautotrophic growth of Rhodopseudomonas species with hydrogen and chemotrophic utilization of methanol and formate. Arch Microbiol 122:177–182

    Article  CAS  Google Scholar 

  • Siegbahn PE, Tye JW, Hall MB (2007) Computational studies of [NiFe] and [FeFe] hydrogenases. Chem Rev 107:4414–4435

    Article  PubMed  CAS  Google Scholar 

  • Sievert SM, Kuever J (2000) Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evol Microbiol 50:1239–1246

    Article  PubMed  CAS  Google Scholar 

  • Sievert SM, Scott KM, Klotz MG, Chain PS, Hauser LJ, Hemp J, Hugler M, Land M, Lapidus A, Larimer FW, Lucas S, Malfatti SA, Meyer F, Paulsen IT, Ren Q, Simon J (2008) Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans. Appl Environ Microbiol 74:1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Silakov A, Reijerse EJ, Albracht SP, Hatchikian EC, Lubitz W (2007) The electronic structure of the H-cluster in the [FeFe]-hydrogenase from Desulfovibrio desulfuricans: a Q-band 57Fe-ENDOR and HYSCORE study. J Am Chem Soc 129:11447–11458

    Article  PubMed  CAS  Google Scholar 

  • Silakov A, Wenk B, Reijerse E, Lubitz W (2009) 14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys Chem Chem Phys 11:6592–6599

    Article  PubMed  CAS  Google Scholar 

  • Silva PJ, de Castro B, Hagen WR (1999) On the prosthetic groups of the NiFe sulfhydrogenase from Pyrococcus furiosus: topology, structure, and temperature-dependent redox chemistry. J Biol Inorg Chem 4:284–291

    Article  PubMed  CAS  Google Scholar 

  • Silva PJ, van den Ban EC, Wassink H, Haaker H, de Castro B, Robb FT, Hagen WR (2000) Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur J Biochem 267:6541–6551

    Article  PubMed  CAS  Google Scholar 

  • Sim E, Vignais PM (1978) Hydrogenase activity in Paracoccus denitrificans. Partial purification and interaction with the electron transport chain. Biochimie 60:307–314

    Article  PubMed  CAS  Google Scholar 

  • Singer SW, Hirst MB, Ludden PW (2006) CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex. Biochim Biophys Acta 1757:1582–1591

    Article  PubMed  CAS  Google Scholar 

  • Skibinski DA, Golby P, Chang YS, Sargent F, Hoffman R, Harper R, Guest JR, Attwood MM, Berks BC, Andrews SC (2002) Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma54-dependent transcriptional activators FhlA and HyfR. J Bacteriol 184:6642–6653

    Article  PubMed  CAS  Google Scholar 

  • Slepova TV, Sokolova TG, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2009) Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 59:213–217

    Article  PubMed  CAS  Google Scholar 

  • Slesarev AI, Mezhevaya KV, Makarova KS, Polushin NN, Shcherbinina OV, Shakhova VV, Belova GI, Aravind L, Natale DA, Rogozin IB, Tatusov RL, Wolf YI, Stetter KO, Malykh AG, Koonin EV, Kozyavkin SA (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci USA 99:4644–4649

    Article  PubMed  CAS  Google Scholar 

  • Slobodkin AI, Tourova TP, Kostrikina NA, Chernyh NA, Bonch-Osmolovskaya EA, Jeanthon C, Jones BE (2003) Tepidibacter thalassicus gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, fermentative bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1131–1134

    Article  PubMed  CAS  Google Scholar 

  • Slobodkina GB, Kolganova TV, Tourova TP, Kostrikina NA, Jeanthon C, Bonch-Osmolovskaya EA, Slobodkin AI (2008) Clostridium tepidiprofundi sp. nov., a moderately thermophilic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 58:852–855

    Article  PubMed  CAS  Google Scholar 

  • Slobodkina GB, Kolganova TV, Chernyh NA, Querellou J, Bonch-Osmolovskaya EA, Slobodkin AI (2009a) Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59:1508–1512

    Article  PubMed  CAS  Google Scholar 

  • Slobodkina GB, Kolganova TV, Querellou J, Bonch-Osmolovskaya EA, Slobodkin AI (2009b) Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59:2880–2883

    Article  PubMed  CAS  Google Scholar 

  • Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15:150–155

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155

    PubMed  CAS  Google Scholar 

  • Soboh B, Linder D, Hedderich R (2002) Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. Eur J Biochem 269:5712–5721

    Article  PubMed  CAS  Google Scholar 

  • Soboh B, Kruger S, Kuhns M, Pinske C, Lehmann A, Sawers RG (2010) Development of a cell-free system reveals an oxygen-labile step in the maturation of [NiFe]-hydrogenase 2 of Escherichia coli. FEBS Lett 584:4109–4114

    Article  PubMed  CAS  Google Scholar 

  • Soboh B, Pinske C, Kuhns M, Waclawek M, Ihling C, Trchounian K, Trchounian A, Sinz A, Sawers G (2011) The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity. BMC Microbiol 11:173

    Article  PubMed  CAS  Google Scholar 

  • Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Tourova TP, Kato C, Bonch-Osmolovskaya EA, Robb FT (2001) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149

    PubMed  CAS  Google Scholar 

  • Sokolova TG, Kostrikina NA, Chernyh NA, Tourova TP, Kolganova TV, Bonch-Osmolovskaya EA (2002) Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967

    Article  PubMed  CAS  Google Scholar 

  • Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359

    Article  PubMed  CAS  Google Scholar 

  • Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2005) Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int J Syst Evol Microbiol 55:2069–2073

    Article  PubMed  CAS  Google Scholar 

  • Sokolova T, Hanel J, Onyenwoke RU, Reysenbach AL, Banta A, Geyer R, Gonzalez JM, Whitman WB, Wiegel J (2007) Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 11:145–157

    Article  PubMed  CAS  Google Scholar 

  • Sokolova TG, Henstra AM, Sipma J, Parshina SN, Stams AJ, Lebedinsky AV (2009) Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes. FEMS Microbiol Ecol 68:131–141

    Article  PubMed  CAS  Google Scholar 

  • Sorgenfrei O, Muller S, Pfeiffer M, Sniezko I, Klein A (1997) The [NiFe] hydrogenases of Methanococcus voltae: genes, enzymes and regulation. Arch Microbiol 167:189–195

    Article  PubMed  CAS  Google Scholar 

  • Soutschek E, Winter J, Schindler F, Kandler O (1984) Acetomicrobium flavidum, gen. nov., sp. nov., a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose. Syst Appl Microbiol 5:377–390

    Article  CAS  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  PubMed  CAS  Google Scholar 

  • Sprott GD, Shaw KM, Beveridge TJ (1987) Properties of the particulate enzyme F420-reducing hydrogenase isolated from Methanospirillum hungatei. Can J Microbiol 33:896–904

    Article  CAS  Google Scholar 

  • Stacey G, Sanjuan J, Luka S, Dockendorff T, Carlson RW (1995) Signal exchange in the Bradyrhizobium-soybean symbiosis. Soil Biol Biochem 27:473–483

    Article  CAS  Google Scholar 

  • Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211

    Article  CAS  Google Scholar 

  • Stanley SH, Dalton H (1982) Role of ribulose-1,5-bisphosphate carboxylase oxygenase in Methylococcus capsulatus (bath). J Gen Microbiol 128:2927–2935

    CAS  Google Scholar 

  • Stein M, Lubitz W (2002) Quantum chemical calculations of [NiFe] hydrogenase. Curr Opin Chem Biol 6:243–249

    Article  PubMed  CAS  Google Scholar 

  • Steinsbu BO, Thorseth IH, Nakagawa S, Inagaki F, Lever MA, Engelen B, Ovreas L, Pedersen RB (2010) Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. Int J Syst Evol Microbiol 60:2745–2752

    Article  PubMed  CAS  Google Scholar 

  • Stephenson M, Stickland LH (1931) Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochem J 25:205–214

    PubMed  CAS  Google Scholar 

  • Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic bacteria. Syst Appl Microbiol 10:172–173

    Article  Google Scholar 

  • Stetter KO (1992) Life at the upper temperature border. In: Tran Thanh Van J, Tran Thanh Van K, Mounolou JC, Schneider J, McKay C (eds) Frontiers of life. Edition Frontieres, Gif-sur-Yvette, pp 195–219

    Google Scholar 

  • Stetter KO, Gaag G (1983) Reduction of molecular sulfur by methanogenic bacteria. Nature 305:309–311

    Article  CAS  Google Scholar 

  • Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Janecovic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an icelandic hot spring. Zbl Bakt Hyg I Abt Orig C 2:166–178

    CAS  Google Scholar 

  • Stetter KO, Konig H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4:535–551

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO, Segerer A, Zillig W, Huber G, Fiala G, Huber R, Konig H (1986) Extremely thermophilic sulfur-metabolizing archaebacteria. Syst Appl Microbiol 7:393–397

    Article  CAS  Google Scholar 

  • Stetter KO, Huber R, Blochl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep north-sea and alaskan oil-reservoirs. Nature 365:743–745

    Article  Google Scholar 

  • Stieb M, Schink B (1985) Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a spore-forming, obligately syntrophic bacterium. Arch Microbiol 140:387–390

    Article  CAS  Google Scholar 

  • Stöhr R, Waberski A, Liesack W, Volker H, Wehmeyer U, Thomm M (2001a) Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing beta-proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488

    Article  PubMed  Google Scholar 

  • Stöhr R, Waberski A, Volker H, Tindall BJ, Thomm M (2001b) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51:1853–1862

    Article  PubMed  Google Scholar 

  • Stojanowic A, Mander GJ, Duin EC, Hedderich R (2003) Physiological role of the F420-non-reducing hydrogenase (Mvh) from Methanothermobacter marburgensis. Arch Microbiol 180:194–203

    Article  PubMed  CAS  Google Scholar 

  • Strayer RF, Tiedje JM (1978) Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment. Appl Environ Microbiol 36:330–340

    PubMed  CAS  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci USA 106:17331–17336

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, Henne A, Fricke WF, Martinez-Arias R, Bartels D, Goesmann A, Krause L, Puhler A, Klenk HP, Richter M, Schuler M, Glockner FO, Meyerdierks A, Gottschalk G, Amann R (2009) Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ Microbiol 11:1038–1055

    Article  PubMed  CAS  Google Scholar 

  • Sumner I, Voth GA (2012) Proton transport pathways in [NiFe]-hydrogenase. J Phys Chem B 116:2917–2926

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Klein A (2004) A lysR-type regulator is involved in the negative regulation of genes encoding selenium-free hydrogenases in the archaeon Methanococcus voltae. Mol Microbiol 52:563–571

    Article  PubMed  CAS  Google Scholar 

  • Svetlichnyi VA, Sokolova TG, Gerhardt M, Ringpfeil M, Kostrikina NA, Zavarzin GA (1991) Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14:254–260

    Article  Google Scholar 

  • Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5544

    Article  PubMed  CAS  Google Scholar 

  • Szilagyi A, Kovács KL, Rákhely G, Zavodszky P (2002) Homology modeling reveals the structural background of the striking difference in thermal stability between two related [NiFe] hydrogenases. J Mol Model 8:58–64

    Article  PubMed  CAS  Google Scholar 

  • Tabillion R, Weber F, Kaltwasser H (1980) Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria. Arch Microbiol 124:131–136

    Article  CAS  Google Scholar 

  • Takács M, Toth A, Bogos B, Varga A, Rákhely G, Kovács KL (2008) Formate hydrogenlyase in the hyperthermophilic archaeon, Thermococcus litoralis. BMC Microbiol 8:88

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Inoue A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003a) Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Nakagawa S, Sako Y, Horikoshi K (2003b) Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Nealson KH, Horikoshi K (2004a) Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Nealson KH, Horikoshi K (2004b) Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. Int J Syst Evol Microbiol 54:1095–1100

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K (2005) Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55:183–189

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Suzuki M, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F, Horikoshi K (2006) Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 56:1725–1733

    Article  PubMed  CAS  Google Scholar 

  • Takii S, Hanada S, Tamaki H, Ueno Y, Sekiguchi Y, Ibe A, Matsuura K (2007) Dethiosulfatibacter aminovorans gen. nov., sp. nov., a novel thiosulfate-reducing bacterium isolated from coastal marine sediment via sulfate-reducing enrichment with casamino acids. Int J Syst Evol Microbiol 57:2320–2326

    Article  PubMed  CAS  Google Scholar 

  • Tamagnini P, Costa JL, Almeida L, Oliveira MJ, Salema R, Lindblad P (2000) Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40:356–361

    Article  PubMed  CAS  Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    Article  PubMed  CAS  Google Scholar 

  • Tamagnini P, Leitao E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720

    Article  PubMed  CAS  Google Scholar 

  • Teixeira M, Moura I, Xavier AV, Huynh BH, DerVartanian DV, Peck HD, LeGall J, Moura JJ (1985) Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas. J Biol Chem 260:8942–8950

    PubMed  CAS  Google Scholar 

  • Teixeira VH, Soares CM, Baptista AM (2008) Proton pathways in a [NiFe]-hydrogenase: a theoretical study. Proteins 70:1010–1022

    Article  PubMed  CAS  Google Scholar 

  • Tersteegen A, Hedderich R (1999) Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur J Biochem 264:930–943

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Thauer RK, Klein AR, Hartmann GC (1996) Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chem Rev 96:3031–3042

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536

    Article  PubMed  CAS  Google Scholar 

  • Theodoratou E, Paschos A, Magalon A, Fritsche E, Huber R, Böck A (2000) Nickel serves as a substrate recognition motif for the endopeptidase involved in hydrogenase maturation. Eur J Biochem 267:1995–1999

    Article  PubMed  CAS  Google Scholar 

  • Thiemermann S, Dernedde J, Bernhard M, Schroeder W, Massanz C, Friedrich B (1996) Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product. J Bacteriol 178:2368–2374

    PubMed  CAS  Google Scholar 

  • Tian F, Toon OB, Pavlov AA, De Sterck H (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Toussaint B, Bosc C, Richaud P, Colbeau A, Vignais PM (1991) A mutation in a Rhodobacter capsulatus gene encoding an integration host factor-like protein impairs in vivo hydrogenase expression. Proc Natl Acad Sci USA 88:10749–10753

    Article  PubMed  CAS  Google Scholar 

  • Toussaint B, de Sury d’Aspremont R, Delic-Attree I, Berchet V, Elsen S, Colbeau A, Dischert W, Lazzaroni Y, Vignais PM (1997) The Rhodobacter capsulatus hupSLC promoter: identification of cis-regulatory elements and of trans-activating factors involved in H2 activation of hupSLC transcription. Mol Microbiol 26:927–937

    Article  PubMed  CAS  Google Scholar 

  • Tran-Betcke A, Warnecke U, Böcker C, Zaborosch C, Friedrich B (1990) Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 172:2920–2929

    PubMed  CAS  Google Scholar 

  • Traore AS, Hatchikian CE, Belaich JP, Le Gall J (1981) Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. J Bacteriol 145:191–199

    PubMed  CAS  Google Scholar 

  • Traore AS, Gaudin C, Hatchikian CE, Le Gall J, Belaich JP (1983) Energetics of growth of a defined mixed culture of Desulfovibrio vulgaris and Methanosarcina barkeri: maintenance energy coefficient of the sulfate-reducing organism in the absence and presence of its partner. J Bacteriol 155:1260–1264

    PubMed  CAS  Google Scholar 

  • Tron C, Cherrier MV, Amara P, Martin L, Fauth F, Fraga E, Correard M, Fontecave M, Nicolet Y, Fontecilla-Camps JC (2011) Further characterization of the [FeFe]-hydrogenase maturase HydG. Eur J Inorg Chem 2011:1121–1127

    Article  CAS  Google Scholar 

  • Tsai CR, Garcia JL, Patel BK, Cayol JL, Baresi L, Mah RA (1995) Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah. Int J Syst Bacteriol 45:301–307

    Article  PubMed  CAS  Google Scholar 

  • Tsu II, Huang C, Garcia J, Patel BKC, Cayol JL, Baresi L, Mah RA (1998) Isolation and characterization of desulfovibrio senezii sp. nov., A halotolerant sulfate reducer from a solar saltern and phylogenetic confirmation of desulfovibrio fructosovorans as a new species. Arch Microbiol 170:313–317

    Article  PubMed  CAS  Google Scholar 

  • Tsuji K, Yagi T (1980) Significance of hydrogen burst from growing cultures of Desulfovibrio vulgaris Miyazaki and the role of hydrogenase and cytochrome c3 in energy production system. Arch Microbiol 125:35–42

    Article  CAS  Google Scholar 

  • Uffen RL (1973a) Effect of low-intensity light on growth response and bacteriochlorophyll concentration in Rhodospirillum rubrum mutant C. J Bacteriol 116:1086–1088

    PubMed  CAS  Google Scholar 

  • Uffen RL (1973b) Growth properties of Rhodospirillum rubrum mutants and fermentation of pyruvate in anaerobic, dart conditions. J Bacteriol 116:874–884

    PubMed  CAS  Google Scholar 

  • Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Natl Acad Sci USA 73:3298–3302

    Article  PubMed  CAS  Google Scholar 

  • Uffen RL (1981) Metabolism of carbon-monoxide. Enzyme Microb Technol 3:197–206

    Article  CAS  Google Scholar 

  • Uffen RL, Wolfe RS (1970) Anaerobic growth of purple nonsulfur bacteria under dark conditions. J Bacteriol 104:462–472

    PubMed  CAS  Google Scholar 

  • Uffen RL, Colbeau A, Richaud P, Vignais PM (1990) Cloning and sequencing the genes encoding uptake-hydrogenase subunits of Rhodocyclus gelatinosus. Mol Gen Genet 221:49–58

    Article  PubMed  CAS  Google Scholar 

  • Urios L, Cueff-Gauchard V, Pignet P, Postec A, Fardeau ML, Ollivier B, Barbier G (2004) Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:1953–1957

    Article  PubMed  CAS  Google Scholar 

  • Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol 44:612–619

    Article  PubMed  CAS  Google Scholar 

  • van Bruggen JJA, Zwart KB, van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7

    Article  Google Scholar 

  • van Bruggen JJA, Zwart KB, Hermans JGF, van Hove EM, Stumm CK, Vogels GD (1986) Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch Microbiol 144:367–374

    Article  Google Scholar 

  • van der Linden E, Faber BW, Bleijlevens B, Burgdorf T, Bernhard M, Friedrich B, Albracht SP (2004) Selective release and function of one of the two FMN groups in the cytoplasmic NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha. Eur J Biochem 271:801–808

    Article  PubMed  CAS  Google Scholar 

  • van der Oost J, Bulthuis BA, Feitz S, Krab K, Kraayenhof R (1989) Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC7822. Arch Microbiol 152:415–419

    Article  Google Scholar 

  • van der Werf AN, Yates MG (1978) Hydrogenase from nitrogen fixing Azotobacter chroococcum. In: Schlegel HG, Schneider K (eds) Hydrogenases: their catalytic activity, structure and function. Goltze, Göttingen, pp 307–326

    Google Scholar 

  • van der Westen HM, Mayhew SG, Veeger C (1978) Separation of hydrogenase from intact cells of Desulfovibrio vulgaris. Purification and properties. FEBS Lett 86:122–126

    Article  PubMed  Google Scholar 

  • van der Zwaan JW, Coremans JM, Bouwens EC, Albracht SP (1990) Effect of 17O2 and 13CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 1041:101–110

    Article  PubMed  Google Scholar 

  • Van Dijk C, Mayhew SG, Grande HJ, Veeger C (1979) Purification and properties of hydrogenase from Megasphaera elsdenii. Eur J Biochem 102:317–330

    Article  PubMed  Google Scholar 

  • van Dongen W, Hagen W, van den Berg W, Veeger C (1988) Evidence for an unusual mechanism of membrane translocation of the periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenborough), as derived from expression in Escherichia coli. FEMS Microbiol Lett 50:5–9

    Article  Google Scholar 

  • van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142

    PubMed  Google Scholar 

  • Van Soom C, Browaeys J, Verreth C, Vanderleyden J (1993) Nucleotide sequence analysis of four genes, hupC, hupD, hupF and hupG, downstream of the hydrogenase structural genes in Bradyrhizobium japonicum. J Mol Biol 234:508–512

    Article  PubMed  Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176:1443–1450

    PubMed  CAS  Google Scholar 

  • Vaupel M, Thauer RK (1998) Two F420-reducing hydrogenases in Methanosarcina barkeri. Arch Microbiol 169:201–205

    Article  PubMed  CAS  Google Scholar 

  • Verhagen MF, O’Rourke T, Adams MW (1999) The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta 1412:212–229

    Article  PubMed  CAS  Google Scholar 

  • Vetriani C, Speck MD, Ellor SV, Lutz RA, Starovoytov V (2004) Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Toussaint B (1994) Molecular biology of membrane-bound H2 uptake hydrogenases. Arch Microbiol 161:1–10

    PubMed  CAS  Google Scholar 

  • Vignais PM, Colbeau A, Willison JC, Jouanneau Y (1985) Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol 26:155–234

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Dimon B, Zorin NA, Colbeau A, Elsen S (1997) HupUV proteins of Rhodobacter capsulatus can bind H2: evidence from the H-D exchange reaction. J Bacteriol 179:290–292

    PubMed  CAS  Google Scholar 

  • Vignais PM, Dimon B, Zorin NA, Tomiyama M, Colbeau A (2000) Characterization of the hydrogen-deuterium exchange activities of the energy-transducing HupSL hydrogenase and H2-signaling HupUV hydrogenase in Rhodobacter capsulatus. J Bacteriol 182:5997–6004

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  • Vignais PM, Elsen S, Colbeau A (2005) Transcriptional regulation of the uptake [NiFe] hydrogenase genes in Rhodobacter capsulatus. Biochem Soc Trans 33:28–32

    Article  PubMed  CAS  Google Scholar 

  • Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413

    Article  PubMed  CAS  Google Scholar 

  • Voelskow H, Schön G (1980) H2 production of Rhodospirillum rubrum during adaptation to anaerobic dark conditions. Arch Microbiol 125:245–249

    Article  CAS  Google Scholar 

  • Vogt S, Lyon EJ, Shima S, Thauer RK (2008) The exchange activities of [Fe] hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. J Biol Inorg Chem 13:97–106

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Garcia E, Piras C, deLacey AL, Fernandez VM, Hatchikian EC, Frey M, FontecillaCamps JC (1996) Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989–12996

    Article  CAS  Google Scholar 

  • Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SP, Garcin E, Rousset M, Fontecilla-Camps JC (2005) Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases. J Biol Inorg Chem 10:239–249

    Article  PubMed  CAS  Google Scholar 

  • Volbeda A, Amara P, Darnault C, Mouesca JM, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC (2012) X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc Natl Acad Sci USA 109:5305–5310

    Article  PubMed  CAS  Google Scholar 

  • Volkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926

    PubMed  CAS  Google Scholar 

  • Voordeckers JW, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G (1992) Evolution of hydrogenase genes. Adv Inorg Chem 38:397–423

    Article  CAS  Google Scholar 

  • Voordouw G (1995) The genus Desulfovibrio: the centennial. Appl Environ Microbiol 61:2813–2819

    PubMed  CAS  Google Scholar 

  • Voordouw G, Brenner S (1985) Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 148:515–520

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G, Menon NK, LeGall J, Choi ES, Peck HD Jr, Przybyla AE (1989) Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus. J Bacteriol 171:2894–2899

    PubMed  CAS  Google Scholar 

  • Vosjan JH (1975) Respiration and fermentation of sulfate-reducing bacterium desulfovibrio-desulfuricans in a continuous culture. Plant Soil 43:141–152

    Article  CAS  Google Scholar 

  • Wächtershäuser G (1988) Pyrite formation, the 1st energy-source for life—a hypothesis. Syst Appl Microbiol 10:207–210

    Article  Google Scholar 

  • Wächtershäuser G (1990) The case for the chemoautotrophic origin of life in an iron-sulfur world. Orig Life Evol Biosph 20:173–176

    Article  Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58:85–201

    Article  PubMed  Google Scholar 

  • Walker JCG (1977) Evolution of the atmosphere. Macmillan, New York

    Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1994) Pure culture and cytological properties of ‘Syntrobacter wolinii’. FEMS Microbiol Lett 123:249–254

    Article  CAS  Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352

    Article  CAS  Google Scholar 

  • Wang PH, Best RB, Blumberger J (2011) Multiscale simulation reveals multiple pathways for H2 and O2 transport in a [NiFe]-hydrogenase. J Am Chem Soc 133:3548–3556

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Matsumi R, Arai T, Atomi H, Imanaka T, Miki K (2007) Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling. Mol Cell 27:29–40

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Arai T, Matsumi R, Atomi H, Imanaka T, Miki K (2009) Crystal structure of HypA, a nickel-binding metallochaperone for [NiFe] hydrogenase maturation. J Mol Biol 394:448–459

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, Boxer DH (1986) Pleiotropic hydrogenase mutants of Escherichia coli K12: growth in the presence of nickel can restore hydrogenase activity. Biochimie 68:157–166

    Article  PubMed  CAS  Google Scholar 

  • Weimer PJ, Zeikus JG (1978) Acetate metabolism in Methanosarcina barkeri. Arch Microbiol 119:175–182

    Article  PubMed  CAS  Google Scholar 

  • Welte C, Deppenmeier U (2011) Membrane-bound electron transport in Methanosaeta thermophila. J Bacteriol 193:2868–2870

    Article  PubMed  CAS  Google Scholar 

  • Wertlieb D, Vishniac W (1967) Methane utilization by a strain of Rhodopseudomonas gelatinosa. J Bacteriol 93:1722–1724

    PubMed  CAS  Google Scholar 

  • Wery N, Lesongeur F, Pignet P, Derennes V, Cambon-Bonavita MA, Godfroy A, Barbier G (2001) Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504

    Article  PubMed  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Widdel F (1987) New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch Microbiol 148:286–291

    Article  CAS  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids.3. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

  • Widdel F, Rouviere PE, Wolfe RS (1988) Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate. Arch Microbiol 150:477–481

    Article  CAS  Google Scholar 

  • Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species Novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260

    Article  CAS  Google Scholar 

  • Wilde E (1962) Studies on growth and synthesis of reserves of Hydrogenomonas. Arch Mikrobiol 43:109–137

    Article  CAS  Google Scholar 

  • Wildgruber G, Thomm M, Konig H, Ober K, Ricchiuto T, Stetter KO (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the methanoplanaceae. Arch Microbiol 132:31–36

    Article  CAS  Google Scholar 

  • Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G, Deley J (1989) Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleroni (formerly Pseudomonas palleroni), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and Pseudomonas carboxydoflava), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 39:319–333

    Article  CAS  Google Scholar 

  • Willems A, Falsen E, Pot B, Jantzen E, Hoste B, Vandamme P, Gillis M, Kersters K, Deley J (1990) Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, e-falsen (ef) group 13, ef group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 40:384–398

    Article  PubMed  CAS  Google Scholar 

  • Willison JC, Jouanneau Y, Colbeau A, Vignais PM (1983) H2 metabolism in photosynthetic bacteria and relationship to N2 fixation. Ann Microbiol (Paris) 134B:115–135

    CAS  Google Scholar 

  • Windberger E, Huber R, Trincone A, Fricke H, Stetter KO (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol 151:506–512

    Article  CAS  Google Scholar 

  • Winfrey MR, Ward DM (1983) Substrates for sulfate reduction and methane production in intertidal sediments. Appl Environ Microbiol 45:193–199

    PubMed  CAS  Google Scholar 

  • Winfrey MR, Zeikus JG (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl Environ Microbiol 33:275–281

    PubMed  CAS  Google Scholar 

  • Winfrey MR, Nelson DR, Klevickis SC, Zeikus JG (1977) Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments. Appl Environ Microbiol 33:312–318

    PubMed  CAS  Google Scholar 

  • Winkler M, Heil B, Heil B, Happe T (2002) Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. Biochim Biophys Acta 1576:330–334

    Article  PubMed  CAS  Google Scholar 

  • Winogradsky SN (1888) Zur Morphologie und Physiologie der Schwefelbakterien [On the morphology and physiology of sulfur bacteria]. Felix, Leipzig

    Google Scholar 

  • Wolf I, Buhrke T, Dernedde J, Pohlmann A, Friedrich B (1998) Duplication of hyp genes involved in maturation of [NiFe] hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol 170:451–459

    Article  PubMed  CAS  Google Scholar 

  • Wolin MJ (1976) Interactions between H2-producing and methane-producing species. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. E. Goltze, Göttingen, pp 14–15

    Google Scholar 

  • Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Academic, London, pp 323–356

    Google Scholar 

  • Wolin MJ, Wolin EA, Jacobs NJ (1961) Cytochrome-producing anaerobic vibrio, Vibrio succinogenes, sp. nov. J Bacteriol 81:911–917

    PubMed  CAS  Google Scholar 

  • Wong TY, Maier RJ (1985) H2-dependent mixotrophic growth of N2-fixing Azotobacter vinelandii. J Bacteriol 163:528–533

    PubMed  CAS  Google Scholar 

  • Woods DD, Clifton CE (1938) Studies in the metabolism of the strict anaerobes (genus Clostridium): the decomposition of pyruvate and l-(+)glutamate by Clostridium tetanomorphum. Biochem J 32:345–356

    PubMed  CAS  Google Scholar 

  • Worakit S, Boone DR, Mah RA, Abdelsamie ME, Elhalwagi MM (1986) Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 36:380–382

    Article  Google Scholar 

  • Wu LF, Mandrand MA (1993) Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev 10:243–269

    PubMed  CAS  Google Scholar 

  • Wu LF, Mandrand-Berthelot MA, Waugh R, Edmonds CJ, Holt SE, Boxer DH (1989) Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli. Mol Microbiol 3:1709–1718

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Ren Q, Durkin AS, Daugherty SC, Brinkac LM, Dodson RJ, Madupu R, Sullivan SA, Kolonay JF, Haft DH, Nelson WC, Tallon LJ, Jones KM, Ulrich LE, Gonzalez JM, Zhulin IB, Robb FT, Eisen JA (2005) Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genet 1:e65

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Liang Y, Li Q, Zhou J, Long M (2011) Characterization and cloning of oxygen-tolerant hydrogenase from Klebsiella oxytoca HP1. Res Microbiol 162:330–336

    Article  PubMed  CAS  Google Scholar 

  • Wunschiers R, Senger H, Schulz R (2001) Electron pathways involved in H2-metabolism in the green alga Scenedesmus obliquus. Biochim Biophys Acta 1503:271–278

    Article  PubMed  CAS  Google Scholar 

  • Yagi T (1970) Solubilization, purification and properties of particulate hydrogenase from Desulfovibrio vulgaris. J Biochem (Tokyo) 68:649–657

    CAS  Google Scholar 

  • Yahata N, Saitoh T, Takayama Y, Ozawa K, Ogata H, Higuchi Y, Akutsu H (2006) Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Biochemistry 45:1653–1662

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Nakagawa S, Shimamura S, Takai K, Horikoshi K (2010) Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Environ Microbiol 12:1144–1153

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki S (1982) A selenium-containing hydrogenase from Methanococcus vannielii. Identification of the selenium moiety as a selenocysteine residue. J Biol Chem 257:7926–7929

    PubMed  CAS  Google Scholar 

  • Yang K, Metcalf WW (2004) A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc Natl Acad Sci USA 101:7919–7924

    Article  PubMed  CAS  Google Scholar 

  • Yates MG, De Souza EM, Kahindi JH (1997) Oxygen, hydrogen and nitrogen fixation in Azotobacter. Soil Biol Biochem 29:863–869

    Article  CAS  Google Scholar 

  • Yen HC, Marrs B (1977) Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide. Arch Biochem Biophys 181:411–418

    Article  PubMed  CAS  Google Scholar 

  • Zavarzina DG, Tourova TP, Kuznetsov BB, Bonch-Osmolovskaya EA, Slobodkin AI (2002) Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52:1737–1743

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. nov., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–715

    PubMed  CAS  Google Scholar 

  • Zellner G, Stackebrandt E, Messner P, Tindall BJ, Conway de Macario E, Kneifel H, Sleytr UB, Winter J (1989) Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov. Arch Microbiol 151:381–390

    Article  PubMed  CAS  Google Scholar 

  • Zhang JW, Butland G, Greenblatt JF, Emili A, Zamble DB (2005) A role for SlyD in the Escherichia coli hydrogenase biosynthetic pathway. J Biol Chem 280:4360–4366

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA (1990) A new extremely halophilic homoacetogen bacteria Acethalobium arabaticum, gen. nov., sp. nov. Dokl Akad Nauk SSSR 311:745–747

    CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149

    Article  PubMed  CAS  Google Scholar 

  • Zhilina TN, Zavarzina DG, Kuever J, Lysenko AM, Zavarzin GA (2005) Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol 55:1001–1006

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Stetter KO, Schafer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales—a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfataras. Zbl Bakt Hyg I Abt Orig C 2:205–227

    CAS  Google Scholar 

  • Zillig W, Holz I, Janekovic D, Schafer W, Reiter WD (1983) The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Holz I, Klenk HP, Trent J, Wunderl S, Janekovic D, Imsel E, Haas B (1987) Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order. Syst Appl Microbiol 9:62–70

    Article  CAS  Google Scholar 

  • Zillig W, Holz I, Janekovic D, Klenk HP, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965

    PubMed  CAS  Google Scholar 

  • Zimmer D, Schwartz E, Tran-Betcke A, Gewinner P, Friedrich B (1995) Temperature tolerance of hydrogenase expression in Alcaligenes eutrophus is conferred by a single amino acid exchange in the transcriptional activator HoxA. J Bacteriol 177:2373–2380

    PubMed  CAS  Google Scholar 

  • Zimmerman PR, Greenberg JP, Wandiga SO, Crutzen PJ (1982) Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218:563–565

    Article  PubMed  CAS  Google Scholar 

  • Zirngibl C, Hedderich R, Thauer RK (1990) N 5, N 10-Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity. FEBS Lett 261:112–116

    Article  CAS  Google Scholar 

  • Zorin NA, Gogotov IN (1975) Hydrogenase activity in Thiocapsa roseopersicina according to the D2–H20 metabolic reaction. Biokhimiya 40:192–195

    CAS  Google Scholar 

  • Zorin NA, Dimon B, Gagnon J, Gaillard J, Carrier P, Vignais PM (1996a) Inhibition by iodoacetamide and acetylene of the H-D-exchange reaction catalyzed by Thiocapsa roseopersicina hydrogenase. Eur J Biochem 241:675–681

    Article  PubMed  CAS  Google Scholar 

  • Zorin NA, Medina M, Pusheva MA, Gogotov IN, Cammack R (1996b) Hydrogenase from the thermophilic bacterium Thermococcus stetteri: isolation and characterisation of EPR-detectable redox centres. FEMS Microbiol Lett 142:71–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to their colleague O. Lenz for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schwartz, E., Fritsch, J., Friedrich, B. (2013). H2-Metabolizing Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_65

Download citation

Publish with us

Policies and ethics